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Optimal Routing in Freeway Networks

via Sequential Linear Programming

Zhe Cong, Bart De Schutter, and Robert Babuška

Abstract— Based on the Ant Colony Optimization (ACO)
algorithm, we previously developed an optimization method to
solve the dynamic traffic routing problem in freeway networks,
called Ant Colony Routing (ACR). This method uses virtual
ants to search appropriate routes in a virtual ant network,
and accordingly distributes the vehicles over the corresponding
traffic network sharing the same topology with the ant network.
By using Model Predictive Control (MPC), we can iteratively
apply ACR at each control step to generate a control signal
— i.e. splitting rates at each node in the traffic network.
Motivated by the MPC framework with ACR, we show in
this paper that sequential linear programming (SLP) can be
used as optimization method for solving the dynamic traffic
routing problem in some specific cases, resulting a lower
computation time while achieving a similar performance as the
ACR algorithm.

I. INTRODUCTION

A freeway network that connects cities usually includes

numerous junctions and multiple-lane roads. With unpre-

dictable disturbances, such as incidents, demands, and

weather, such freeway networks can become highly non-

linear and time-variant systems. Therefore, dynamic traffic

control methods are required for managing the traffic flows

so that safety on the roads is guaranteed and no or less traffic

congestion will occur.

Dynamic traffic routing is one of such important traffic

control methods. In particular, it continuously measures the

state of the traffic network, and accordingly diverts vehicles

at each junction to different outgoing links such that a global

or user objective is optimized, e.g., the total travel time

or the emission of CO2. There exists a broad literature on

this topic [1], [2], [3], [4], [5]. In [1], Fu has introduced

an adaptive routing algorithm by using in-vehicle route

guidance systems. Based on real-time information of the

current vehicle positions, the system minimizes the expected

travel time to the destination in the network, and computes

the fastest paths for drivers. The route choice is updated

every time when the vehicle enters a new link. In [2],

Kim et al. also use real-time information technology. They

consider a stochastic shortest path problem on a road network

composed of links having non-stationary travel times, and

the links are assigned to either a congested state or an

uncongested state for determining the travel time distribution.

In [3], Ericsson et al. have developed a navigation system

to focus on the optimization of route choice based on the

total fuel consumption and the emission of CO2 instead of

The authors are with the Delft Center for Systems and Con-
trol, Delft University of Technology, Delft, The Netherlands, email:
{z.cong,b.deschutter,r.babuska}@tudelft.nl

the traditional optimization of the travel time or the travel

distance. In [4], Papageorgiou has developed a framework for

the dynamic traffic routing problem. Based on a dynamic

traffic model, he uses two different methods — optimal

control and feedback control — to influence the drivers’

behavior w.r.t. the system optimum or to the user equilibrium

[6]. Based on that framework, Messmer [5] applied optimal

control in closed loop, where the feedback control problem

is repeatedly solved by applying a non-linear optimization

procedure using gradient-based search over a future time

horizon. Additional information about dynamic traffic rout-

ing can be found in [7].

Some of the work mentioned above, i.e., [1], [2], [3],

does not take into account the availability of future infor-

mation, and therefore may generate suboptimal solutions,

while the other papers, i.e., [4], [5], use numerical non-linear

optimization methods, which involve a high computational

effort. Motivated by the shortcomings of the existing routing

algorithms, we have created an ant-based routing algorithm

for freeway networks, called Ant Colony Routing (ACR) [8].

The ACR algorithm aims at minimizing a global objective

function (total travel time in our case), and at the same time

limits the numbers of vehicles on each link in the traffic

network in order to avoid traffic congestion, as well as for

environmental reasons. In ACR, the traffic information is

translated into link costs in a virtual ant network, and a so-

called stench pheromone is used to push ants away when too

many ants are crowded on the optimal routes. In that way,

some ants start to search alternative routes in the network.

