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Finite Abstractions of Max-Plus-Linear Systems
Dieky Adzkiya, Student Member, IEEE, Bart De Schutter, Senior Member, IEEE,

and Alessandro Abate, Member, IEEE

Abstract—This work puts forward a novel technique to gene-
rate finite abstractions of autonomous and nonautonomous Max-
Plus-Linear (MPL) models, a class of discrete-event systems used
to characterize the dynamics of the timing related to successive
events that synchronize autonomously. Nonautonomous versions
of MPL models embed within their dynamics nondeterminism,
namely a signal choice that is usually regarded as an exogenous
control or schedule. In this paper, abstractions of MPL models
are characterized as finite-state Labeled Transition Systems
(LTS). LTS are obtained first by partitioning the state space (and,
for the nonautonomous model, by covering the input space) of the
MPL model and by associating states of the LTS to the introduced
partitions, then by defining relations among the states of the
LTS based on dynamical transitions between the corresponding
partitions of the MPL state space, and finally by labeling the
LTS edges according to the one-step timing properties of the
events of the original MPL model. In order to establish formal
equivalences, the finite abstractions are proven to either simulate
or to bisimulate the original MPL model. This approach enables
the study of general properties of the original MPL model by
verifying (via model checking) equivalent logical specifications
over the finite LTS abstraction. The computational aspects related
to the abstraction procedure are thoroughly discussed and its
performance is tested on a numerical benchmark.

Index Terms—Max-plus algebra, discrete-event systems, piece-
wise affine models, labeled transition systems, model abstractions,
difference-bound matrices, bisimulations, model checking.

I. INTRODUCTION

MAX-PLUS-LINEAR (MPL) systems are a class of

discrete-event systems [2], [3] with a continuous state

space characterizing the timing of the underlying sequential

discrete events. MPL models are predisposed to describe the

timing synchronization between interleaved processes, under

the assumption that timing events are linearly dependent

(within the max-plus algebra) on previous event occurrences

and (for nonautonomous models) on exogenous schedules (cf.

Section II). MPL models are widely employed in the analysis

and scheduling of infrastructure networks, such as communi-

cation and railway systems [4], production and manufacturing

lines [5], [6], or biological systems [7]. They cannot model

concurrency and are related to a subclass of Timed Petri Nets,

namely Timed-Event Graphs [8].
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Classical dynamical analysis of MPL models is grounded

on their algebraic [9] or geometric features [10]. It allows

investigating model properties such as its transient behavior,

its periodic regimes, or its ultimate dynamical behavior [11].

This work explores a new, alternative approach to analysis

that is based on finite-state abstractions [12] of autonomous

and nonautonomous MPL models. Furthermore, by employing

a novel representation of the quantities into play (regions

over the state and the control spaces, as well as model

dynamics), this work seeks to synthesize techniques that are

computationally agile.

With regards to the abstraction procedure (cf. Section III),

we put forward a new technique that generates a finite-state

Transition System (TS) in a finite number of steps. The states

of the TS are obtained by finite partitioning of the state

space of the MPL model, whereas relations between pairs

of TS states are established by checking whether a trajectory

of the original MPL model is allowed to transition between

the corresponding partitioning regions. The finite-state TS,

however, may contain transitions that are unfeasible for the

MPL model and as such may overapproximate the dynamics

of the MPL model [13]. Computationally, this characterization

is performed by forward-reachability analysis over a Piece-

Wise Affine (PWA) representation of the MPL dynamics.

PWA models [14] are characterized by vector fields that are

affine (linear, plus an offset), within convex polytopes over

the state and input spaces. In the nonautonomous (control-

dependent) case, the technique embeds the one-step dynamics

within an “augmented space” [4], namely the cross product

of state and input spaces. The transitions between pairs of

TS states thus depend on a choice of the input. In order to

establish formal relationships between the concrete model and

its abstraction, we argue that in general the LTS abstraction

simulates the original MPL model [12], and furthermore

we provide sufficient conditions to establish a bisimulation

relation between abstract and concrete models [15]. We design

a finite-time procedure with formally quantified complexity

to construct it, if the sufficient conditions are fulfilled. The

overall approach furthermore leverages a novel representation

of the spatial regions and of the dynamics based on Difference-

Bound Matrices (DBM) [16]. This representation allows for

compact and computationally fast operations on regions of the

state space, and thus for fast computation of the quantities of

interest.

The approach to attain abstractions developed in this work

is inspired by those developed for other models in [12], [17],

[18], and can be interpreted in the context of literature focused

on the construction of finite-state (quotient) models of given
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systems. Notice that we leverage a PWA representation of

the given MPL dynamics [19] – a particular case of the

PWA model used in [18] – to build the finite-state LTS

abstraction. However, techniques for abstractions of PWA

systems developed in the literature [18] do not appear to be

directly usable in the context of the models derived from MPL

systems, since spatial boundaries can non-trivially affect the

semantics of the trajectories [18, Remark 1] (see Section III).

Likewise, related verification approaches developed for Timed

Petri Nets (such as that for safety analysis based on existential

zones [20]) do not appear to being exportable to MPL models.

Next, the TS abstraction is decorated with labels (cf. Sec-

tion IV), which results in models, known as Labeled Transition

Systems (LTS), that are particularly useful in computational

formal verification techniques. The labels of the LTS model are

defined in two possible ways: 1) they either characterize the

difference between the timing of the same event for any two

variables of the original MPL model, or 2) they represent the

time difference between consecutive events of the MPL model.

For a nonautonomous MPL model, it is furthermore possible to

associate each transition with a label describing: 1) the subset

of the outgoing partitioning region that is actively enabled by

the transition under some input signals; or 2) the subset of

the control inputs that actively leads states from the outgoing

partitioning region to the destination region. This plurality of

semantical definitions allows for flexibility in using the LTS

abstraction for analysis of the original MPL model.

The computational aspects related to the abstraction proce-

dure have been under particular scrutiny, and have brought

to 1) the selection of DBM as a framework for the rep-

resentation and manipulation of regions over the state and

control spaces; and 2) the use of PWA representations of

the MPL dynamics [19], which nicely couples with quantities

expressed as DBM. The computational costs of the abstraction

procedure are discussed in detail and its overall performance

is benchmarked over a case study in Section V.

By expressing general dynamical properties as specifications

in a modal logic such as Linear Temporal Logic (LTL) [15],

we argue that the LTS abstraction allows for the formal

verification of classes of properties by using model checking

techniques. In particular, we focus on properties related to

the cyclicity, the length of the transient part, and the ultimate

behavior of the autonomous MPL model (cf. Section VI-A).

More generally, LTL specifications over LTS can be efficiently

model checked by a number of existing software tools – in this

work we use the SPIN model checker [21] for our purposes.

Moreover, LTS models in general are prone to be further

simulated or bisimulated [15], which may lead to additional

computational savings. Section VI elaborates a few examples

to display the overall approach.

The abstraction technique developed in this work has been

implemented as a MATLAB software tool, “Verification via

biSimulations of MPL models” (VeriSiMPL, as in “very

simple”) [22], which is freely available for download at

http://sourceforge.net/projects/verisimpl/

II. MODELS AND PRELIMINARIES

This section introduces the definition of an MPL model [8],

recalls a few of its basic properties, and presents a representa-

tion of the MPL model by a PWA system. Finally, the notion

of DBM [16], along with its properties, is formally described.

A. Max-Plus-Linear Systems

Define Rε, ε and e respectively as R∪{ε}, −∞ and 0. For

α, β ∈ Rε, introduce the two operations

α⊕ β = max{α, β} and α⊗ β = α+ β,

where the element ε is considered to be absorbing w.r.t.

⊗ [8, Definition 3.4]. Given β ∈ R, the max-algebraic

power of α ∈ R is denoted by α⊗β and corresponds to

αβ in the conventional algebra. The rules for the order of

evaluation of the max-algebraic operators correspond to those

of conventional algebra: max-algebraic power has the highest

priority, and max-algebraic multiplication has a higher priority

than max-algebraic addition [8, Sec. 3.1]. The basic max-

algebraic operations are extended to matrices as follows. If

A,B ∈ R
m×n
ε and C ∈ R

n×p
ε ,

[A⊕B](i, j) = A(i, j)⊕B(i, j),

[A⊗ C](i, j) =
n

⊕

k=1

A(i, k)⊗ C(k, j),

for all i, j. Notice the analogy between ⊕, ⊗ and +, × for

matrix and vector operations in conventional algebra. Given

an m ∈ N, the max-algebraic power of A ∈ R
n×n
ε is denoted

by A⊗m and corresponds to A ⊗ · · · ⊗ A (m times). Notice

that A⊗0 is an n-dimensional max-plus identity matrix, i.e. the

diagonal and nondiagonal elements are e and ε, respectively.

In this paper, the following notation is adopted for reasons

of convenience: a vector with each component that equals to

0 (or −∞) is also denoted by e (resp., ε). Furthermore, the

state space is taken to be R
n, which also implies that the state

matrix A has to be row-finite (cf. Definition 2).

An autonomous MPL model [8, Remark 2.75] is defined as:

x(k) = A⊗ x(k − 1), (1)

where A ∈ R
n×n
ε , x(k−1) = [x1(k−1) . . . xn(k−1)]

T ∈ R
n

for k ∈ N. The independent variable k denotes an increasing

discrete-event counter, whereas the state variable x defines the

(continuous) timing of the discrete events.

Related to matrix A is the notion of precedence (or com-

munication) graph and of regular (or row-finite) matrix.

Definition 1 (Precedence graph, [8, Definition 2.8]): The

precedence graph of A ∈ R
n×n
ε , denoted by G(A), is a

weighted directed graph with vertices 1, . . . , n and an arc (j, i)
with weight A(i, j) for each A(i, j) 6= ε.

Definition 2 (Regular (row-finite) matrix, [4, Sec. 1.2]): A

matrix A ∈ R
n×n
ε is called regular (or row-finite) if A contains

at least one element different from ε in each row.

Example: Consider the two-dimensional MPL model of a

simple railway network between two cities [4, Sec. 0.1]:

x(k) =

[

2 5
3 3

]

⊗ x(k − 1). (2)
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Fig. 1. Precedence graph of matrix A for the MPL model in (2)

The precedence graph of A is shown in Fig. 1 and A is a

row-finite matrix.

The notion of irreducible matrix, to be used shortly, can be

given via that of precedence graph.

Definition 3 (Irreducible matrix, [8, Th. 2.14]): A matrix

A ∈ R
n×n
ε is called irreducible if its precedence graph G(A)

is strongly connected.

Recall that a directed graph is strongly connected if for any

pair of different vertices i, j of the graph, there exists a path

from i to j [8, p. 37]. From a max-algebraic perspective, a

matrix A ∈ R
n×n
ε is irreducible if the nondiagonal elements

of
⊕n−1

k=1 A
⊗k are finite (not equal to ε), since this condition

means that for two arbitrary vertices i and j of G(A) with

i 6= j there exists at least one path (of length 1, 2, . . . or

n− 1) from j to i.
Example: For the preceding example in (2), since A(1, 2) 6=

ε 6= A(2, 1), the matrix A is irreducible. Equivalently, notice

that the precedence graph in Fig. 1 is strongly connected.

