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Abstract
In this paper a new railway traffic model is introduced. This model is determined by rewrit-
ing the model introduced in [12, 13]. The models are both macroscopic, contain the same
level of details, allow the rescheduling of trains, and are formulated as Switching Max-
Plus-Linear (SMPL) models, the difference being that the first model is an implicit SMPL
model and the second one is an explicit SMPL model. In this paper a method is detailed for
rewriting an implicit SMPL model into an explicit SMPL. Both models are used to solve
the rescheduling problem. By solving the rescheduling problem a schedule for all trains in
the network is found that minimizes the total delay. The rescheduling problem will be writ-
ten as a Mixed Integer Linear Programming (MILP) problem and solved using the standard
solver available in the Multi-Parametric Toolbox [11] for Matlab. The time needed to solve
the rescheduling problem using either the implicit and explicit model is compared.

1 Introduction

In many countries railway traffic already covers a large part of the public transportation
needs, while the number of passengers using trains is steadily increasing. Because of the
increase of passengers the railway network is becoming more heavily utilized, resulting in
timetables with less buffer times to compensate for delays. As a result, a small delay of
a single train may cause numerous secondary delays and propagate through a large part
of the network. Current practice of many railway operators is to divide the network into
several dispatching areas, each with their own dispatcher. The dispatcher tries to reduce the
number of secondary delays by taking dispatching actions such as rescheduling or rerouting
trains, canceling trains, and breaking connections in his dispatching area. These actions are
based on predetermined sets of rules and the experience of the dispatchers. As a result these
actions may be optimal for the dispatching area, but may cause unnecessary and unforeseen
delays in other parts of the network.

Rescheduling of railway traffic has been a topic of interest for many researchers in recent
years [4, 5, 9, 10]. In [4, 5] the railway traffic is modeled as a microscopic model, while
this gives the most accurate representation of the railway network and traffic, it also results
in a very complex model. Only parts of the whole network are considered while solving
the rescheduling problem, since solving the rescheduling problem for the whole network
would take too much time to be practical for on-line use. In [9] it is shown that a less
complex model, very similar to the model of [13], can be used for rescheduling. This model
is described as an alternative graph and uses a solver specifically designed to minimize the
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maximum secondary delay. In [10] a greedy method is proposed that delivers good solutions
in a matter of seconds. A greedy method is used because for some scenarios it takes too
long to find the optimal scenario. The biggest problem that remains in all of the approaches
is the computation time needed to find the optimal solution to the rescheduling problem for
the entire railway network.

Railway traffic with fixed connections, predetermined routing, and a given schedule
can be modeled using max-plus-linear models [2, 3, 6]. Max-plus algebra uses the two
operators maximization and addition. These operators can be used on the set of real numbers
together with minus infinity. For an extensive description of the properties and applications
of max-plus algebra the reader is referred to [1]. More recently [13] has used Switching
Max-Plus-Linear (SMPL) models to model railway traffic with adaptable order of trains
on tracks for use in rescheduling. The advantages of using max-plus algebra to model the
railway traffic are the tools and theories that have been developed for analyzing max-plus-
linear models. The steady state behavior can be determined by finding the eigenvectors and
values. Max-plus-linear models have been used for stability analyses of timetables [7] and
delay propagation in railway networks [8]. All of these theories and methods are at our
disposal when describing the model as a (switching) max-plus-linear model.

This paper continues the work of [12, 13], where a rescheduling method is introduced
that uses a switching max-plus-linear (SMPL) model and determines the optimal control
actions for the entire network in case of delays. We continue this work by introducing
a modified description of the SMPL model in Section 2. This allows for the model to be
rewritten into its explicit form, which is described in Section 3. In Section 4 the rescheduling
problem is described for the implicit and explicit models and rewritten into a Mixed Integer
Linear Programming (MILP) problem. The time needed to solve the rescheduling problem
using the implicit and explicit model descriptions is compared for a case study of a small
railway network in Section 5. In Section 6 the conclusions are drawn.