When ants finish searching, the number of ants that has

traveled on each link is used to determine the control signal

— i.e. the splitting rates at each node in the traffic network.

Furthermore, through Model Predictive Control (MPC) [9],

[10], we can include a prediction of the future traffic states

into ACR for optimization, and iteratively apply the resulting

splitting rates at each control step1.

As shown in Figure 1, there are two loops in the entire

MPC traffic control system. Inside the MPC controller, there

is a prediction-optimization loop, running at each control

step. In this loop, a traffic model is used to predict the

future traffic states over a prediction horizon, and ACR is

then applied as the optimization method to optimize the

future traffic flows in the traffic network. At the end, we

obtain the splitting rates, and feed them back to the traffic

prediction model as the control input to restart the next round

1The translation of the splitting rates into routing instructions (via
dynamic route information panels or on-board route guidance) is a task
delegated to lower level controller [11].
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Fig. 1. Schematic representation of MPC

of prediction-optimization. This inner loop keeps recycling

until a stopping criterion is satisfied, (e.g., the changes in

the optimization variables or in the objective function are

below a given threshold or the maximum number of iteration

is reached). Outside the MPC controller, there is a feedback

control loop. The resulting control signal determined by ACR

is implemented in the real traffic network at each control step,

and subsequently both the control horizon and the prediction

horizon are shifted forward one sample time step. At the next

control step, new traffic states are measured for the MPC

controller and the whole procedure is repeated.

In this paper, we present a sequential linear programming

(SLP) optimization method to solve the dynamic traffic rout-

ing problem under the same MPC framework. In particular,

we show that ACR can be recast as a linear programming

(LP) problem if

• Condition (a)2: the link cost in the virtual ant network

is constant at each control step;

• Condition (b): the stench pheromone function in ACR

is an affine or convex piecewise affine function.

Note that Condition (a) approximately holds if the control

time step is not too large. Moreover, Condition (b) can

usually be satisfied too as the stench function is con-

structed by the control designer. Therefore, in the prediction-

optimization loop at each control step, the optimization

problem will be formulated as a sequence of linear subprob-

lems (see Section III), and is solved iteratively by the LP

algorithm in each iteration of the loop. Compared with ACR,

SLP can achieve a similar performance, while consuming

less computation time. However, for non-linear, non-convex

stench functions (e.g., staircase-like stench functions), ACR

still applies while SLP cannot be used.

The rest of this paper is structured as follows. Section II

recapitulates the ACR algorithm. Next, in Section III, we

use SLP to formulate the dynamic traffic routing problem.

Then, we compare the simulation results of a case study in

the Singapore Expressway Network by using SLP and ACR

in Section IV. Section V concludes paper.

2Condition (a) is also required for the regular implementation of ACR, but
for the case where Condition (a) does not apply, one can apply the so-called
fully-dynamic extension of ACR [12] (possibly at the cost of increased CPU
time).
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Fig. 2. General description of stench function Gs,t

II. THE ACR ALGORITHM

The ACR algorithm is an ant-based routing method for

determining the optimal flow distribution in a freeway net-

work, originating from the Ant Colony Optimization (ACO)

algorithms [13], [14]. ACR has the same function as ACO,

which uses virtual ants to find the best route in a network.

However, unlike ACO, ACR can push the ants away when the

best route is crowded, and force ants to search for alternative

routes in the network. In ACR, a virtual ant network consists

of a set of nodes and a set of links that connect the nodes.

A particular route r is a concatenation of links (s, t), which

are pairs of nodes s and t connected by the given link, from

an origin o to a destination d. ACR aims at finding a set of

best routes R∗o,d from each origin o to each destination d that

satisfy the requirements of the optimization problem, instead

of just finding the optimal route r∗o,d . There are two loops

in ACR: an inner loop in which ants move from one node

to an adjacent node in every iteration, and an outer loop in

which ants repeat searching routes from their origin to their

destination in every iteration.