If A is irreducible, there exists a unique max-plus eigenvalue

λ ∈ R. From a graph-theoretical point of view, the max-

plus eigenvalue is defined as the maximum cycle mean of the

associated precedence graph [8, Th. 3.23]. Algorithms have

been developed to compute this quantity [23], [24, Sec. 4].

Proposition 1 (Length of the transient part, [4, Th. 3.9]): Let

A ∈ R
n×n
ε be an irreducible matrix with max-plus eigenvalue

λ ∈ R. There exist k0 ∈ N ∪ {0} and c ∈ N such that

A⊗(k+c) = λ⊗c⊗A⊗k, for all k ≥ k0. The smallest k0 and c
verifying the property are defined as the length of the transient

part and the cyclicity, respectively.

Proposition 1 allows to establish the existence of a periodic

behavior. Given an initial condition x(0) ∈ R
n, there exists

a length of the transient part k0(x(0)), such that x(k + c) =
λ⊗c ⊗ x(k), for all k ≥ k0(x(0)). Notice that we can seek a

specific length of the transient part k0(x(0)), in general less

conservative than the global k0 = k0(A), as in Proposition 1.

Proposition 1 further implies there exists a max-plus base

vector with a length of the transient part that equals k0. Upper

bounds for the length of the transient part k0 and for its

computation have been discussed in [25] and [26, Th. 10 and

Th. 13].

Example: In the previous numerical example, characterized

by the irreducible matrix A in (2), we have a max-plus

eigenvalue λ = 4, a cyclicity c = 2, and a global length

of the transient part k0 = 2.

Observe that we can associate with the max-plus eigenvalue

of an MPL model characterized by an irreducible system

matrix A an eigenspace, which: 1) is formally defined as

E(A) = {x ∈ R
n : A ⊗ x = λ ⊗ x}; 2) coincides with

the periodic behavior associated with c = 1; and 3) is a

linear combination (in a max-plus sense) of some vectors in

R
n [8, Th. 3.100-3.101]. Furthermore, the complete periodic

behaviors are encompassed by the eigenspace of A⊗c, where c
is the cyclicity of A, which is formulated as E(A⊗c) = {x ∈
R

n : A⊗c⊗ x = λ⊗c⊗ x}, and contains the eigenspace of A,

i.e. E(A) ⊆ E(A⊗c).
A nonautonomous MPL model [8, Corollary 2.82] is defined

by embedding an external input u in the dynamics of (1) as:

x(k) = A⊗ x(k − 1)⊕B ⊗ u(k), (3)

where A ∈ R
n×n
ε , B ∈ R

n×m
ε , x(k − 1) ∈ R

n, u(k) ∈ R
m,

for k ∈ N. As suggested in [8, Sec. 2.5.4], the nonautonomous

MPL model (3) can be transformed into an augmented MPL

model

x(k) = Ā⊗ x̄(k − 1), (4)

where Ā = [A B], x̄(k − 1) = [x(k − 1)T u(k)T ]T .

Example: A timetable can be incorporated in (2) as the

input [4, p. 137]. We obtain a nonautonomous MPL model

x(k) =

[

2 5
3 3

]

⊗ x(k − 1)⊕

[

e ε
ε e

]

⊗ u(k). (5)

The augmented MPL model is simply

x(k) =

[

2 5 e ε
3 3 ε e

]

⊗ x̄(k − 1), (6)

where x(k) ∈ R
2 and x̄(k − 1) ∈ R

4, for k ∈ N.

B. Piecewise-Affine Systems

This section discusses PWA systems generated by an au-

tonomous and by a nonautonomous MPL model. In the

abstraction procedure, the PWA system will be used to de-

termine transitions (cf. Section III) and to compute labels (cf.

Section IV) of the LTS.

Every autonomous MPL model as in (1) can be expressed

as a PWA system in the event domain [19, Sec. 3]. A PWA

system is described by a set of affine dynamics defined over a

corresponding region in the state space. Both are characterized

by the coefficients g = (g1, . . . , gn) ∈ {1, . . . , n}
n or, more

precisely, as:

Rg =

n
⋂

i,j=1

{x ∈ R
n : A(i, gi) + xgi ≥ A(i, j) + xj}; (7)

xi(k) = xgi(k − 1) +A(i, gi), 1 ≤ i ≤ n. (8)

The set g of coefficients is found based on the region and the

affine dynamics. A point x ∈ R
n is in Rg if maxj A(i, j) +

xj = A(i, gi) + xgi , for all i. Thus, as shown in (8), set g
comprises the indices of the state variable x at event k − 1.

Similarly, each nonautonomous MPL model (3) can be

expressed as a PWA system in the event domain via its

representation as an augmented MPL model. Each region with

its affine dynamics is characterized by ḡ = (ḡ1, . . . , ḡn) ∈
{1, . . . , n+m}n or, more precisely, as:

R̄ḡ =

n
⋂

i=1

n+m
⋂

j=1

{x̄ ∈ R
n+m : Ā(i, ḡi) + x̄ḡi ≥ Ā(i, j) + x̄j};

xi(k) = x̄ḡi(k − 1) + Ā(i, ḡi), 1 ≤ i ≤ n. (9)
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input: A ∈ R
n×p
ε , a row-finite max-plus matrix

output: R,A,B, a PWA system over Rp

1: function [R,A,B] = MPL2PWA(A)

2: R← ∅, A← ∅, B← ∅ ⊲ ∅ is an empty collection

3: for all (g1, . . . , gn) ∈ {1, . . . , p}
n do

4: Rg ← R
p, Ag ← zeros(n, p), Bg ← zeros(n, 1)

5: for all 1 ≤ i ≤ n do

6: for all 1 ≤ j ≤ p do ⊲ define regions (7)

7: Rg ← Rg∩{A(i, gi)+xgi ≥ A(i, j)+xj}
8: end for

9: Ag(i, gi)← 1, Bg(i)← A(i, gi) ⊲ eqn (8)

10: end for

11: if Rg is not empty then ⊲ check emptiness

12: R← R∪{Rg}, A← A∪{Ag}, B← B∪{Bg}
13: end if

14: end for

15: end function

Fig. 2. Algorithm generating a PWA system from a row-finite MPL matrix

Given a row-finite max-plus matrix A, the algorithm in

Fig. 21 describes a general procedure to construct a PWA

system corresponding to the autonomous MPL model. Si-

milarly, if we run the algorithm with the augmented matrix

Ā, we obtain a PWA system related to the nonautonomous

MPL model. Notice that the affine dynamics associated with

a dynamical system generated by Algorithm 2 are a special

case of the general PWA dynamics as defined in [14, Sec. 1].

It can be shown that if the intersection of two regions

generated by Algorithm 2 is not empty, then its dimension

is strictly less than p (here p is a parameter that can be set

to be equal to n in the autonomous case and to n + m in

the nonautonomous case). Indeed, let g = (g1, . . . , gn), g
′ =

(g′1, . . . , g
′
n) ∈ {1, . . . , p}

n, where Rg ∩Rg′ is not empty and

g 6= g′ – without loss of generality, let us assume that g1 6= g′1.

From step 7, Rg ⊆ {x ∈ R
p : xg′

1
−xg1 ≤ A(1, g1)−A(1, g

′
1)}

and Rg′ ⊆ {x ∈ R
p : xg1−xg′

1
≤ A(1, g′1)−A(1, g1)}. Thus,

Rg∩Rg′ ⊆ {x ∈ R
p : xg′

1
−xg1 = A(1, g1)−A(1, g

′
1)}, which

corresponds to a lower-dimensional subspace. Algorithm 2

is a finite-time procedure, since the maximum number of

iterations (steps 3, 5 and 6) is finite and the computations over

convex polytopes involved in steps 7 and 11 are also finite.

Its complexity is formally quantified in the next section.

Example: Considering the autonomous MPL model defined

in (2), the nonempty regions of the PWA system are: R(1,1) =
{x ∈ R

2 : x1 − x2 ≥ 3}, R(2,1) = {x ∈ R
2 : e ≤ x1 − x2 ≤

3} and R(2,2) = {x ∈ R
2 : x1 − x2 ≤ e}, as depicted in

Fig. 3. Region R(1,2) does not appear since it corresponds to

an empty set. Notice that the overlap between regions is over

sets of zero measure (lines). As explained above, the affine

dynamics corresponding to a region are characterized by set

g: for example the affine dynamics of R(2,1) are given by

x1(k) = x2(k−1)+5, x2(k) = x1(k−1)+3. Similarly, for the

nonautonomous MPL model in (5), the nonempty regions of

1For simplicity, when referring to an algorithm we use the term “Algo-
rithm 2” rather than “the Algorithm in Fig. 2”.

x1

x2

R(2,1)

R(2,2)

3

R(1,1)

Fig. 3. Regions associated with the PWA system generated by the autonomous
MPL model in (2)

the corresponding PWA system are: R̄(1,1) = {x̄ ∈ R
4 : x1 −

x2 ≥ 3, x1 − u1 ≥ −2, x1 − u2 ≥ −3}; R̄(1,4) = {x̄ ∈ R
4 :

x1−x2 ≥ 3, x1−u1 ≥ −2, x1−u2 ≤ −3, x2−u2 ≤ −3};
R̄(2,1) = {x̄ ∈ R

4 : e ≤ x1 − x2 ≤ 3, x1 − u2 ≥ −3, x2 −
u1 ≥ −5}; R̄(2,2) = {x̄ ∈ R

4 : x1 − x2 ≤ e, x2 − u1 ≥
−5, x2 − u2 ≥ −3}; R̄(2,4) = {x̄ ∈ R

4 : x1 − x2 ≤ 3, x1 −
u2 ≤ −3, x2−u1 ≥ −5, x2−u2 ≤ −3}; R̄(3,1) = {x̄ ∈ R

4 :
x1−x2 ≥ e, x1−u1 ≤ −2, x1−u2 ≥ −3, x2−u1 ≤ −5};
R̄(3,2) = {x̄ ∈ R

4 : x1 − x2 ≤ e, x1 − u1 ≤ −2, x2 − u1 ≤
−5, x2−u2 ≥ −3}; R̄(3,4) = {x̄ ∈ R

4 : x1−u1 ≤ −2, x1−
u2 ≤ −3, x2 − u1 ≤ −5, x2 − u2 ≤ −3}.

C. Difference-Bound Matrices

This section introduces the definition of a DBM [16,

Sec. 4.1] and of its canonical-form representation. DBM

will be used in Section III-B, III-C2, and IV-B to represent

partitioning regions, the set of inputs, and labels, respectively.

Definition 4 (Difference-bound matrix): A DBM in R
n is the

intersection of finitely many sets defined by xi−xj ⊲⊳i,j αi,j ,

where ⊲⊳i,j∈ {<,≤}, αi,j ∈ R ∪ {+∞}, for 1 ≤ i 6= j ≤ n.

Notice that the DBM in Definition 4 is a special case of that

in [16, Sec. 4.1]. Definition 4 can be likewise given over the

input and augmented spaces. Each DBM admits an equivalent

and unique canonical-form representation, which is a DBM

with the tightest possible bounds [16, Sec. 4.1]. As intuitive,

a DBM in R
n can be represented by an n-dimensional matrix

D (namely, a “potential graph” [27, Sec. 3]). Each element

D(i, j) represents a right-bounded interval for the set of

possible values of xi−xj . The interval is characterized by its

upper bound αi,j and by the operator ⊲⊳i,j . Since computing

the canonical-form representation of a DBM is equivalent to

the all-pairs shortest path problem over the corresponding po-

tential graph [16, Sec. 4.1], the Floyd-Warshall algorithm [28]

can be used over the graph with a complexity that is cubic

w.r.t. its dimension.