2 Modeling

In many countries the passenger railways operate on a periodic timetable. The reason for
this is that a periodic timetable is easier to use and remember for the passengers. Therefore
the model in this paper also uses a periodic timetable. The period of the timetable is denoted
by T . During nominal operation all trains arrive and depart according to the timetable, the
routes and connections of the trains are fixed and known, and the orders in which the trains
occupy shared parts of the infrastructure are fixed. When trains are delayed, for example by
longer boarding and alighting times of passengers, mechanical failures, speed restrictions
due to signal failures or infrastructure problems, they may not be able to run according
to the timetable and dispatchers will have to take action, such as reordering the trains at
certain parts of the network, in order to reduce the effects of the initially delayed trains on
other trains. In this case the railway traffic system is running in perturbed operation. First,
the model of the nominal operation will be explained, and next it will be extended to the
perturbed operation.

2.1 Nominal operation

The railway traffic is modeled as a discrete event system in [12, 13]. The events of the
system are the arrivals and departures of the trains at all stations and all junctions outside
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the interlocking areas of the stations. All stations are modeled as single points with infinite
capacity, tracks are modeled as single links, and headway times between trains running over
the same tracks are modeled instead of the signaling system.

This results in a macroscopic model where the arrival and departure events are linked
to each other through constraints based on the schedule of the trains and the infrastructure.
These constraints can be characterized as one of the following types of constraints:

• Running time constraints

We define a train run as the following combination of actions; a train departs from
a station or junction, it drives over a track, and finally arrives at the next station or
junction. This is illustrated in Figure 1. A running time constraint then connects the
departure time of train run i in cycle k, denoted by di(k), to the arrival time at the
next station or junction of the same train run denoted by ai(k) according to:

ai(k) ≥ di(k) + τ run
i (k), (1)

where τ run
i (k) is the running time, i.e., the time the train needs to drive over the track.

-train run i
A B

1

Figure 1: A train run

• Continuity constraints

Since most trains have routes that are longer than a single train run, a constraint is
needed to connect different train runs of the same train to each other. Consider train
run i and the preceding train run j of the same train as shown in Figure 2. These train
runs should be connected such that train run j does not start before train run i has
ended at station B plus the time the train of train run j stays at the station, in order for
the passengers to be able to board and alight, denoted by τ dwell

ij (k). This is modeled
by the continuity constraint described by:

di(k) ≥ aj(k − µij) + τ dwell
ij (k) (2)

where µij is zero if both train runs are in the same cycle and one if there is one cycle
difference between the two train runs.

-train run j -train run i
A B C

1

Figure 2: Train runs i and j of the same train
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• Headway constraints

Trains running over the same track cannot overtake each other on the track and should
maintain a safe distance from each other. This can be modeled by adding a constraint
that keeps these trains separated. This constraint is called the headway constraint.
Headway constraints can be divided into two types: headway constraints for trains
running in the same direction over the same track, and headway constraints for trains
running in the opposite direction over the same track, as shown in Figures 3 and 4
respectively.

-train run i

-train run l
A B

1

Figure 3: Train runs i and l on the same track in the same direction

�train run m

-train run i
A B

1

Figure 4: Train runs i and m on the same track in the opposite direction

Define Hi as the set of train runs that end before train run i, and for which the trains
run over the same track and in the same direction as the train of train run i. Then the
headway constraints for train run i are described by:

di(k) ≥ dl(k − µil) + τ headway
il (k) (3)

ai(k) ≥ al(k − µil) + τ headway
il (k), (4)

for each l ∈ Hi, where τ headway
il (k) is the headway time between train run i and train

run l and µil is defined as before.

Define Wi as the set of train runs that end before train run i, and for which the trains
run over the same track and in the opposite direction as the train of train run i. Then
the headway constraints for train run i are described by:

di(k) ≥ am(k − µim) + τwait
im (k), (5)

for each m ∈ Wi, where τwait
im (k) is the wait time that train run i has to start after train

run m has ended and µim is again defined as before.

• Timetable constraints

As was mentioned in the beginning of this section, the trains run according to a peri-
odic timetable. To model the requirement that trains do not depart or arrive too early
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timetable constraints are used. These constraints are described by:

di(k) ≥ rd
i (k) (6)

ai(k) ≥ ra
i(k), (7)

where rd
i (k) and ra

i(k) are the departure and arrival times as scheduled in the timetable.
If trains are allowed to arrive early equation (7) can be left out.