More specifically, a given ant c moves from its current

node s to node t based on a probability p(t|s) at each iteration

of the inner loop. The probability p(t|s) depends on the

pheromone level on the link (s, t) and all the pheromone

levels on the links that are connected to node s:

p(t|s) =
max(τmin,τs,t)

α

∑
t̃∈Ns

max(τmin,τs,t̃)
α , ∀t ∈Ns, (1)

with τs,t the current pheromone level on link (s, t), τmin the

lower bound for the pheromone levels, and the parameter

α ≥ 1. The feasible neighborhood Ns of node s is the set

of nodes that are connected to node s but have not yet been

visited by the given ant c. After selecting the next node t

based on (1), ant c adds link (s, t) to its route rc, and chooses

an adjacent node connected to node t in the next iteration. It

repeatedly applies (1) to construct a route rc until it reaches

the destination node. All ants construct the routes in parallel,

and each route rc is independently evaluated by a fitness

function F after searching is complete. This fitness function

F assigns a positive value to each route rc, which is used to

calculate the regular pheromone ∆τs,t(rc) deposited by ant c



on link (s, t):

∆τs,t(rc) =

{

F(rc) , if (s, t) ∈ rc

0 , otherwise.
(2)

On the other hand, the stench pheromone is calculated by

a function Gs,t based on the number of ants Nant
s,t that have

traveled on the link (s, t). The general behavior of Gs,t is

described in Figure 2 with the following properties:

1) Gs,t has a low value for a small number of ants, while

it has a high value for a large number of ants;

2) If there are no ants visiting link (s, t), i.e. Nant
s,t = 0,

then Gs,t(0) = 0 because no stench pheromone has to

be deposited;

3) As Nant
s,t increases, the value of Gs,t(N

ant
s,t ) will be

monotonically non-decreasing every time Nant
s,t reaches

one of the intermediate threshold levels corresponding

to e.g. sensitive zones such as schools, hospitals, and

residential areas;

4) When Nant
s,t reaches the capacity of link N

ant,cap
s,t , the

value of Gs,t(N
ant
s,t ) steeply rises.

At the end of the inner loop, the total pheromone level on

link (s, t) is updated by both the regular pheromone and the

stench pheromone:

τs,t ← (1−σ)τs,t + ∑
rc∈Rupd

∆τs,t(rc)−Gs,t(N
ant
s,t ), (3)

with σ ∈ (0,1) the evaporation rate and Rupd the set of routes

that are eligible for the pheromone update.

All the ants repeat searching the routes based on the new

pheromone levels, and the pheromone levels are updated by

applying (3) at each iteration of the outer loop. When the

change in the number of ants on each link from one iteration

of the outer loop to the next is below a threshold, or when

the maximum number of iterations of the outer loop has been

reached, the entire algorithm terminates. The output of the

algorithm is the number of ants Nant
s,t in the last iteration of

the outer loop, which is subsequently used to calculate the

splitting rates βm in the traffic network,

βℓ(s,t) =
Nant

s,t

∑
t̃∈Ns

Nant
s,t̃

, (4)

with a relationship ℓ between the link (s, t) in the virtual

ant network and the link m in the traffic network defined as

m = ℓ(s, t).

III. DYNAMIC TRAFFIC ROUTING BY SLP

In this section, we present SLP to solve the same optimiza-

tion problem as ACR in the dynamic traffic routing problem.

Compared to ACR, SLP is a much faster method as it can

use fast LP solvers. We first present the basic SLP algorithm

without going into the details of the specific implementation

of dynamic traffic routing:

for κ = 0,1,2, · · · ,K do

Solve the linear sub-problem

min
xκ

Jκ(xκ) = cT
κ xκ

subject to Aκ xκ = bκ ,

Cκ xκ 6 dκ , (5)

to obtain uκ+1;

Update the optimization variables by using a prediction

model xκ+1 = f (xκ ,uκ+1)
Stop if converged;

end for

In this algorithm, K denotes the maximum number of the

iterations, xκ denotes the optimization variables3 for the

κth sub-problem, uκ denotes the control variables, Jκ(xκ)
denotes the linearized objective function, cκ , Aκ , and Cκ are

a vector and matrices with constant values, and f is the traffic

prediction model. The sub-problem in (5) is an LP problem

at each sequence, and we will specify how to formulate it

next. For illustration purpose, we omit the subscript κ from

now on.