Example: Consider the PWA system generated by the

nonautonomous MPL model (5). A few regions are not in
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the canonical-form representation, and can then be expressed

as follows: cf(R̄(1,4)) = {x̄ ∈ R
4 : x1 − x2 ≥ 3, x1 −

u1 ≥ −2, x1 − u2 ≤ −3, x2 − u2 ≤ −6, u1 − u2 ≤
−1}, cf(R̄(2,1)) = {x̄ ∈ R

4 : e ≤ x1 − x2 ≤ 3, x1 −
u1 ≥ −5, x1 − u2 ≥ −3, x2 − u1 ≥ −5, x2 − u2 ≥
−6}, cf(R̄(2,4)) = {x̄ ∈ R

4 : x1 − x2 ≤ 3, x1 − u2 ≤
−3, x2−u1 ≥ −5, x2−u2 ≤ −3, u1−u2 ≤ 2}, cf(R̄(3,1)) =
{x̄ ∈ R

4 : x1 − x2 ≥ e, x1 − u1 ≤ −2, x1 − u2 ≥ −3, x2 −
u1 ≤ −5, u1 − u2 ≥ −1}, cf(R̄(3,2)) = {x̄ ∈ R

4 : x1 − x2 ≤
e, x1−u1 ≤ −5, x2−u1 ≤ −5, x2−u2 ≥ −3, u1−u2 ≥ 2},
where cf is a generic operator yielding the canonical form [16,

Sec. 4.1]. Other regions appear already in canonical form, for

instance R̄(1,1) = cf(R̄(1,1)).
One advantage of the canonical-form representation is that

it is straightforward to compute orthogonal projections w.r.t. a

subset of its variables. This is simply performed by deleting

rows and columns corresponding to the complementary vari-

ables [16, Sec. 4.1]. The orthogonal projection of a DBM in

canonical-form is again in canonical form [16, Observation 1].

Definition 5 (Orthogonal projection): The orthogonal pro-

jection w.r.t. state variables (input variables) of a region in the

augmented space is defined as ΠX : R
n+m → R

n (ΠU :
R

n+m → R
m), where ΠX : [x1 . . . um]T 7→ [x1 . . . xn]

T

(ΠU : [x1 . . . um]T 7→ [u1 . . . um]T ).

Another advantage of the canonical-form representation is

that it is fast to check its emptiness. By using the potential

graph representation, the unfeasible sets of constraints are only

those which form a circuit with a strictly negative weight in

the graph. As a consequence, in order to test whether a DBM

is empty or not, we simply have to check for the existence

of such a circuit: this can be achieved by the Bellman-Ford

algorithm [29, Sec. 5], which is cubic w.r.t. its dimension.

Whenever a DBM is in canonical form, testing for strictly

negative cycles can be reduced to check whether there is an i
such that ⊲⊳i,i is < or αi,i < e. Thus, its complexity is linear

w.r.t. its dimension.

Each region and the corresponding affine dynamics of the

PWA system generated by Algorithm 2 (for both autonomous

and nonautonomous MPL models) can be characterized by

a DBM. More precisely, from step 7 of Algorithm 2, each

region of the PWA system generated by a row-finite max-

plus matrix is a DBM in R
p. From step 9 of Algorithm 2,

the affine dynamics can be expressed, by virtue of simple

algebraic manipulations (each equation can be expressed as

the difference between variables at time k and k − 1), via a

DBM in R
n+p.

Looking back at Algorithm 2, its worst-case complexity can

be precisely formulated as follows. Notice that the maximum

number of iterations in steps 3, 5, and 6 is pn, n, and p,

respectively. Furthermore, the complexity in steps 7 and 11 is

constant and amounts to O(p3), respectively. Thus, the worst-

case complexity of Algorithm 2 is O(pn(np+ p3)).
Theorem 1: The image and the inverse image of a DBM

w.r.t. affine dynamics is a DBM.

Proof: The general procedure to compute the image and

the inverse image of a DBM w.r.t. affine dynamics involves: 1)

computing the intersection of the DBM with a DBM generated

by the expression of affine dynamics; then 2) calculating the

canonical form of the intersection; finally 3) projecting the

canonical-form representation over a subset of its variables.

The claim follows by noticing that the intersection of two

DBM is a DBM, that the canonical form of a DBM is a DBM

and that the orthogonal projection of a DBM is again a DBM.

It is possible to quantify the worst-case complexity related

to the computation of the image and of the inverse image

of a DBM w.r.t. affine dynamics. In both cases the overall

worst-case complexity critically depends on computing the

canonical-form representation (the second step) and is cubic

w.r.t. the sum of its dimension and of the dimension of the

(inverse) image.

As it will become clear in Section III-C, we need to relate

the notion of DBM and that of projective space [4, Sec. 1.4].

Lemma 1: Let D be a DBM, then β ⊗ x ∈ D for each

β ∈ R and x ∈ D.

Proof: Since [β⊗x]i− [β⊗x]j = (β+xi)− (β+xj) =
xi − xj for each i, j, then β ⊗ x ∈ D (cf. Definition 4).

In order to apply formal verification tools on LTS models

(cf. Section VI), we may need to check inclusion properties

over DBM. These are characterized by a partial order on DBM,

denoted by D ⊆ D′ iff D(i, j) ⊆ D′(i, j), for all i and

j [16, Sec. 4.1]: in other words, D ⊆ D′ whenever the interval

associated with D(i, j) is a subset of the interval associated

with D′(i, j). Furthermore, the smallest DBM containing

a union of q DBM can be computed using the following

procedure, which has complexity O(n2q).
Theorem 2: The smallest DBM containing the union

of finitely many DBM
⋃q

k=1Dk is given by D(i, j) =
⋃q

k=1Dk(i, j), for 1 ≤ i 6= j ≤ n.

Proof: Let D′ be a DBM containing
⋃q

k=1Dk, then

Dk ⊆ D′ for each 1 ≤ k ≤ q. By using the DBM

inclusion property, we know that Dk(i, j) ⊆ D′(i, j) for

each 1 ≤ i 6= j ≤ n, 1 ≤ k ≤ q. It follows that
⋃q

k=1Dk(i, j) ⊆ D′(i, j) or equivalently, D(i, j) ⊆ D′(i, j).
Thus, from the DBM inclusion property, D ⊆ D′.

III. MPL ABSTRACTIONS AS TRANSITION SYSTEMS

This section starts by introducing TS models and the notions

of simulation and bisimulation, then proceeds describing the

abstraction procedure – constructing a finite-state or a quotient

TS.

A. Transition Systems

Definition 6 (Transition system): A TS is a tuple (S, δ, I)
that consists of

• a (possibly uncountable) set S of states;

• a transition relation δ ⊆ S × S;

• a set I ⊆ S of initial states.

If the cardinality of S, denoted by |S|, is infinite, it is called

an infinite-state TS. On the other hand, if |S| <∞, it is called

a finite-state TS. If for each state there is at most one outgoing

transition, then the TS is called deterministic. Otherwise, the

TS is said to be nondeterministic. Initial states are useful for

verification purposes (cf. Section VI). As it will become clear

in Section III-C, we do not require a single initial state as
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in [15, Definition 2.5]. Unless otherwise stated, we will assume

that I = S. We provide an extension of the notion of TS to a

labeled version (LTS) in Section IV.

Inspired by the work on bisimilar dynamical models in [12,

Definition 4], let us introduce a TS (S, δ, I) related to an

autonomous MPL model. The TS is characterized by a set

of states S = R
n. There exists a transition relation δ from x

to x′, denoted by (x, x′) ∈ δ, if and only if x′ = A ⊗ x.

Since for each x ∈ R
n, A ⊗ x is uniquely defined, the

TS is deterministic. With focus on a TS generated by a

nonautonomous MPL model, there exists a transition from

x to x′ if and only if there exists an input u such that

x′ = A ⊗ x ⊕ B ⊗ u – in general this renders the TS

nondeterministic.

Given a TS (S, δ, I) and an equivalence relation ∼, the

definition of quotient TS (S/∼, δ∼, I∼) is straightforward [15,

Definition 7.51]. The set of equivalence classes is denoted by

S/∼. The transition relation δ∼ will be induced from δ, as

discussed in Section III-C. The initial states I∼ are defined as

{s∼ ∈ S/∼ : I ∩ s∼ 6= ∅}.
Definition 7 (Simulation): The quotient TS (S/∼, δ∼, I∼)

simulates the original TS (S, δ, I) if for each (x, x′) ∈ δ, there

exists a pair (s∼, s
′
∼) ∈ δ∼ such that x ∈ s∼ and x′ ∈ s′∼.

Definition 8 (Bisimulation): The quotient TS (S/∼, δ∼, I∼)
bisimulates the original TS (S, δ, I) if it simulates it and if,

for each pair (s∼, s
′
∼) ∈ δ∼, the following holds: for each

x ∈ s∼, there exists an x′ ∈ s′∼ such that (x, x′) ∈ δ.

We seek to construct specifically a finite-state TS, derived

from either the autonomous or the nonautonomous MPL

model, which simulates and, under certain conditions, also

bisimulates the TS (S, δ, I) (and thus also the original MPL

model). This objective is pursued next.

B. States: Partitioning Procedure

We discuss different approaches to construct S/∼, where

its elements are DBM in R
n, then prove their relationship: the

first technique focuses on autonomous MPL models, while the

second works with nonautonomous MPL models.

1) Autonomous Case: We determine a partitioning of the

state space based on the value of A(i, j) + xj , similar to

Section II-B. Given an autonomous MPL model characterized

by a row-finite max-plus matrix A ∈ R
n×n
ε and a generic

x ∈ R
n, for notational purposes we define Wx(i, j) =

A(i, j) + xj − [A ⊗ x]i. Notice that each element of Wx is

nonpositive, depends (given a matrix A) only on x, and that

there exists a nonempty set of null (e) elements in each of its

rows. Each region generated by this approach is characterized

by a parameter set f = (f1, . . . , fn) ∈ (P({1, . . . , n})\{∅})n,

where fi = {j :Wx(i, j) = e} = {j : [A⊗x]i = A(i, j)+xj}
for 1 ≤ i ≤ n, and where P denotes the power-set operator.