• Connection constraints

If a railway operator guarantees connections between trains (so that passengers can
transfer from one train to the other), then another type of constraint has to be defined:
the connection constraint. Define Ci as the set of train runs, train run i has to give a
connection to. Then the connection constraints for train run i will be

di(k) ≥ ac(k − µic) + τ connect
ic (k), (8)

for each c ∈ Ci, where τ connect
ic (k) is the minimum connection time needed for the

passengers to alight and board the other train and µic is defined the same as before.

An event can have several of these constraints. The set of constraints for each event can
be combined into a single equation resulting in the following equations for the departure
time of train run i and the arrival time of train run i:

di(k) =max

(
aj(k − µij) + τ dwell

ij (k),max
l∈Hi

(
dl(k − µil) + τ headway

il,d (k)
)
,

max
m∈Wi

(
am(k − µim) + τwait

im (k)
)
,max
c∈Ci

(
ac(k − µic) + τ connect

ic (k)
)
, rd

i (k)

)
(9)

ai(k) =max

(
max
l∈Hi

(
al(k − µil) + τ headway

il,a (k)
)
, di(k) + τ run

i (k), ra
i(k)

)
(10)

Clearly only two operators are needed for these equations: the maximization and the
plus operator. An algebra exists that uses only these two operators, it is called the max-plus
algebra. The max-plus algebra is an idempotent semi-ring, consisting of the set Rmax =
R ∪ {ε}, where ε = −∞, equipped with the two operators ⊕ and ⊗, that are defined as
follows [1]:

a⊕ b = max(a, b)

a⊗ b = a+ b,

for a, b ∈ Rmax.
These operators can be extended to matrices:

[A⊕B]ij = aij ⊕ bij = max(aij + bij)

[A⊗ C]ij =

n⊕
k=1

aik ⊗ ckj = max
k=1,...,n

(aik + ckj),

where A,B ∈ Rm×n
max and C ∈ Rn×p

max .
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With the use of max-plus algebra, equations (9), (10) can be rewritten as:

di(k) = aj(k − µij)⊗ τ dwell
ij (k)⊕

⊕
l∈Hi

(
dl(k − µil)⊗ τ headway

il (k)
)
⊕

⊕
m∈Wi

(
am(k − µim)⊗ τwait

im (k)
)
⊕

⊕
c∈Ci

(
ac(k − µic)⊗ τ connect

ic (k)
)
⊕ rd

i (k) (11)

ai(k) =
⊕
l∈Hi

(
al(k − µil)⊗ τ headway

il (k)
)
⊕ di(k)⊗ τ run

i (k)⊕ ra
i(k) (12)

By defining the state vector x(k) and timetable vector r(k) as

x(k) =



d1(k)
...

dq(k)
a1(k)

...
aq(k)


, r(k) =



rd
1(k)

...
rd
q(k)
ra
1(k)

...
ra
q(k)


,

where q is the number of train runs in the model, and by defining A0(k), A1(k) ∈ R2q×2q
max ,

equations (11), (12) can be written in matrix form as

x(k) = A0(k)⊗ x(k)⊕A1(k)⊗ x(k − 1)⊕ r(k), (13)

where the entries of A0(k), contain the running, headway, wait, dwell and connection times
of the constraints between events in the same cycle (µij = 0) and the entries of A1(k),
contain the running, headway, wait, dwell and connection times of the constraints between
events of the current and previous cycle (µij = 1). All entries [A0(k)]ij for which no
constraint between train runs i and j with µij = 0 is defined, are equal to ε. The same
applies for all entries [A1(k)]ij for which no constraint between train runs i and j with
µij = 1 is defined.

2.2 Perturbed operation

With the model introduced in Section 2.1 it is impossible to change the order of the trains.
This functionality can be added to the model by making the headway constraints adjustable
to the order of the trains. In [13] this is done by introducing control inputs and a new
operator ⊙, which is an element-wise addition (addition as defined in normal algebra). This
operator is not defined in the max-plus algebra, therefore the model cannot be considered
as a purely max-plus algebraic model. In this section it is shown that changing the order of
trains can be done entirely within the max-plus algebraic framework, without introducing a
new operator.