In this paper, we assume that the travel time spent (TTS)

acts as the primary objective4 for the dynamic routing prob-

lem. However, in ACR, there is no explicit objective function.

Instead, as mentioned in Section II, we interpret the TTS as

the link cost, and use a group of ants to evaluate each route in

the network, in such a way that a route with lower link cost

will attract more ants. Such collective behavior finally leads

to a global result. In the SLP approach, we share the same

goal to minimize the TTS, and we will repeatedly solve a

steady-state static problem, with optimization variables qm,d ,

where qm,d denotes the traffic flow with destination d on link

m. The objective function is defined as follows:

min JTTS = min ∑
m∈M

∑
d∈D

qm,d ·T ·Np ·ϕm (6)

where M denotes the set of all links in the network, T

denotes the simulation time interval, Np denotes the pre-

diction horizon, and ϕm denotes the link cost. In (6), the

part ∑d∈D qm,d ·T expresses the number of vehicles on link

m in each simulation time interval of length T , and the

link cost ϕm expresses the travel time on link m. Therefore,

∑d∈D qm,d · T ·Np · ϕm corresponds to the total travel time

on link m over the prediction period. It is easy to verify

that if ϕm is constant (Condition (a) in Section I), (6) is a

linear formulation. We can easily obtain ϕm by calculating

the average travel time during a prediction period t = kT to

t = (k+Np)T , with k the current simulation step:

ϕm =
1

Np

k+Np−1

∑
l=k

tm(l)

where tm(l) denotes the travel time on link m at simulation

step l. This minimization problem is constrained by:

∑
m′∈O(o)

qm′,d = do,d , ∀o ∈ O, ∀d ∈D (7)

3These variables include the state variables as well as some additional
variables (see below for more details).

4Note that we can deal with other objective functions as well, as long as
they (approximately) satisfy Condition (a).



∑
m∈I(n)

qm,d = ∑
m̃∈O(n)

qm̃,d , ∀n ∈N , ∀d ∈D (8)

∑
d∈D

qm,d 6 qcap
m , ∀m ∈M (9)

with O the set of all origin nodes in the network, D the

set of all destination nodes in the network, N the set

of all intermediate nodes in the network, do,d the inflow

with destination d in origin o, q
cap
m the capacity of link

m, and where I and O respectively denote the sets of

incoming and outgoing links. Note that (7)–(9) are linear

constraints. Through solving (6)–(9), we can find the most

time-efficient links in the network. The optimal flows can

next be transformed into splitting rates βm,d (using a formula

like (4)) at each node n ∈N .

Recall that the stench pheromone function in ACR is

used to penalize that too many ants converge to the same

link, so as to avoid traffic congestion and to limit the

number of vehicles in sensitive zones, such as hospitals and

schools. Since the stench pheromone function is designable,

we can formulate it as a piecewise affine (PWA) function

that satisfies the properties required in Section II. In the SLP

approach, we consider it as a penalty function Jpen, with the

following general form:

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Pm,0 ∑
d∈D

qm,d ,

if 0 6 ∑
d∈D

qm,d 6 qthresh
m,1

Pm,1

(

∑
d∈D

qm,d−qthresh
m,1

)

+B1,

if qthresh
m,1 6 ∑

d∈D

qm,d 6 qthresh
m,2

...