More precisely, the region characterized by f , denoted by Rf ,

is defined as the set of points x ∈ R
n verifying the condition

for matrix Wx, i.e. Rf = {x ∈ R
n : for each 1 ≤ i ≤

n,Wx(i, j) = e iff j ∈ fi}.
In order to design a procedure for the proposed approach,

we need to characterize each point x ∈ Rf based on the value

of A(i, j) + xj . For each 1 ≤ i ≤ n, j ∈ fi and 1 ≤ j′ ≤ n,

input: A ∈ R
n×n
ε , a row-finite max-plus matrix

output: S/∼, a partition of Rn

1: S/∼ ← ∅ ⊲ initialize S/∼ with an empty collection

2: for all (f1, . . . , fn) ∈ (P({1, . . . , n}) \ {∅})n do

3: Rf ← R
n ⊲ notice that Rn is a DBM

4: for all 1 ≤ i ≤ n do ⊲ constructive definition of Rf

5: for all j ∈ fi, 1 ≤ j
′ ≤ n do

6: if j′ ∈ fi then

7: Rf ← Rf ∩{A(i, j)+xj = A(i, j′)+xj′}
8: else if j′ /∈ fi then

9: Rf ← Rf ∩{A(i, j)+xj > A(i, j′)+xj′}
10: end if

11: end for

12: end for

13: if Rf is not empty then ⊲ check emptiness

14: S/∼ ← S/∼ ∪ {Rf} ⊲ add the region to S/∼
15: end if

16: end for

Fig. 4. Generation of the partition of the state space of an autonomous MPL
model

the following property holds: if j′ ∈ fi, then A(i, j) + xj =
A(i, j′) + xj′ ; if j′ /∈ fi, then A(i, j) + xj > A(i, j′) + xj′ .
Thus a constructive definition of Rf ⊆ R

n is as follows:

n
⋂

i=1

⋂

j∈fi

n
⋂

j′=1

{

{A(i, j) + xj = A(i, j′) + xj′}, if j′ ∈ fi,
{A(i, j) + xj > A(i, j′) + xj′}, if j′ /∈ fi.

Algorithm 4 details the procedure to compute the collection

of regions by using the proposed approach. The following

property characterizes its output:

Theorem 3: Algorithm 4 generates a partition of Rn.

Proof: First, we show that the collection of the regions

is a cover of R
n. Let x ∈ R

n be arbitrary. Based on x, we

can compute Wx and f , which means that there is an Rf :
x ∈ Rf . Next, we show (by contradiction) that the regions are

pairwise disjoint. Notice that each point x corresponds to a

unique characterization f , since each element of Wx depends

only on x and the characterization f depends only on Wx.

Let us then suppose that x ∈ R
n is an arbitrary element in the

intersection of two regions: then x would correspond to two

different region characterizations, which is a contradiction.

Algorithm 4 allows to derive a general representation of

each region, which can be expressed as a set of linear

inequalities of the following form:

αi,j ⊲⊳i,j xi − xj ⊲⊳i,j βi,j , (10)

where αi,j , βi,j ∈ R ∪ {−∞,+∞}; ⊲⊳i,j is < if αi,j 6= βi,j ,

whereas ⊲⊳i,j is ≤ if αi,j = βi,j , for 1 ≤ i < j ≤ n. Notice

that each region generated by the approach is a DBM in R
n

(cf. Section II-C), which can be expressed in its canonical

form.

Let us quantify the worst-case complexity of Algorithm 4.

Notice that the maximum number of iterations in steps 2, 4,

5 and 13 is (2n − 1)n, n, n2 and n3, respectively. Thus,

the worst-case complexity is exponential, or more precisely

O(n3(2n−1)n). However, this worst case is rarely incurred in
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x1

x2

R({2},{1})

R({2},{2}) R({2},{1,2})

3

R({1},{1})

R({1,2},{1})

(a)

1

34

5

2

(b)

Fig. 5. (a) Partitioning regions obtained using Algorithm 4. (b) TS transitions,
where states 1, . . . , 5 represent respectively R({2},{2}), R({2},{1,2}),
R({1},{1}), R({1,2},{1}), R({2},{1}). The (nondeterministic) TS and its
partitioning regions generated as an abstraction of the autonomous MPL model
in (2)

practice. In order to improve the performance of the approach,

we have applied standard pruning tricks [30, Sec. 3], which

practically results in efficient outcomes, as will be shown with

the benchmark in Section V.

Example: Consider the autonomous MPL model in (2).

The regions generated by the scheme in Algorithm 4 are

R({1},{1}) = {x ∈ R
2 : x1 − x2 > 3}, R({1,2},{1}) = {x ∈

R
2 : x1−x2 = 3}, R({2},{1}) = {x ∈ R

2 : e < x1−x2 < 3},
R({2},{1,2}) = {x ∈ R

2 : x1 − x2 = e}, R({2},{2}) = {x ∈
R

2 : x1 − x2 < e}. The regions are shown in Fig. 5a.

Looking back at Section II-B, each region can be related

to the affine dynamics in (8) of a PWA system generated

by the autonomous MPL model. Such dynamics can also be

characterized by the matrix Wx introduced in this section:

more precisely, for each x ∈ R
n, the dynamics in (8) are

characterized by g if and only if Wx(i, gi) = e, for 1 ≤ i ≤ n.

Furthermore, the region characterized by g is defined as

Rg = {x ∈ R
n : for each 1 ≤ i ≤ n,Wx(i, j) = e if j = gi}.

The above relationship can be formalized as follows.

Proposition 2: For each g ∈ {1, . . . , n}n, Rg =
⋃

f∈F (g)Rf , where F (g) = {f : for each 1 ≤ i ≤ n, gi ∈
fi}. Furthermore, for each f ∈ (P({1, . . . , n}) \ {∅})n,

Rf = (∩g∈G(f)Rg) \ (∪g′∈G′(f)Rg′), where G(f) = {g :
for each 1 ≤ i ≤ n, gi ∈ fi} and G′(f) = {g′ :
there exists an 1 ≤ i ≤ n such that g′i /∈ fi}.

Proof: For the first statement, notice that Rg = {x ∈ R
n :

for each 1 ≤ i ≤ n,Wx(i, gi) = e} =
⋃

f∈F (g){x ∈ R
n :

for each 1 ≤ i ≤ n,Wx(i, j) = e, ∀j ∈ fi} =
⋃

f∈F (g)Rf .

For the second statement, it can be shown that the condition

for matrix Wx associated with (∩g∈G(f)Rg) \ (∪g′∈G′(f)Rg′)
and Rf are the same. Notice that ∩g∈G(f)Rg = {x ∈ R

n :
for each 1 ≤ i ≤ n,Wx(i, j) = e if j ∈ fi}. The set

difference guarantees the “only if” part.

It follows that each region Rf generated by the scheme in

Algorithm 4 is a subset of a unique collection of regions in

the PWA system generated by the autonomous MPL model

(recall that the collection of regions in the PWA system is a

input: A ∈ R
n×n
ε , a row-finite max-plus matrix

output: S/∼, a partition of Rn

1: S/∼ ← MPL2PWA(A) ⊲ Algorithm 2

2: for all Rg, Rg′ ∈ S/∼ do

3: if Rg > Rg′ then ⊲ Definition 9

4: Rg′ ← Rg′ \Rg ⊲ Proposition 3

5: else if Rg′ > Rg then

6: Rg ← Rg \Rg′

7: end if

8: end for

9: remove the empty regions from S/∼

Fig. 6. Generation of state-space partitioning via refinement of regions
generated by the state space matrix

cover of Rn).

A partitioning of the state space can also be obtained by

refining the regions of the PWA system generated by the state

matrix. The refinement procedure obtaining a partition is not

unique: with focus on memory usage, we propose one that

leads in general to a partition that is smaller (in cardinality)

than the one generated by Algorithm 4. Let us start with the

following concept.

Definition 9 (Adjacent regions): Let Rg and Rg′ be regions

generated by an n-dimensional state space matrix. We say that

they are adjacent (Rg > Rg′) if there exists a single 1 ≤ i ≤ n
such that gi > g′i and gj = g′j for each j 6= i.

Given a collection of regions generated by the state space

matrix using Algorithm 2, the refinement procedure (cf. Algo-

rithm 6) works as follows. For each pair of adjacent regions,

their intersection is combined to the region with higher index.

It can be shown that this refinement procedure generates a

partition of Rn. From Proposition 2, each point x ∈ R
n is an

element of some regions {Rg : g ∈ G(f)}. After running the

procedure, there is a single region Rg′ ∈ {Rg : g ∈ G(f)}
such that x ∈ Rg′ , where g′i =

⊕

g∈G(f) gi, for each

1 ≤ i ≤ n.

Proving that the refinement procedure does not increase the

number of regions equates to showing that the set difference

of two adjacent regions is a DBM.

Proposition 3: If Rg > Rg′ , then Rg′ \ Rg = Rg′ ∩ {x ∈
R

n : A(i, g′i) + xg′

i
> A(i, gi) + xgi}, which is a DBM.

Proof: The ingredients are (7) and two properties of set-

theoretic operations: (A ∩ B) \ (A ∩ C) = A ∩ (B \ C) and

A \B = A \ (A ∩B), where A, B, C are sets.

We define R =
⋂n

i=2

⋂n
j=1{x ∈ R

n : A(i, j) + xj ≤
A(i, gi)+xgi} and assume g1 > g′1, then Rg′ = R∩

⋂n
j=1{x ∈

R
n : A(1, j) + xj ≤ A(1, g

′
1) + xg′

1
}. From the first property,

Rg′ \ Rg = R ∩ [
⋂n

j=1{x ∈ R
n : A(1, j) + xj ≤ A(1, g′1) +

xg′

1
} \

⋂n
j=1{x ∈ R

n : A(1, j) + xj ≤ A(1, g1) + xg1}].
Let us compute the intersection of two terms in the square

bracket. Considering j = g1 and j = g′1 in the first and second

terms respectively leads to {x ∈ R
n : A(1, g1) + xg1 =

A(1, g′1) + xg′

1
}. Thus the intersection is

⋂n
j=1{x ∈ R

n :
A(1, j) + xj ≤ A(1, g

′
1)+ xg′

1
}∩ {x ∈ R

n : A(1, g1)+ xg1 =
A(1, g′1)+xg′

1
}. Finally both properties are used to obtain the

explicit form of Rg′ \Rg.

Let us quantify the worst-case complexity of Algorithm 6.
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Step 1 is performed in O(nn+3) (cf. Section II-C). Since the

maximum number of regions generated by MPL2PWA(A) is

nn, the maximum number of iterations in step 2 is n2n. Check-

ing whether two regions are adjacent has a linear complexity,

i.e. O(n). From discussions in the preceding paragraph, the

set difference between two adjacent regions can be done in a

constant time. Further, since checking emptiness of a region

can be done in O(n3), the complexity of step 9 is O(nn+3).
It follows that the overall worst-case complexity is O(n2n+1).

Example: The partitioning regions generated by the pro-

posed refinement procedure are {x ∈ R
2 : x1 − x2 > 3},

{x ∈ R
2 : e < x1 − x2 ≤ 3}, and {x ∈ R

2 : x1 − x2 ≤ e}.
2) Nonautonomous Case: Given a nonautonomous MPL

model as in (3), a state-space partitioning can be simply ob-

tained by considering its autonomous version and by applying

the procedures in Section III-B1. However, as it will become

clear in Section III-C2, a covering of the augmented space

in (4) is needed to compute the transitions associated with

the partitioning regions. A covering can be obtained from the

regions of the PWA system associated with the (augmented)

nonautonomous MPL model in (4), and further refined to

obtain the state-space partitioning.

C. Transitions: One-Step Reachability

In this section, we investigate a technique to determine the

transition relations between two states of the finite-state TS,

that is between two partitioning regions (cf. Section III-B) of

the concrete MPL model.

1) Autonomous Case: At any event step k, there is a

transition from s∼ to s′∼ if and only if there exists an x(k −
1) ∈ s∼ such that x(k) ∈ s′∼, where s∼, s

′
∼ ∈ S/∼. Such

a transition can be determined by a forward- or backward-

reachability approach. According to the former, we calculate

s′∼∩{x(k) : x(k − 1) ∈ s∼}, whereas if we use the backward

approach we compute s∼∩{x(k − 1) : x(k) ∈ s′∼}. The non-

emptiness of the resulting set characterizes the presence of a

transition from s∼ to s′∼.