Consider two trains running in the same direction over the same track again, as shown
in Figure 3. Now if the order of the trains should be changed between train run l and i,
equations (3) and (4) should be replaced by:

dl(k) ≥ di(k)⊗ τ headway
li (k) (14)

al(k) ≥ ai(k)⊗ τ headway
li (k) (15)
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Replacing these constraints can be done by introducing a control variable uil(k) ∈
{ε, 0} and its negated control variable uil(k) ∈ {ε, 0}/{uil(k)}. By multiplying equations
(3) and (4) by uil(k) and multiplying equations (14) and (15) by uil(k) we obtain:

di(k) ≥ dl(k)⊗ τ headway
il (k)⊗ uil(k) (16)

ai(k) ≥ al(k)⊗ τ headway
il (k)⊗ uil(k) (17)

dl(k) ≥ di(k)⊗ τ headway
li (k)⊗ uil(k) (18)

al(k) ≥ ai(k)⊗ τ headway
li (k)⊗ uil(k) (19)

If uil(k) = 0, then uil(k) = ε and the constraints become:

di(k) ≥ dl(k)⊗ τ headway
il (k)⊗ 0 = dl(k)⊗ τ headway

il (k)

ai(k) ≥ al(k)⊗ τ headway
il (k)⊗ 0 = al(k)⊗ τ headway

il (k)

dl(k) ≥ di(k)⊗ τ headway
li (k)⊗ ε = ε

al(k) ≥ ai(k)⊗ τ headway
li (k)⊗ ε = ε.

The first two equations are the same as (3) and (4) and the last two equations are always
satisfied, since every element of the set Rmax is larger or equal than ε. As a result the order
does not change from the default.

If uil(k) = ε, then uil(k) = 0 and the constraints become:

di(k) ≥ dl(k)⊗ τ headway
il (k)⊗ ε = ε

ai(k) ≥ al(k)⊗ τ headway
il (k)⊗ ε = ε

dl(k) ≥ di(k)⊗ τ headway
li (k)⊗ 0 = di(k)⊗ τ headway

li (k)

al(k) ≥ ai(k)⊗ τ headway
li (k)⊗ 0 = ai(k)⊗ τ headway

li (k)

In this case the first two equations are always satisfied and the last two equations are the
same as (14) and (15) resulting in a change in the order of the trains.

The same can be done for the headway constraints of two trains running in opposite
direction:

di(k) ≥ am(k)⊗ τ
wait(k)
im ⊗ uil(k) (20)

dm(k) ≥ ai(k)⊗ τ
wait(k)
mi ⊗ uil(k) (21)

With these adjustments reordering the trains can be modeled at the points in the network
where it is physically possible. The resulting model is a switching max-plus-linear (SMPL)
model. It is called a switching max-plus-linear model, since it can switch between behaviors
(train orders). The SMPL model can be described as:

x(k) = A0(u(k), k)⊗ x(k)⊕A1(k)⊗ x(k − 1)⊕ r(k), (22)
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where u(k) is the set containing all control variables uil(k) and uil(k), and the elements
of A0(u(k), k) are max-plus-linear functions in the control variables. As an example, con-
sider the element [A0(u(k), k)]il. This element relates di(k) to dl(k) and is determined by
equation (16). The value of this element is

[A0(u(k), k)]il = τ headway
il (k)⊗ uil(k),

which is a function that is linear in max-plus algebra; hence we call it a max-plus-linear
function.

3 From the implicit to the explicit model

The model introduced in equation (22) has a specific structure called the implicit form. For
an equation in the implicit form the state vector x(k) depends not only on the state vector
of the previous cycle (and the timetable reference), but also on itself. A disadvantage of
an implicit model is that in order to determine the event times x(k) the model needs to be
iterated several times. By rewriting the model into its explicit form x(k) can be calculated
in a single iteration, but this calculation may be more time consuming than a single iteration
of the implicit model, since the explicit model can be more complex than the implicit model.