Pm, j

(

∑
d∈D

qm,d−qthresh
m, j

)

+B j,

if qthresh
m, j 6 ∑

d∈D

qm,d 6 qcap
m

(10)

where qthresh
m,i , i = 1,2, . . . , j, denote the predefined thresholds

corresponding to the sensitive zones for the flow on link m,

q
cap
m denotes the maximum flow on link m, Pm,i denotes the

slope of the ith affine sub-function, and Bi is a constant,

which is defined as:

Bi =




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


















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



Pm,0qthresh
m,1 ,

for i = 1

Bi−1 +Pm,i−1(q
thresh
m,i −qthresh

m,i−1) ,

for i = 2, . . . , j

(11)

in order to guarantee continuity of the function Jpen. The

penalty function (10) is also an objective to be minimized.

In general, a PWA penalty function will result in a so-called

mixed-integer linear programming (MILP) problem (see Re-

mark 2). However, if Jpen is a convex PWA function, then

minimizing Jpen can be recast by introducing an additional

variable gm:

min ∑
m∈M

gm , (12)

subject to

gm > P0 ∑
d∈D

qm,d , ∀m ∈M (13)

gm > P1

(

∑
d∈D

qm,d−qthresh
m,1

)

+B1, ∀m ∈M (14)

...

gm > Pj

(

∑
d∈D

qm,d−qthresh
m, j

)

+B j, ∀m ∈M (15)

We can easily verify that the LP problem (12)–(15) amounts

to minimizing Jpen.

If we combine the two objectives, we get

min JTTS +ζ Jpen (16)

with weight parameter ζ > 0. The minimization of (16)

subject to (7)–(9) and (13)–(15) is an LP problem, which

can be solved using one of the many available algorithms

for linear programming (see e.g. [15, Chapter 1] or [16]).

In this way, we can determine the optimal flows qm,d in the

network that yield a balanced trade-off between minimizing

the total travel time and avoiding congestion.

Remark 1 If the demand at the origins of the traffic network

is such that the total capacity of the network is exceeded, then

in the real network queues will arise. Such a situation is not

yet captured by the LP defined above and in fact the LP will

be infeasible if the demand is higher than the total capacity

of the network. If this happens we can update the objective

and constraint (7) as follows in order to mimic the creation

of queues at the origins of the network and to get an LP that

is always feasible. For each origin o ∈ O we introduce an

extra slack variable wo that reflects the excess demand and

we replace (7) by

∑
m′∈O(o)

∑
d∈D

qm′,d = do−wo, ∀o ∈ O (17)

wo > 0, ∀o ∈ O (18)

and we use

min JTTS +ζ Jpen +η ∑
o∈O

wo (19)

with η > 0 a weight parameter (with η≪ ζ ) instead of (16).

Note that the updated problem of minimizing (19) subject to

(17), (18), (8), (9), (13), and (14) is still an LP problem.

Remark 2 If Jpen is a non-convex PWA function, the

following procedure, which is inspired by [17], shows that



we can solve (16), subject to (7) – (9) by the MILP approach.

First, we rewrite the penalty function (10) as a recursive

function:

gm,0 = Qm,0 ∑
d∈D

qm,d ,

if 0 6 ∑
d∈D

qm,d 6 qthresh
m,1

gm,i = gm,i−1 +Qm,i

(

∑
d∈D

qm,d−qthresh
m,i

)

,

if qthresh
m,i 6 ∑

d∈D

qm,d 6 qthresh
m,i+1 (20)

for i = 2, . . . , j, and qthresh
m, j+1 = q

cap
m . Parameter Qm,i is a new

parameter for the slope, which can be obtained according

to (10). Then, we associate each condition ∑
d∈D

qm,d > qthresh
m,i

with a binary logical variable δm,i ∈ {0,1} such that

[δm,i = 1]⇔ [ ∑
d∈D

qm,d > qthresh
m,i ] , (21)

where “⇔” means “if and only if”. It is easy to verify that

(21) is equivalent to

∑
d∈D

qm,d 6 qthresh
m,i − (qthresh

m,i −qcap
m )δm,i (22)