In this work we focus on the forward-reachability approach,

since it is computationally more attractive than the backward

one. More precisely (cf. Theorem 1), since both approaches

leverage the affine dynamics associated with the outgoing

partitioning region, the number of image computations in

the forward-reachability approach is linear w.r.t. the num-

ber of partitioning regions, whereas the number of inverse-

image computations in the backward-reachability approach is

quadratic w.r.t. the number of partitioning regions.

With focus on the forward-reachability approach, given a

partitioning region s∼ we employ its dynamics to compute its

image as: I(s∼) = {A⊗ x : x ∈ s∼}. In the dynamical sys-

tems and automata literature, the mapping I is also known as

Post [15, Definition 2.3]. Furthermore, since each partitioning

region has associated affine dynamics, we exploit their DBM

representation as in Theorem 1 to compute the image. The

complete approach to determine the transitions is shown in

Algorithm 7, which incurs a worst-case complexity (checking

emptiness over the cycles in step 2) of O(n3|S/∼|
2).

Example: Consider the regions generated by the scheme

in Algorithm 4. The image of R({2},{1}) is I(R({2},{1})) =

input: S/∼, a partition of Rn

output: δ∼ ⊆ S/∼ × S/∼, a transition relation

1: δ∼ ← ∅
2: for all s∼, s

′
∼ ∈ S/∼ do

3: if I(s∼) ∩ s
′
∼ is not empty then ⊲ Theorem 1

4: δ∼ ← δ∼ ∪ {(s∼, s
′
∼)}

5: end if

6: end for

Fig. 7. Computation of the transitions for an autonomous model via forward-
reachability analysis

{x ∈ R
2 : −1 < x1 − x2 < 2}. Thus, there are three outgo-

ing transitions from R({2},{1}) with destinations respectively

R({2},{1}), R({2},{2}), R({2},{1,2}). The complete transition

relation is shown in Fig. 5b.

Notice that the obtained TS can be nondeterministic: by

construction of its transitions, the TS obtained by Algorithm 7

simulates the autonomous MPL model. In general the opposite

relation (leading to a bisimulation) does not hold. In fact,

whenever the TS obtained by Algorithm 7 is nondeterministic,

there exists a partitioning region s∼ that contains more than

one outgoing transition. If we assume that this happens with

reference to a point x ∈ s∼, for each x ∈ R
n the value of

A ⊗ x is instead unique (A denoting again the MPL system

matrix). The previous argument leads to the following result.

Theorem 4: The TS obtained by Algorithm 7 is deterministic

if and only if it bisimulates the autonomous MPL model.

Proof: The necessity is a direct consequence of the

preceding discussion. On the other hand, if a TS bisimulates

the autonomous MPL model it is deterministic, since the

infinite-state TS generated by an autonomous MPL model (cf.

Section III-A) is also deterministic.

Having obtained a nondeterministic TS by abstraction, it

makes sense to attempt deriving a deterministic TS by suc-

cessive refinement: within a refinement step, each nondeter-

ministic partitioning region is split and its (incoming and

outgoing) transitions are updated. Whenever a deterministic

TS is obtained, we can establish the preceding property.

Example: From Fig. 5b, R({2},{1}) has three outgoing tran-

sitions. After computing the inverse image of each destination

w.r.t. the dynamics on R({2},{1}), we obtain: R
({2},{1})
({2},{1}) =

{x ∈ R
2 : e < x1 − x2 < 2}; R

({2},{2})
({2},{1}) = {x ∈ R

2 : 2 <

x1 − x2 < 3}; R
({2},{1,2})
({2},{1}) = {x ∈ R

2 : x1 − x2 = 2}. In

order to simplify the notation, we define s1∼ = R({2},{2}),

s2∼ = R({2},{1,2}), s
3
∼ = R({1},{1}), s

4
∼ = R({1,2},{1}),

s5∼ = R
({2},{2})
({2},{1}), s

6
∼ = R

({2},{1})
({2},{1}), s

7
∼ = R

({2},{1,2})
({2},{1}) . The

obtained deterministic TS and the graphical representation of

its regions are shown in Fig. 8.

Unfortunately, such a procedure in general does not neces-

sarily terminate, especially in the presence of a cycle in the TS

containing the nondeterministic partitioning regions. An upper

bound on the number of (partitioning) regions can be used

as a stopping criterion. In the remainder of this subsection,

sufficient conditions for the existence of a bisimilar TS will

be discussed.

Given an irreducible MPL model (cf. Definition 3) cha-
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racterized by system matrix A, notice that the union of

partitioning regions associated with the states of the obtained

TS equals to R
n (it is a “global” TS). A TS over E(A⊗c) is

defined similarly, that is as the union of partitioning regions

that corresponds to E(A⊗c).
Theorem 5: Given an irreducible MPL model characterized

by matrix A with cyclicity c and the obtained TS, if the TS

over E(A⊗c) is deterministic, then there exists a (globally)

deterministic TS.

Proof: Given a TS over E(A⊗c), we describe a procedure

to construct a global TS. Notice that E(A⊗c) can be expressed

as {x(0) ∈ R
n : k0(x(0)) = 0}. The procedure to build the

global TS works as follows: 1) initialize k with value 1; 2)

compute {x(0) ∈ R
n : k0(x(0)) ≤ k} by using backward-

reachability analysis; 3) determine {x(0) ∈ R
n : k0(x(0)) =

k} by using set-difference computations; finally 4) if {x(0) ∈
R

n : k0(x(0)) = k} is not empty, then define the transition

relations originating from it, set k ← k+1 and go to step 2);

else stop.

The TS obtained by the procedure is deterministic, since

each new region is the inverse image of a region, i.e. there

is a single outgoing transition for each new region. Since

the MPL model is irreducible and the corresponding infinite-

state TS (cf. Section III-A) is deterministic, the obtained TS

covers R
n and its regions are pairwise disjoint. Notice that

the preceding steps constitute a finite-time procedure, since

maxx(0)∈Rn k0(x(0)) is finite, however its time complexity is

difficult to quantify since the length of the transient part can

be arbitrarily large, even for matrices of small size [4, p. 56].

Remark: Given an irreducible MPL model and the obtained

TS, the procedure in the proof of Theorem 5 can be used to

construct the mapping x(0) 7→ k0(x(0)), for x(0) ∈ R
n. As

such, it computes the maximum length of the transient part

over the whole state space, i.e. maxx(0)∈Rn k0(x(0)), which

generalizes and improves the results in [25], [26, Th. 10 and

Th. 13]. To the best of our knowledge, this problem cannot

be solved in the literature by more efficient means.

Theorem 5 implies the existence of (globally) deterministic

TS for any 2-dimensional irreducible MPL system, since the

MPL system characterized by A⊗c is irreducible and the

eigenspace of each 2-dimensional irreducible MPL system is

a DBM. For a higher dimensional irreducible MPL system,

the existence of (globally) deterministic TS depends on the

cyclicity of A, as the following result claims.

Theorem 6: Given an irreducible MPL model with system

matrix A, if the cyclicity of A is equal to 1, then the model

admits a deterministic TS abstraction.

Proof: If the cyclicity of A is 1, then E(A) = E(A⊗c)
and via [8, Th. 3.100-3.101] we conclude that E(A) is a linear

combination (in a max-plus sense) of a set of finitely many

vectors. Equivalently, E(A) is the image of a linear map (in

a max-plus sense) governed by a max-plus matrix made up of

those vectors. Exploiting the PWA representation of the max-

plus matrix, E(A) equals to the union of the image of each

region w.r.t. its affine dynamics. From Theorem 1, E(A) is a

union of finitely many DBM that are not necessarily pairwise

disjoint: in order to obtain a partition of E(A) we can leverage

TABLE I
CONDITIONS ON THE MPL MODEL FOR SIMILARITY OR BISIMILARITY OF

THE TS ABSTRACTION

model dimension
A irreducible

A reducible
c = 1 c > 1

n = 2 bisimulation

n > 2 simulation

x1

x2s
1

∼
s
2

∼

3

s
3

∼

s
4

∼

2

s
6

∼

s
7

∼

s
5

∼

(a)

1

3

5

4

7

62

(b)

Fig. 8. (a) Graphical representation of the partitioning regions for the
deterministic TS. (b) Deterministic TS abstraction, where state i represents
partitioning region si∼, for i = 1, . . . , 7. Deterministic TS with partitioning
regions after refinement, as an abstraction of the autonomous MPL model
in (2)

a generic refinement procedure. Each obtained partitioning

region has a self loop, since it is a subset of E(A). It follows

that the TS over E(A) is deterministic, which leads to the

conclusion by application of Theorem 5.

Remark: In the proof of Theorem 6 we have observed that

each linear combination (in a max-plus sense) of some vectors

in R
n is a union of finitely many DBM. As a special case, the

eigenspace E(A) and the whole periodic behavior E(A⊗c)
(cf. Section II-A) can be represented as unions of finitely

many DBM. Since in particular E(A⊗c) can be expressed as

a union of q pairwise disjoint DBM
⋃q

k=1Dk, the partitioning

regions associated with the states of the TS over E(A⊗c) can

be computed by {s∼ ∩ Dk : s∼ ∈ S/∼, 1 ≤ k ≤ q} and its

transition relations can be determined by Algorithm 7.

Table I summarizes a simple procedure that can be carried

out on a given MPL model in order to check if it is possible

to obtain an abstraction that is bisimilar to it. Given a state

space matrix A, we check its irreducibility. If it is reducible,

the abstraction will simulate the MPL model. Otherwise, if A
is a 2× 2 matrix, the abstraction will bisimulate the concrete

model. Else, we check the cyclicity of A: if the cyclicity is

1, then the abstraction will bisimulate the model, otherwise it

will simulate it.

2) Nonautonomous Case: Next, we investigate a technique

to determine the transition relations δ̄∼ between two states

of the finite-state TS generated from a nonautonomous MPL
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model. At any given event step k, given a pair of partitioning

regions s∼ and s′∼ and a set of inputs U ⊆ R
m, there exists

a transition from s∼ to s′∼ if and only if there exists an

x(k − 1) ∈ s∼ and a u(k) ∈ U , such that x(k) ∈ s′∼.

Such a transition can be determined either by forward- or by

backward-reachability computation, that is calculating either

s′∼ ∩ {x(k) : x(k − 1) ∈ s∼, u(k) ∈ U}, or s∼ ∩ {x(k − 1) :
x(k) ∈ s′∼, u(k) ∈ U}, and by checking the non-emptiness

of the resulting set.

We assume that the set of inputs U ⊆ R
m is represented via

a DBM (cf. Section II-C). Practically, this enables expressing

upper or lower bounds on the separation between input events

(schedules) (cf. Definition 4). If on the other hand there are

no constraints on input events, we define U = R
m, which is

also a DBM.