From this point on A0(u(k), k) and A1(k) will be written as A0 and A1, since the SMPL
model will be the only model considered. The SMPL model can be rewritten into its explicit
form by determining A∗

0 [1]:

x(k) = A∗
0 ⊗A1 ⊗ x(k − 1)⊕A∗

0 ⊗ r(k) (23)

where

A∗
0 =

∞⊕
p=0

A⊗p
0 , (24)

with
A⊗p

0 = A0 ⊗A0 ⊗ . . .⊗A0︸ ︷︷ ︸
p times

(25)

and A⊗0
0 = E, where E is the max-plus identity matrix; this is a square matrix with diagonal

entries equal to 0 and the rest of its entries ε.
For any railway model as defined in section 2, the infinite sum in equation (24) can in

fact be limited to the dimension of the matrix minus one. This property can be derived from
the fact that all event times are positive. As a result any circuit in the graph of the A0 will
have a positive weight. A circuit in the graph of A0 implies a relation between each of the
events in circuit to itself of the form xi = xi + a, with a the weight of the circuit. This kind
of equations has no solution in Rmax for positive a, and therefore no circuits should exist
in the graph of A0. In max-plus algebra the value of [A⊗p

0 ]ij is the maximum weight of all
paths of length p from j to i in the graph of A0. If no path of length p exists, this value is ε.
Since no circuits should exist, the length of the longest path in the graph of A0 can at most
be the dimension of the matrix minus one. As a result any matrix power A⊗i, with i larger
than or equal to the dimension of the matrix, is equal to E , where E is the zero matrix in
max-plus algebra, with all entries equal to ε. Just like in regular algebra addition with a zero
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matrix does not change the matrix. Therefore, the sum in equation (24) A∗
0 can be limited

to the dimension of the matrix minus 1:

A∗
0 =

2q−1⊕
p=0

A⊗p
0 . (26)

In the case of the SMPL model combinations of control inputs that correspond to in-
feasible orders of trains, will result in circuits of positive weight in the graph of A0. These
combinations of control inputs have to be identified and removed during the calculation of
A∗

0. These combinations of control inputs can be identified by finding the diagonal elements
in the matrices A⊗i

0 (k) that have a positive weight, since these correspond to equations of
the form xi = xi + [A⊗i

0 (k)]ii, with A⊗i
0 (k)]ii being the diagonal element with positive

weight. By identifying and removing the infeasible combinations of control inputs resulting
in these diagonal elements, a feasible explicit switching max-plus-linear model is found:

x(k) = Aexp ⊗ x(k − 1)⊕A∗,feas
0 ⊗ r(k), (27)

where Aexp = A∗,feas
0 ⊗ A1, with A∗,feas

0 being equal to A∗
0, with the exception that the

infeasible combinations of control inputs are removed from the matrix.

4 Rescheduling problem

With the models of the railway traffic introduced in Section 2, the propagation of the delay
through the network and the effects of changing the order of trains on the delay propagation
can be determined. This is needed to solve the rescheduling problem. The rescheduling
problem is the problem of finding the order of the trains that minimizes a measure of the
delay in the network, such as the total delay, or the maximum delay.

The rescheduling problem can be defined as a mixed integer linear programming (MILP)
problem. In general an MILP problem is defined as

min c⊤y (28)
s.t.Ay ≤ b (29)

Aeqy = beq (30)

where y is the vector of variables, c⊤y is the objective function that needs to be minimized,
and A, Aeq, b, and beq define the constraints on the variables.

In the case of the rescheduling problem, the vector of variables y contains the arrival
and departure times of all train runs (x(k)) and the control variables (u(k)). The objective
function c⊤y is chosen such that the total delay in the system is minimized. This can be done
by simply minimizing the sum of the arrival and departure times since the constraints (6),(7)
ensure that the trains cannot arrive or depart before their scheduled arrival and departure
times. No penalty is set on the control inputs.