∑
d∈D

qm,d > qthresh
m,i −qthresh

m,i (1−δm,i) (23)

Then (10) can be rewritten as:

δm,0Q0 ∑
d∈D

qm,d +
j

∑
n=1

δm,n

(

Qm,n

(

∑
d∈D

qm,d−qthresh
m,n

)

)

(24)

The term δm,i ∑
d∈D

qm,d can be replaced by an auxiliary real

variable zm,i = δm,i ∑
d∈D

qm,d , which can be expressed as:

zm,i 6 qcap
m δm,i , (25)

zm,i > 0 , (26)

zm,i 6 ∑
d∈D

qm,d , (27)

zm,i > ∑
d∈D

qm,d−qcap
m (1−δm,i) , (28)

so then (24) is reduced to the linear expression:

Q0zm,0 +
j

∑
n=1

Qm,n(zm,n−qthresh
m,n δm,n) , (29)

subject to the linear constraints (22), (23), and (25)–(28).

Note that the optimization variables in (29) include con-

tinuous variables (qm,d and zm,i), and also binary variables

(δm,i). So then the problem becomes a MILP problem, which

can be solved efficiently by several existing state-of-the-art

commercial and free solvers, such as CPLEX, Xpress-MP,

or GLPK [18], [19].
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Fig. 3. The central and eastern parts of the Singapore expressway network.

Link Length Lanes Nodes Capacity

number (km) q
cap
m (veh/h)

⋆ 1, 2 3.0 3 9, 10 4500

⋆ 3, 4 4.5 4 10, 11 6000

5, 6 13.0 4 11, 4 6000

7, 8 2.0 4 3, 4 6000

⋆ 9, 10 1.0 3 8, 11 4500

⋆ 11, 12 2.0 3 6, 8 4500

13, 14 8.0 3 2, 6 4500

15, 16 6.5 3 2, 3 4500

⋆ 17, 18 2.0 4 6, 5 6000

19, 20 7.0 3 1, 2 4500

21, 22 7.5 2 1, 5 3000

23, 24 3.5 2 5, 7 3000

25, 26 4.5 2 7, 9 3000

27, 28 11.0 4 6, 3 6000

29, 30 1.0 4 15, 4 6000

31, 32 3.0 3 12, 9 4500

33, 34 3.0 4 13, 5 6000

35, 36 3.0 3 14, 1 4500

TABLE I

PARAMETERS OF REGULAR LINKS AND SENSITIVE LINKS (WITH ⋆) IN

THE SINGAPORE EXPRESSWAY NETWORK

IV. CASE STUDY

Now we apply both ACR and SLP to the case study

considered in [8], which involves the central and eastern parts

of the Singapore expressway network (see Figure 3).

A. Simulation Settings

The part of the Singapore expressway network we consider

contains 8 origins, 8 destinations, and 36 links. This area

includes the central business district, connected to origins

and destinations 5, 6, 7, and 8, as well as the connection with

the airport through origin and destination 4. The parameters

of each link are presented in Table I, where the sensitive

links are marked by ⋆.

We use the METANET model (see [8] for details of the

model parameters used) as the traffic prediction model in

the MPC controller, and for the simulation of the real traffic



symbol value meaning

Nant,total 3000 total number of ants in ACR

τ0 100 initial pheromone level

σ 0.1 evaporation rate

Niter 1000 maximum number of iterations of the

outer loop in ACR

Nloop 10 maximum number of prediction-

optimization loops in MPC

P0 0

slopes of the PWA functionP1 1

P2 20

ζ 0.5 tuning parameter between JTTS and

Jpen

γm 0.5 threshold flow parameter in sensitive

zones

0.7 threshold flow parameter in non-

sensitive zones

TABLE II

PARAMETERS OF OPTIMIZATION APPROACH

network as well. For the sake of simplicity, we here just

assign one threshold flow for each link in the network, and

hence the penalty function is defined as:

gm = max
(

P0qm,P1(qm−qthresh
m )+P0qthresh

m ,

P2(qm−qcap
m )+P1(q

cap
m −qthresh

m )+P0qthresh
m

)

,

(30)

where P0 < P1 < P2 holds to guarantee the convexity of (30)

(otherwise the MILP approach should be used). We select

the threshold flow qthresh
m as:

qthresh
m = γmqcap

m , (31)

with γm ∈ (0,1). The parameters used for the optimization

are shown in Table II.