Notice that the forward- and backward-reachability ap-

proaches yield the same outcome, since both are equivalent

in checking the non-emptiness of the set {x ∈ s∼ : ∃u ∈
U s.t. A ⊗ x ⊕ B ⊗ u ∈ s′∼}. As in the autonomous case,

we focus on the forward-reachability approach, since it is

computationally more attractive than the backward one. Given

a partitioning region s∼ ∈ S/∼, we employ the PWA rep-

resentation over the augmented space to compute its image:

Ī(s∼ ×U) =
{

Ā⊗ x̄ : x̄ ∈ s∼ × U
}

, where s∼ ×U denotes

the cross product of the sets s∼ and U . Since both s∼ and

U are DBM, s∼ ×U is also a DBM in the augmented space.

In order to exploit the DBM structure for both s∼ and U , the

general procedure for obtaining Ī(s∼ × U) is as follows: 1)

calculating s∼ × U ; then 2) intersecting s∼ × U with each

region of the PWA system generated by the nonautonomous

MPL model; finally 3) computing the image of nonempty in-

tersections (cf. Section II-C). Notice that in general Ī(s∼×U)
is a union of finitely many DBM that are not necessarily

pairwise disjoint, since s∼ ×U may intersect with more than

one region and regions of the PWA system generated by a

nonautonomous MPL model are not pairwise disjoint. The

complexity of image computations critically depends on the

last step and is O((n + m)3|R̄|). Algorithm 9 details the

complete approach. Let us quantify the worst-case complexity

of Algorithm 9. Its global worst-case complexity depends on

the number of iterations related to cycles in step 2, which

is |S/∼|. This, compounded with the complexity of DBM

intersection, DBM image computation, and with the check

of emptiness for a DBM, amounts to a total complexity of

O((n+m)3|S/∼|
2|R̄|).

Given a row-finite max-plus matrix A, a max-plus matrix

B, and a set of inputs U that is a DBM, then Lemma 1 implies

that for each state x(k − 1) ∈ R
n there exists a sufficiently

small input u(k) ∈ U such that states x(k) obtained from (1)

and (3) coincide. This observation leads to the following result.

Proposition 4: Each transition generated by the autonomous

MPL model is included in the transition relation generated by

the nonautonomous MPL model, i.e. δ∼ ⊆ δ̄∼.

Proposition 5: For any s′∼ ∈ S/∼, if s′∼ ∩ (B ⊗ U) is not

empty, then (s∼, s
′
∼) ∈ δ̄∼, for each s∼ ∈ S/∼.

Proof: Given a row-finite max-plus matrix A, a max-plus

matrix B, a set of inputs U that is a DBM, and a partitioning

region s′∼ ∈ S/∼ such that s′∼ ∩ (B ⊗U) is not empty, since

input: Ā ∈ R
n×(n+m)
ε , a row-finite augmented matrix;

S/∼, a partition of Rn;

R̄← MPL2PWA(Ā), a cover of Rn+m where |R̄| <∞;

U , the input set

output: δ̄∼ ⊆ S/∼ × S/∼, a transition relation

1: δ̄∼ ← ∅ ⊲ Ī(s∼ × U) is a collection of DBM

2: for all s∼, s
′
∼ ∈ S/∼ do ⊲ s′′∼ is a DBM

3: if ∃s′′∼ ∈ Ī(s∼ × U) s.t. s′′∼ ∩ s
′
∼ is not empty then

4: δ̄∼ ← δ̄∼ ∪ {(s∼, s
′
∼)}

5: end if

6: end for

Fig. 9. Computation of the transitions for nonautonomous MPL model via
forward-reachability analysis

each partitioning region s∼ is a DBM, then Lemma 1 implies

that for each state x(k) ∈ s′∼ ∩ (B ⊗ U) there exists a state

x(k − 1) ∈ s∼ such that x(k) = A⊗ x(k − 1)⊕ x(k).

The outcome of Algorithm 9 is in general a nondeter-

ministic TS. Its relationship with the nonautonomous MPL

model is clear: the TS obtained by Algorithm 9 simulates

the nonautonomous MPL model, whereas in general the

opposite direction does not hold. In order to provide suffi-

cient conditions to obtain a bisimulation relation, we employ

a backward-reachability analysis over the augmented MPL

model: Ī−1(s′∼) =
{

x̄ ∈ R
n × U : Ā⊗ x̄ ∈ s′∼

}

.

The general procedure for obtaining Ī−1(s′∼) is as follows:

1) computing the inverse image of s′∼ w.r.t. each affine dyna-

mics (9) of the PWA system generated by the nonautonomous

MPL model; then 2) intersecting each inverse image with the

corresponding region in the augmented space and R
n × U ;

finally 3) obtaining Ī−1(s′∼) as the union of the nonempty

intersections. The worst-case complexity of inverse-image

computations is O((n +m)3|R̄|), where R̄ = MPL2PWA(Ā)
(cf. Algorithm 2). Notice that ΠX(Ī−1(s′∼)) represents the set

of states that transition into s′∼ or, more formally {x ∈ R
n :

∃u ∈ U s.t. A⊗ x⊕ B ⊗ u ∈ s′∼}. Furthermore, there exists

a transition from s∼ to s′∼ if and only if s∼ ∩ΠX(Ī−1(s′∼))
is not empty. This leads to the following result.

Proposition 6: The TS obtained by Algorithm 9 bisimulates

the nonautonomous MPL model if for each pair (s∼, s
′
∼) ∈

δ̄∼, the following holds: for each x ∈ s∼, there exists an input

u ∈ U such that A⊗ x⊕B ⊗ u ∈ s′∼. Equivalently, for each

(s∼, s
′
∼) ∈ δ̄∼, s∼ ⊆ ΠX(Ī−1(s′∼)).

The procedure to check whether a finite-state TS bisimulates

a nonautonomous MPL model practically works as follows. If

s∼ \ΠX(Ī−1(s′∼)) is empty for each (s∼, s
′
∼) ∈ δ̄∼, then the

finite-state TS bisimulates the nonautonomous MPL model.

Otherwise it simulates it.

Example: Let us consider an input set U that coincides

with region s6∼, i.e. U = {u ∈ R
2 : e < u1 − u2 < 2}.

Let us explicitly check the existence of a transition from

s3∼ to s2∼. First, we determine the regions that intersect with

s3∼ × U = {x̄ ∈ R
4 : x1 − x2 > 3, e < u1 − u2 < 2}:

after performing an emptiness check of the intersections, we

are left with the regions R̄(1,1), R̄(3,1), and R̄(3,4). Thereafter,

we determine whether the image of R̄(1,1) ∩ (s3∼ × U),
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1
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5

7
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(a) Input set U = s6∼

1

2

4

3

5

7

6

(b) Input set U = s2∼ ∪ s6∼

Fig. 10. TS abstraction for the MPL model in (5), where i represents si∼,
for i = 1, . . . , 7. Solid arrows refer to the autonomous version in (2) of the
MPL model, whereas dashed ones are related to the nonautonomous model

R̄(3,1) ∩ (s3∼ × U), and R̄(3,4) ∩ (s3∼ × U) intersect with s2∼:

after computing the sets, we conclude that only the image of

R̄(3,1)∩(s
3
∼×U) intersects with s2∼. Thus, there is a transition

from s3∼ to s2∼. The overall TS for this example is shown in

Fig. 10a. Alternatively, if the set of inputs U is defined as

s6∼∪s
2
∼, then we obtain the TS depicted in Fig. 10b. In Fig. 10,

the solid transitions are generated by autonomous versions of

the given MPL model, whereas the dashed ones are related to

the nonautonomous models. It can be checked that both TS

bisimulate the nonautonomous MPL model in (5).

In the remainder of this article, unless otherwise stated,

we assume that the obtained TS simulates the original MPL

model.

IV. MPL ABSTRACTIONS AS LABELED TRANSITION

SYSTEMS

Definition 10 (Labeled transition system): An LTS

(S, δL, I, L) is a direct extension of the TS (S, δ, I) in

Definition 6 and additionally consists of

• a (possibly infinite) set L of transition labels;

• a labeled transition relation δL ⊆ S × L× S.

The definition above can be alternatively given over state

labels [15, Definition 2.1]. With the goal of working with

finite-state LTS as extensions of the TS abstractions obtained

in the previous section, we consider either sort of labels,

referring to states or to transitions, respectively. State labels are

defined as the explicit representation of the regions associated

with states in S/∼, whereas transition labels depend on the

partitioning region (the source of the transition), its affine

dynamics, and (possibly) the set of inputs. More precisely,

1) state labels characterize the difference between the tim-

ing of an event for any two variables of the original

model, and are defined as all the possible values of

xi(k) − xj(k), where 1 ≤ i < j ≤ n. Given a

partitioning region, we can easily compute the labels

using its explicit representation: the label of each state

in the finite-state LTS is defined as the system of linear

inequalities characterizing the partitioning region. Since

each partitioning region is represented by a DBM in

its canonical-form representation (cf. Section III-A), the

bounds on state labels are the tightest possible and the

representation is unique [16, Th. 2].

2) transition labels represent the time difference between

consecutive events of the MPL model, and are defined as

all the possible values of the difference xi(k)−xi(k−1),
for 1 ≤ i ≤ n. Since the possible interval characterizing

the difference xi(k) − xi(k − 1) may depend on the

value for other variables, in general labels associated

with each transition in the finite-state LTS are overap-

proximations of the actual differences (see example in

the next subsection).

Notice the structural difference between the labels defined in

this work (quantities associated with states or transitions) and

either the canonical state labels or the actions as discussed

in [15, Definition 2.1]. Since labels over the states can be

directly derived from the characterization of the partitioning

regions, we next focus on the characterization of the labels

over the transitions.

A. Autonomous Case

Computing l∼ ∈ L∼ – the label of a specific tran-

sition – involves substituting the affine dynamics (8) into

xi(k) − xi(k − 1) for 1 ≤ i ≤ n, and applying the explicit

representation (10) if needed. A label is an n-dimensional

vector of real-valued intervals, which is overapproximated by

a box – a special case of DBM – in R
2n. Using a box is

advantageous, since: 1) the possible values of xi(k)−xi(k−1)
are now independent for each 1 ≤ i ≤ n; and 2) they are

computationally easier to work with. The box lies in R
2n

since the total number of variables is 2n (n variables for

both event steps k and k− 1). Let us denote the procedure to

compute the label of a transition as LABELS(s∼), where s∼
is the outgoing partitioning region and its complexity is O(n).
Thus, the complexity of computing the set of transition labels

L∼ hinges on the number of transition relations in the LTS

and it is O(|S/∼|
2n) in the worst case. Furthermore, in the

nondeterministic case, evaluating the transition labels requires

proper subdivision of partitioning regions using backward-

reachability analysis: in this case, the worst-case complexity

of the complete labeling procedure increases to O(|S/∼|
2n3).