The constraints on the variables are determined by the SMPL model. For the implicit
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SMPL model the constraints on xi(k) can be written as

xi(k) =
⊕
j

(
[A0]ij ⊗ xj (k)

)
⊕

2q⊕
j=1

(
[A1]ij ⊗ xj (k − 1)

)
⊕ ri(k)

xi(k) = max

(
max

j

(
[A0]ij + xj(k)

)
,max

j

(
[A1]ij + xj(k − 1)

)
, ri(k)

)

This can be split into three sets of constraints:

xi(k) ≥ [A0]ij + xj(k), for all j
xi(k) ≥ [A1]ij + xj(k − 1), for all j
xi(k) ≥ ri(k)

MILP solvers cannot deal with control inputs with values ε = −∞. This problem can be
easily dealt with by introducing new binary variables vi(k) that are defined as

vi(k) =

{
0 if ui(k) = 0
1 if ui(k) = ε

(31)

and by replacing ui(k) by βvi(k) and ui(k) by β(1− vi(k)), where β ≪ 0. In this way an
MILP problem of the form (28),(29),(30) is obtained.

For the explicit model the constraints on xi(k) can be written in a similar manner:

xi(k) =
⊕
j

(
[Aexp]ij ⊗ xj (k − 1)

)
⊕
⊕
j

(
[A∗,feas

0 ]ij ⊗ rj(k)
)

xi(k) = max

(
max

j

(
[Aexp]ij + xj (k − 1)

)
,max

j

(
[A∗,feas

0 ]ij + rj(k)
))

,

This can be split up into two sets of constraints

xi(k) ≥ [Aexp]ij + xj (k − 1) for all j

xi(k) ≥ [A∗,feas
0 ]ij + rj(k) for all j

Then by replacing the control variables in the same way as was done for the implicit model
an MILP problem of the form (28),(29),(30) is obtained.

5 Test case

In order to test the computational performance of the rescheduling problem using the im-
plicit and explicit SMPL models a small railway traffic network is considered. The network
is shown in Figure 5.

The model has a timetable period of 30 minutes; 11 trains are modeled to run over
the network, resulting in 31 train runs, 62 continuous variables, and 25 control inputs. The
rescheduling problem using the implicit SMPL model has 319 constraints, while the explicit
SMPL model has 17067 constraints.
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Case study  
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• Just as in a real railway system, time supplements (i.e. slack time) have to be included in 
the timetable to enable small delays to settle without the need for dispatching actions. 

 

7.2.2 The used testing network and timetable 
Based on the considerations in the preceding section, the testing network shown in Figure 7.1 has 
been produced. As can be seen, stations 1, 6 and 7 form the end of a railway line. The trains turn 
here. The track layout of these stations is not shown. Stations 2, 4 and 5 are stations with 
overtaking possibilities along the railway line. Station 3, where two railway lines merge (without 
flyover) forms the heart of the testing network. 
  

 
 

Figure 7.1   Testing network for the case study. 

 
 

 
 
 
 

Figure 7.2   Schematization of the timetable used 
for the test case. 

 
Figure 7.2 contains a schematization of the line plan of the test case. A thick line denotes a train 
line running in a 30 minutes service. One intercity line runs between stations 7 and 6, via station 
3. Another intercity line connects station 1 with station 6. A local service runs between stations 1 
and 6 as well. Note that all train lines share the same infrastructure between stations 3 and 6.  
The hourly timetable of the train lines running in north – south direction are shown in Table 7.1, 
while the trains in the opposite direction can be found in Table 7.2. A through train is indicated 
by italic print of the departure time. In the testing timetable, each train line runs 6 times in total; 
hence, with a 30 minutes service on each line, approximately 3 hours are simulated.  
A time-distance diagram of the corridor between stations 1 and 6 is shown in Figure 7.3. The 
individual train trips are numbered with three-digit train numbers, where the first digit 
corresponds with the line number. Note that in station 4, direction north – south, line 5 (local 
service) is scheduled to be overtaken by line 1 (intercity), and in direction south – north, line 6 
(local service) is scheduled to be overtaken by line 2 (intercity). Note also that the local trains 
have longer scheduled running times than the intercity trains (i.e. the local trains are slower). 

Figure 5: Small railway traffic network

To evaluate the computational performance a set of 50 scenarios is considered. In the
scenarios 20% of the trains are delayed by a randomly selected delay based on a truncated
Weibull distribution, with shape parameter of 0.8 and a scale parameter of 20. The delays
are cut off at a maximum value of 40 minutes. The sum of delays for the 50 scenarios is
shown in Figure 6. The black bars correspond to the uncontrolled network, while the white
bars correspond to the optimal solution. The solutions of the implicit and explicit model
are exactly the same. The computation time required to solve the 50 scenarios is shown in
Figure 7 on a logarithmic scale. All results are also shown in Table 1.
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Figure 6: Sum of delays for the 50 scenarios for the uncontrolled (black bars) and optimally
controlled (white bars) case.
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Figure 7: Computation time of the solver for the 50 scenarios for the implicit (+) and explicit
(o) models.
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Table 1: The results of the 50 scenarios of the test case for a time horizon
of 30 minutes.