B. Simulation Result

We now compare the performance of the two methods.

Since there is no explicit objective function in ACR, we

define a so-called assessment function for it in a similar way

as for SLP (see (16)):

JACR = ∑
s,t

Nant
s,t ·ϕℓ(s,t)+ζ ∑

s,t

Gs,t (32)

The total number of simulation-optimization cycles is 10.

The results of the simulations are shown in Figure 4 and

5. We can see that at the second cycle, SLP has achieved

the final optimum, while the value of objective function of

the ACR is slightly fluctuating. This is because ACR is a

stochastic algorithm, so the number of ants Nant
s,t on each

link will never be exactly the same at the end of each ACR

run, even if the link travel times do no longer change.

By optimizing with ACR and SLP, we will find the

resulting optimized flows in the network. From Figure 5,

we can see that in the SLP solution only links 1, 3, 5, 7,
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Fig. 4. Assessment/objective function J for ACR and LP
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Fig. 5. Final assignments for ACR and LP



18, 24, 26, 27, 30, and 31 are assigned a non-zero flow

qm,d4
; these links actually form two routes in the network:

R1 = {31,1,3,5,30} and R2 = {31,26,24,18,27,7}. To

directly compare the assignment results of ACR with SLP, we

translate the number of ants on each link m = ℓ(s, t) into the

flow qm,d4
on the same link through multiplying the number

Nant
s,t by the following factor:

µ =
do1,d4

Nant,total

Note from Figure 5 that the links found by LP are also chosen

by ACR. However, we have even more links found by ACR,

that are links 10, 12, 15, 19, and 22, although we just have

a low flow on them.

The reason that the result of ACR differs from the result

of LP is that optimization mechanism of the two methods

is in fact somewhat different. The ACR algorithm does

not explicitly apply (16) like SLP, but instead, it uses two

opposite types of pheromones to evaluate the routes in the

network. Moreover, ACR is a stochastic algorithm, which

can also lead to a difference in the final assignments between

ACR and SLP.

There is a big advantage of SLP, which is the significantly

lower computation time. For the simulation of the Singapore

expressway network in MATLAB, the total computation time

with SLP is 4.61 s, while the total computation time with

ACR is 3.3 h (both on a single processor). Apart from the

fact that we have only let ants one by one search the routes

in the network, not in parallel, the computational burden of

ACR is still much higher than that of SLP. So even if a

large number of parallel processors are used, SLP will still

outperform ACR from a computational point of view, while

for the given case study it yields an assignment that is very

close to the ACR assignment. Note however that SLP only

works for convex piecewise affine stench functions, while

ACR is much more general, with non-linear link costs and

non-linear, non-convex stench functions (see Condition (a)

and Footnote 2).

V. CONCLUSIONS

We have shown that our previous work on dynamic traffic

routing using the Ant Colony Routing (ACR) approach can

be also formulated as a Sequential Linear Programming

(SLP) problem if Condition (a) and Condition (b) are both

satisfied. For a case study we found that the SLP approach

can almost achieve the same assignment as ACR, with some

slight differences due to the different ways to formulate the

objective function in ACR and SLP. Moreover, with SLP we

can dramatically improve the efficiency of the optimization

method compared to ACR.

Topics for future work include: an in-depth comparison

and assessment of the SLP and ACR approaches using more

extensive cases studies, tuning of the ACR parameters, and

improving the convergence of the simulation-optimization it-

eration process (e.g., by directly including a relation between

flow and travel time into the optimization).
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