Example: Considering the TS of Fig. 10a, let us determine

the label of the transition from s5∼ to s1∼. Substituting the

dynamical system of s5∼, i.e. x1(k) = x2(k− 1)+5, x2(k) =
x1(k−1)+3, into x(k)−x(k−1) we obtain x1(k)−x1(k−
1) = 5 − (x1(k − 1) − x2(k − 1)) and x2(k) − x2(k − 1) =
3+ x1(k− 1)− x2(k− 1). Applying the definition of s5∼, the

exact transition label is {[5− α 3 + α]T : 2 < α < 3}, which

can be overapproximated by the smallest box containing it,

i.e. {[5−α 3+α′]T : 2 < α < 3, 2 < α′ < 3}. The complete

labels of this example is shown as intervals with bold typeset

over the LTS with continuous edges in Fig. 11.
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[

[5,5]
[3,3]

]

[

[3,3]
[5,5]

]

[

(5,∞)
[3,3]

]

[

[2,2]
[6,6]

]

⋃

[

[2, 3)
[6, 6]

]

[

[2,2]
(6,∞)

]

⋃

[

[2, 3)
(6,∞)

]

[

(2,3)
(5,6)

] [

(3,5)
(3,5)

]

⋃

[

(3,∞)
(3,∞)

]

[

[5, 5]
(3, 5)

]

⋃

[

[5,∞)
(3,∞)

]

[

(3, 5)
[5, 5]

]

⋃

[

(3,∞)
[5,∞)

]

[

(5,∞)
(3, 5)

]

⋃

[

(5,∞)
(3,∞)

]

[

(3, 5)
[6, 6]

]

⋃

[

(3,∞)
[6,∞)

]

[

[3, 3]
(5, 6)

]

[

[3, 3]
[6, 6]

]

[

[3, 3]
(6,∞)

]

[

(3, 5)
(6,∞)

]

⋃

[

(3,∞)
(6,∞)

]

[

(3, 5)
(5, 6)

]

⋃

[

(3,∞)
(5,∞)

]

Fig. 11. LTS endowed with transition labels. For the autonomous MPL model in (2) of Fig. 8b the LTS is represented with continuous edges and the labels
with bold typeset. For the nonautonomous MPL model in (6) of Fig. 10a the LTS is represented with dashed edges and the labels with normal typeset. State
i represents si∼, for i = 1, . . . , 7

B. Nonautonomous Case

Computing the label l̄∼ ∈ L̄∼ of a transition from s∼ to s′∼
consists of two steps: 1) determining {x̄ ∈ s∼ × U : Ā⊗ x̄ ∈
s′∼} by using backward-reachability analysis, i.e. Ī−1(s′∼) ∩
(s∼×U), which is in general a union of finitely many DBM;

then, similar to the autonomous case, 2) collecting information

from expressions such as (9) and (10), for each DBM. Thus, a

transition label for a nonautonomous MPL model is a union of

finitely many transition labels (see example below), as defined

in the preceding section for the autonomous case.

Example: We are going to determine the labels of the tran-

sition from s3∼ to s2∼. First we calculate (s3∼×U)∩ Ī−1(s2∼):
after iterating through all states, we obtain a region described

by {x̄ ∈ R
4 : x1 − x2 > 3, x1 − u1 = −3, x1 − u2 =

−2, x2 − u1 < −6, x2 − u2 < −5, u1 − u2 = 1}.
Since the region is a subset of R̄(3,1), the transition la-

bel is obtained by applying the procedure described in the

preceding section to the region and the affine dynamics of

R̄(3,1): x1(k) − x1(k − 1) = u1(k) − x1(k − 1) = 3 and

x2(k)−x2(k−1) = x1(k−1)+3−x2(k−1) > 6. Figure 11

depicts the full LTS endowed with transition labels.

Labels in L̄∼ allow to be further particularized as follows.

Each transition can be associated with a subset of the par-

titioning region of its source, made up of the points that

are affected by the transition w.r.t. some input signals, i.e.

{x ∈ s∼ : ∃u ∈ U s.t. A ⊗ x ⊕ B ⊗ u ∈ s′∼}. This can

be computed by projecting the inverse image of s′∼ over the

state variables: tX(s∼, s
′
∼) = ΠX(Ī−1(s′∼) ∩ (s∼ × U)).

Similarly, the subset of control inputs that steer some states

in the source region to the target region is denoted by

{u ∈ U : ∃x ∈ s∼ s.t. A ⊗ x ⊕ B ⊗ u ∈ s′∼} and can be

computed by projecting w.r.t. input variables the inverse image

of s′∼: tU (s∼, s
′
∼) = ΠU (Ī

−1(s′∼) ∩ (s∼ × U)). Since, as

discussed above, backward-reachability analysis yields unions

of finitely many DBM, also tX(s∼, s
′
∼) and tU (s∼, s

′
∼) are

in general unions of finitely many DBM. The following result

holds:

Theorem 7: For any s∼ ∈ S/∼,
⋃

(s∼,·,s′
∼
)∈δ̄L

∼

tX(s∼, s
′
∼) =

s∼ and
⋃

(s∼,·,s′
∼
)∈δ̄L

∼

tU (s∼, s
′
∼) = U .

Proof: From the definition of tX(s∼, s
′
∼), we know that

⋃

(s∼,·,s′
∼
)∈δ̄L

∼

tX(s∼, s
′
∼) = {x ∈ s∼ : ∃u ∈ U s.t. Ā ⊗

[xT uT ]T ∈ R
n}. The inclusion

⋃

(s∼,·,s′
∼
)∈δ̄L

∼

tX(s∼, s
′
∼) ⊆

s∼ is then evident. Recall that Ā is a row-finite max-plus

matrix because Ā = [A B] and A is assumed to be row-finite.

Thus, Ā ⊗ [xT uT ]T ∈ R
n, for each x ∈ R

n and u ∈ R
m,

which proves the other direction of the inclusion. A similar

argument holds for the union over tU .

Looking back at Proposition 6, the sufficient conditions

raised to establish a bisimulation relation can be restated as

follows: for each (s∼, s
′
∼) ∈ δ̄∼, s∼ ⊆ tX(s∼, s

′
∼).

The labels in tU can be useful to construct a TS correspond-
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input: s∼, s
′
∼, partitioning regions s.t. (s∼, s

′
∼) ∈ δ̄∼;

R̄← MPL2PWA(Ā), a cover of Rn+m where |R̄| <∞;

U , the set of inputs

output: l̄∼, tX , tU , labels of the given transition

1: l̄∼ ← ∅, tX ← ∅, tU ← ∅
2: for all R̄ ∈ (s∼ × U) ∩ Ī−1(s′∼) do

3: l̄∼ ← l̄∼ ∪ {LABELS(R̄)} ⊲ Section IV-A

4: tX ← tX ∪ {ΠX(R̄)}, tU ← tU ∪ {ΠU (R̄)}
5: end for

Fig. 12. Computation of the labels associated with a transition of a
nonautonomous model via backward-reachability analysis

ing to any subset U ′ ⊆ U . Recall that tU is a union of finitely

many DBM in R
m and consider for the sake of argument

that the original set of inputs U is selected as R
m. Select an

arbitrary DBM U ′ ⊂ R
m as the new set of inputs. The new set

of transitions is made up of the existing transitions intersecting

U ′, namely those for which tU ∩ U
′ is not empty. This

procedure is faster than the one discussed in Section III-C2,

since its worst-case complexity is O(m3q|S/∼|
2|), where q

is the maximum number of DBM in tU (s∼, s
′
∼) for any

(s∼, s
′
∼) ∈ δ̄∼.

Algorithm 12 presents a procedure to compute the labels

of a given transition from s∼ to s′∼, and is part of the

general labeling procedure for the whole LTS. (Notice that

the state labels are not computed in Algorithm 12, since they

are directly characterized by the partitioning regions in the

finite-state LTS.)

Let us quantify the worst-case complexity of Algorithm 12.

Notice that the maximum number of iterations in step 2

is |R̄|. This, compounded with the complexity of checking

the emptiness of a DBM and of intersecting DBM, leads to

O((n + m)3|R̄|). Furthermore, the worst-case complexity of

the complete procedure is O((n + m)3|S/∼|
2|R̄|), since the

maximum number of transitions is |S/∼|
2.

Example: Consider the transition from s3∼ to s2∼. From

Algorithm 12, tX and tU are calculated by projecting the

region w.r.t. {x1, x2} and {u1, u2}, obtaining respectively s3∼
and U .

V. COMPUTATIONAL BENCHMARK

In order to test the practical efficiency of the proposed

algorithms, we compute the runtime required to perform the

abstraction of an MPL system into a finite-state LTS, for

increasing dimensions n of the given MPL model. We fur-

thermore keep track of the number of states and of transitions

of the obtained LTS, which is directly related to the memory

requirement of the technique.

For any given n, we generate row-finite matrices A with 2

finite elements placed uniformly at random in each row, as well

as matrices B as column vectors where all elements are finite.

The finite elements are uniformly generated integers taking

values between 1 and 100. The input space U is conservatively

selected to be equal to R.

The algorithms have been implemented in MATLAB 7.13

(R2011b) and the experiments have been run on a 12-core

Intel Xeon 3.47 GHz PC with 24 GB of memory. Over 10

independent experiments, Tables II and III report the (mean

and maximum values for the) time needed to construct the

LTS, broken down over the three successive procedures for the

generation of the states, the transitions, and the labels of the

LTS, respectively. The total number of states and of transitions

in the LTS are also reported.

Recall that the first step of the procedure (generation of

states) consists of the partitioning of the state space (Algo-

rithm 6) and, for nonautonomous models, of the construction

of a PWA system over the augmented space (Algorithm 2),

whereas the second step (generation of transitions) uses

forward-reachability analysis to determine transitions between

abstract states. Finally, with regards to the generation of labels,

the results focus on the computation of the labels over the

transitions, since those over the states can be directly (and

computationally more efficiently) derived from the first step.

With regards to autonomous models, as confirmed by Ta-

ble II, the bottleneck of the abstraction procedure resides

on the generation of transitions and depends on the number

of partitioning regions that is in the worst case exponential

w.r.t. the dimension of the state space. On the other hand,

for nonautonomous models, as reported in Table III, the

labeling part consumes more time compared to the generation

of transitions – this is due to the computation step based

on backward reachability, which as discussed is in general

computationally more expensive than forward reachability.

The computation time is higher than in the autonomous case,

since its complexity depends on |R̄| (cf. Algorithm 2), which

in the worst case is O((n+m)n). For nonautonomous models,

the figures refer to the computation of transition labels and of

the corresponding tX and tU .

We have also performed similar computations for the case

of autonomous models with full matrices A (in a max-plus

sense), which is likely to generate abstract models with more

states. Elements are again uniformly distributed integers taking

values between 1 and 100. Analogously to the above results,

the bottleneck of the abstraction procedure also resides in

the generation of the transitions. For an 8-dimensional MPL

model over 10 independent experiments, the maximum time

needed to compute the LTS amounts to 21.19 minutes, which

is made up of 6.90, 13.21, and 1.08 minutes for generating

the partitions, transitions, and labels, respectively.

VI. FORMAL VERIFICATION OF MPL MODELS

This section argues that the presented abstraction approach

enables the study of general properties of a given MPL model

by formally verifying, by use of a model checker, related

logical specifications over its LTS abstraction. Unlike classical

results based on the global algebraic [9] or geometric [10]

features of MPL models, the approach in this work allows to

prove dynamical properties (expressed via logical constructs)

over sets of trajectories of the model.

In order to specify properties of trajectories of the MPL

model, we use a modal logic known as LTL [15, Ch. 5].