Scenario Delay Delay Comp. time Comp. time
(#) Uncon. (min) Con. (min) Imp. (s) Exp. (s)
1 1221 766 0.0069 0.3836
2 545 325 0.0031 0.3550
3 425 355 0.0046 0.2863
4 549 485 0.0017 0.2931
5 894 706 0.0143 0.4384
6 722 356 0.0110 0.3058
7 971 901 0.0015 0.2865
8 1249 848 0.0092 0.3609
9 742 569 0.0018 0.2648
10 840 674 0.0079 0.3601
11 1472 915 0.0038 0.3655
12 1493 906 0.0062 0.2963
13 819 587 0.0056 0.5620
14 1498 1018 0.0029 0.3186
15 1268 773 0.0017 0.3008
16 419 299 0.0040 0.4241
17 939 762 0.0026 0.3407
18 881 571 0.0026 0.2865
19 496 464 0.0016 0.2827
20 203 191 0.0027 0.3284
21 218 198 0.0012 0.2698
22 282 282 0.0020 0.2791
23 494 457 0.0025 0.4980
24 1087 758 0.0077 0.5105
25 270 235 0.0024 0.2784
26 1621 1398 0.0060 0.3303
27 1271 1140 0.0048 0.3081
28 1562 1390 0.0026 0.3522
29 537 401 0.0022 0.4592
30 697 689 0.0030 0.2981
31 788 772 0.0088 0.3317
32 525 452 0.0015 0.2637
33 388 388 0.0011 0.2712
34 1034 830 0.055 0.3031
35 477 355 0.0017 0.2777
36 1009 626 0.0027 0.2806
37 956 679 0.0090 0.3439
38 984 793 0.0030 0.3019
39 907 638 0.0061 0.4060
40 1544 1144 0.0031 0.3578
41 851 791 0.0061 0.4928
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42 1138 948 0.0166 0.5934
43 1117 784 0.0034 0.2750
44 269 269 0.0033 0.4512
45 1170 795 0.0030 0.3002
46 530 465 0.0044 0.4486
47 468 414 0.0023 0.2672
48 351 286 0.0034 0.3197
49 1141 569 0.0026 0.3529
50 755 541 0.0134 0.7097

From the results it is clear that solving the rescheduling problem using the explicit model
takes a lot more time than solving it using the implicit model. At best it is about 28 times as
slow and in the worst case it is 254 times as slow.

6 Discussion

We have proposed an adaptation of the SMPL model for railway networks introduced in
[13]. Our approach allows the model to be described completely within the max-plus alge-
bra. Next, it has been shown how the implicit SMPL model can be converted into its explicit
form. For a case study of a small railway network we have compared the time needed to
solve the rescheduling problem, using either of these models. From these results the conclu-
sion can be drawn that solving the rescheduling problem using the explicit model requires
more time than solving the problem using the implicit model. So currently there is no ben-
efit in using the explicit model instead of the implicit model. Therefore, the next step in our
research will to reduce the computation time needed to solve the rescheduling problem for
both models. One way of doing this is by limiting the control freedom. The control free-
dom can be limited by removing some (combinations of) control inputs that have little or
no effect on the railway network. This will result in smaller MILP problems. It is expected
that the explicit model will benefit more from these methods to limit the control freedom
because in the implicit model no combinations of control inputs can be removed, since the
constraints resulting from combinations of control inputs are not explicitly modeled but are
modeled through the iterative structure of the model. For the implicit model these com-
binations of control inputs can only be excluded by adding a constraint that is violated if
this combination is chosen. On the other hand, in the explicit model these combinations
of control inputs are explicitly modeled and can therefore be easily removed, resulting in a
larger reduction in the number of constraints for the MILP problem based on this model.
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