LTL formulae are recursively defined, over a set of atomic

propositions, by Boolean and temporal operators. Boolean
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TABLE II
NUMERICAL BENCHMARK – AUTONOMOUS MODEL – {MEAN;MAXIMAL} VALUES

size time for time for time for total total

of MPL generation of generation of generation of number of number of

model states transitions labels states of LTS transitions of LTS

3 {0.16;0.23} [sec] {0.47;0.97} [sec] {0.05;0.09} [sec] {3.60;6.00} {4.30;13.00}

4 {0.21;0.37} [sec] {0.50;0.89} [sec] {0.10;0.21} [sec] {6.20;12.00} {11.40;35.00}

5 {0.26;0.33} [sec] {0.46;1.06} [sec] {0.08;0.17} [sec] {8.60;24.00} {13.80;90.00}

6 {0.43;0.51} [sec] {0.47;0.98} [sec] {0.15;0.26} [sec] {19.40;36.00} {68.50;191.00}

7 {0.90;1.05} [sec] {0.49;0.91} [sec] {0.33;0.84} [sec] {37.20;84.00} {289.30;1278.00}

8 {1.58;1.83} [sec] {0.58;0.97} [sec] {0.60;1.75} [sec] {58.00;160.00} {512.30;1927.00}

9 {4.09;4.83} [sec] {0.83;1.44} [sec] {1.62;3.12} [sec] {120.00;208.00} {1.75;4.35}×103

10 {9.49;12.85} [sec] {3.14;15.47} [sec] {7.88;39.34} [sec] {283.60;768.00} {1.31;8.35}×104

11 {24.85;32.13} [sec] {15.17;46.56} [sec] {16.13;33.61} [sec] {613.20;1104.00} {1.87;4.82}×104

12 {1.19;1.94} [min] {1.52;3.61} [min] {42.92;106.10} [sec] {1.20;2.03}×103 {4.76;14.08}×104

13 {3.53;5.04} [min] {5.49;15.52} [min] {2.77;11.06} [min] {1.92;3.81}×103 {1.91;8.50}×105

14 {12.03;29.65} [min] {28.21;86.35} [min] {12.65;54.76} [min] {4.16;8.13}×103 {7.83;34.50}×105

15 {53.58;78.31} [min] {1.98;9.45} [hr] {39.43;219.61} [min] {7.42;19.71}×103 {2.05;11.60}×106

TABLE III
NUMERICAL BENCHMARK – NONAUTONOMOUS MODEL – {MEAN;MAXIMAL} VALUES

size time for time for time for total total

of MPL generation of generation of generation of number of number of

model states [sec] transitions labels states of LTS transitions of LTS

3 {0.22;0.29} {0.52;1.00} [sec] {0.23;0.57} [sec] {3.60;6.00} {7.20;16.00}

4 {0.39;0.44} {0.51;0.99} [sec] {0.17;0.24} [sec] {6.20;12.00} {15.30;38.00}

5 {0.88;1.04} {0.78;1.28} [sec] {0.19;0.53} [sec] {8.60;24.00} {21.80;120.00}

6 {2.11;2.63} {1.84;3.39} [sec] {1.11;3.54} [sec] {19.40;36.00} {107.20;364.00}

7 {5.92;8.46} {8.93;21.63} [sec] {27.49;128.60} [sec] {37.20;84.00} {485.00;2520.00}

8 {12.66;18.33} {30.55;107.43} [sec] {1.98;7.20} [min] {58.00;160.00} {730.30;2578.00}

9 {39.06;55.94} {5.39;14.71} [min] {34.40;123.64} [min] {120.00;208.00} {2819.40;8742.00}

10 {98.42;141.97} {43.21;156.55} [min] {3.75;11.11} [hr] {206.80;432.00} {6211.60;16996.00}

operators are ¬ (negation), ∧ (conjunction), and ∨ (disjunc-

tion), whereas temporal operators are © (next), U (until), �

(always), and ♦ (eventually). A formula φ, which in general is

determined by application of the above operators, is interpreted

over traces [15, Definition 3.8] generated by the LTS. In

particular it is of interest to check whether (the trajectories

of) an LTS satisfies a given formula (or specification) – this

procedure is known as model checking and can be performed

automatically [15].

With focus on the verification over state labels, let us

consider a set of atomic propositions that corresponds to the

collection of the partitioning regions defining the LTS. More

precisely, the inverse image w.r.t. the labeling function [15,

Definition 2.1] of each atomic proposition equals to a union

of partitioning regions. Thus the partition leading to the

LTS states is proposition preserving, which implies that the

labeling function for the TS abstraction is well defined and

that the simulation or the bisimulation relations between the

abstract and concrete model are retained. If the abstract LTS

bisimulates the MPL model, one can verify the general class

of specifications expressed via LTL formulae [15, Ch. 5].

Otherwise, if the LTS simulates the MPL model, one can

exclusively verify safety properties, a strict subset of LTL [15,

Sec. 7.4].

With focus on the verification over transition labels, let us

consider a set of atomic propositions based on their collection.

Again, the inverse image w.r.t. the labeling function of each

atomic proposition equals to a union of transition labels. In

order to obtain a proposition preserving partition the transition

labels have to be pairwise disjoint, which is usually the case

for autonomous MPL models (see example in this work). If

this is not the case (as it usually happens for nonautonomous

models), one can attempt state space refinement procedures

that can enable unique association of atomic propositions to

labels. Alternatively, one can declare that a transition satisfies

an atomic proposition depending on the particular specification

under study. Computationally, this can be done by exploiting

the DBM inclusion property [16, Sec. 4.1], or by checking

non-emptiness of the intersection among DBM (cf. Section

II-C).

We use the SPIN model checker [21] to verify general LTL

specifications. Given an MPL system expressed within the

MATLAB environment, we first abstract the MPL system into

an LTS within MATLAB (cf. previous sections), then export

the obtained data structure into the PROMELA language and

feed it, along with an LTL formula expressing a specification
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of interest for the model, to SPIN. SPIN deals with both deter-

ministic and nondeterministic LTS. The outcome of the model

checking procedure is the set of states of the LTS satisfying

the given formula, which is known as the satisfiability set.

The satisfiability set corresponds to partitioning regions on the

original MPL model, which comprise points that also verify

the given formula. Whenever this set is empty, the model

checker returns a counterexample, namely a trajectory that

does not satisfy the formula.

A. Autonomous Case

In the following example we discuss the verification proce-

dure over the MPL model in (2).

Example: The given MPL model is abstracted into the LTS

shown in Fig. 11 (transitions δ∼ are marked with bold lines

and labels L∼ referring to time delay between consecutive

events, cf. Section IV). Notice that the transition labels are

non-intersecting.

Recall that Section II has looked at the concept of cyclicity

and at the eigenspace. In order to identify the eigenspace,

we can use the formula
∨

l∼∈L∼

((�l∼) ∧ C(l∼)), where

C(l∼) is a Boolean function returning true if l∼ is a vector of

finite constants, and false otherwise. This LTL formula is not

verified by any state (the satisfiability set is empty), because

no partitioning regions correspond to the eigenspace (which is

indeed contained in region s6∼).

Let us consider an autonomous MPL model with system

matrix A and focus on its whole periodic behavior. By direct

inspection the LTS in Fig. 11, we conclude that E(A⊗c)
corresponds to the set {s2∼, s

6
∼, s

7
∼}. If we are interested

in computing it, then we can express the formula Ψ =
∨

l∼∈L∼

�(l∼ ∧©
cl∼), where ©c denotes the application of

the next operator c times [15, Remark 5.15]. In this example,

c = 2 and the LTL formula is verified by the set {s2∼, s
6
∼, s

7
∼}.

We can furthermore characterize the set {x ∈ R
n : k0(x) ≤

k}, for k ∈ N∪ {0}, by computing the satisfiability set of the

LTL formula ♦≤k Ψ [15, Remark 5.15]. By extension, if there

exists an x ∈ R
n such that k0(x) = k0(A), we can formulate

the value of k0(A) as a function of the previous LTL formula,

as k0(A) = argmink
{

♦≤k Ψ
}

.

Along with the above properties related to the periodic

regime of the MPL model, we may be interested in model

checking general formulas, such as the following reach-avoid

specification: ♦ψ1 ∧ �¬ψ2, where ψ1 denotes the incoming

label of s2∼, whereas ψ2 the union of those of s3∼ and

s4∼. This formula can be expressed as “the trajectory will

eventually reach set s2∼, while never entering set s3∼ ∩ s
4
∼.”

The satisfiability set results in {s1∼, s
2
∼, s

5
∼, s

7
∼}.

B. Nonautonomous Case

If the abstract LTS bisimulates the nonautonomous MPL

model, one can verify the general class of specifications

expressed via LTL formulae [15, Ch. 5]. Otherwise, if the

LTS simulates the nonautonomous MPL model, one can verify

safety properties, a strict subset of LTL [15, Sec. 7.4]. Nonau-

tonomous MPL models allow for controller synthesis. In the

first case, an approach to synthesis is to negate the specification

of interest and retrieve the successful control policy from a

counterexample generated by the model checker. In the latter

case, we can instead leverage a control synthesis approach

based on games, as described in [31].

Example: In [4, Sec. 0.1], the autonomous two-dimensional

MPL system (2) is used to model a simple railway network

with 2 stations. Let us focus on the LTS in Fig. 10a, which is

obtained for U = s6∼, but where properties are defined over the

state labels (describing the difference in timings of the same

event, and characterized by the partitions in Fig. 8a). Suppose

that there is a requirement on the departure times at station 1 to

be at least 2 time steps before those at station 2, and at most the

same times as those at station 2. From Fig. 11, the collection

of states s2∼ ∪ s
6
∼ ∪ s

7
∼ verifies this requirement – we thus

introduce the corresponding LTL formula �(s2∼ ∨ s
6
∼ ∨ s

7
∼).

The LTL formula is verified within the whole {s2∼, s
6
∼, s

7
∼}.

This allows to conclude that, as long as the initial condition is

in the safe set, the trajectory will always reside there. Similarly,

in the case where U = s2∼∪s
6
∼, the same safety property over

the LTS in Fig. 10b (with labels on the states) can be model

checked, and in this instance the LTL formula admits the same

satisfiability set.

VII. CONCLUSIONS

This work has introduced a new technique to generate finite

abstractions of autonomous and nonautonomous Max-Plus-

Linear (MPL) models, characterized as finite-state Labeled

Transition Systems (LTS). The procedure is based on the

partitioning (covering) of the state (input) space, on the study

of the one-step dynamics to relate partitioning regions, and

on the use of the timing of events to associate labels on the

discrete abstraction. The resulting finite LTS abstraction has

been shown to either simulate or bisimulate the original MPL

model.

The computational complexity of the approach has been

fully quantified and its performance has been tested on a

numerical benchmark, which has displayed a bottleneck that

mainly depends on the number of generated partitioning

regions. Still, the abstraction procedure comfortably man-

ages models with reasonable size (15-dimensional, in the au-

tonomous case) and can then be employed to study properties

of the original MPL model in an original manner. Along this

line, the authors are interested in extending the analysis and

control synthesis over the MPL models by means of formal

verification techniques applied over finite LTS abstractions.

Considering Metric Temporal Logic [32] as an extension of

LTL represents a first meaningful goal.

With the objective of obtaining an LTS that only simulates

the original MPL model, it is clear that partitioning procedures

obtaining a quotient set with lower cardinality lead to a

tradeoff between computability and abstraction precision. The

authors are also interested in employing new data structures

and operations to improve the developed software toolbox

[22]. Formula-based abstractions and counterexample-guided

refinements represent avenues to explore. Finally, the authors

plan to further connect the proposed abstraction technique to

related approaches developed for PWA models [18], as well

as to results developed for Petri Nets [33].
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