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On the convergence of Ant Colony Optimization with stench pheromone

Zhe Cong, Bart De Schutter, and Robert Babuška

Abstract— Ant Colony Optimization (ACO) has proved to
be a powerful metaheuristic for combinatorial optimization
problems. From a theoretical point of view, the convergence
of the ACO algorithm is an important issue. In this paper,
we analyze the convergence properties of a recently introduced
ACO algorithm, called ACO with stench pheromone (SACO),
which can be used to solve dynamic traffic routing problems
through finding the minimum cost routes in a traffic network.
This new algorithm has two different types of pheromone: the
regular pheromone that is used to attract artificial ants to
the arc in the network with the lowest cost, and the stench
pheromone that is used to push ants away when too many
ants converge to that arc. As a first step of a convergence
proof for SACO, we consider a network with two arcs. We
show that the process of pheromone update will transit among
different modes, and finally stay in a stable mode, thus proving
convergence for this given case.

I. INTRODUCTION

Ant Colony Optimization (ACO) is inspired by collective

behavior of foraging ants searching paths between their nest

and a food source. It was first proposed by Dorigo in his

PhD thesis [1]. Since then, the field of ACO has grown

tremendously. The Ant System (AS) [2] is an early example

of the ACO algorithm, and it achieved promising results in

solving traveling salesman problems. Several important ACO

variants, e.g., Ant Colony System [3] and MAX-MIN Ant

System [4], have been developed to extend and improve the

original AS algorithm. These variants mainly differ from

the AS algorithm in the pheromone update rules, where

respectively the iteration-best rule and the best-so-far rule are

used to replace the original AS update rule. Some other ACO

variants focus on special issues. For instance, AntNet [5] is

designed to solve the routing problem in telecommunication

networks, and Ant Colony Learning [6] is used for finding

optimal control policies for automatic control systems. A

broad overview on ACO can be found in [7], [8].

From a theoretical point of view, convergence is an

important topic. For ACO, convergence analysis has been

introduced in [9], [10], [11]. Gutjahr [9], [10] presented a

convergence proof for an ACO algorithm called graph-based

ant system. The proof shows that the algorithm can generate

an optimal solution at least once during the optimization.

Stützle and Dorigo [11] prove that the ACOgb,τmin
algorithm,

which employs the global-best update rule, asymptotically

converges to the optimal solution. However, because of the

complexity and the diversity of ACO, there is no a general

method to prove convergence for the entire class of ACO

algorithms.

The authors are with the Delft Center for Systems and Con-
trol, Delft University of Technology, Delft, The Netherlands, email:
{z.cong,b.deschutter,r.babuska}@tudelft.nl

In this paper, we prove the convergence of a novel ant-

based algorithm — ACO with stench pheromone [12], ab-

breviated as ACO-SP. Motivated by the similarities between

traffic systems and ant systems, we have developed this

new algorithm in [12] to solve the dynamic traffic routing

problem in freeway networks, for which ants are used to

determine appropriate routes for vehicles according to a

global objective. Generally speaking, this new algorithm has

two types of pheromone with opposite functions: the same

regular pheromone as in the standard ACO algorithm and

the newly introduced stench pheromone. The former is used

to attract ants to the best route in the network so as to

guarantee the effectiveness of the algorithm, while the latter

is used to decrease the total pheromone levels on the arcs

to prevent the regular pheromone from being accumulated

too much on the same arc. In such a way, some of the ants

are pushed away when too many ants are crowded on the

same route, and those ants then choose an alternative route

in the network. Although ACO-SP is introduced for freeway

networks, it can be applied to solve optimal flow distribution

and routing problems in any other type of network subject

to (soft) capacity constraints. Therefore, in this paper, we

analyze the convergence properties in a general network. For

the sake of simplicity and as this paper presents a first step

towards a full convergence proof for ACO-SP, we consider

a network with only two arcs.

The rest of this paper is structured as follows. Section

II recapitulates the ACO-SP algorithm. Next, in Section

III, we state the convergence problem, as well as the as-

sumptions for the proof. Next, we prove the convergence

of an auxiliary function in Section IV, and consequently

prove the convergence of the pheromone levels in ACO-SP

for a two-arc network in Section V. Finally, we illustrate

the convergence of ACO-SP by simulation for a large-scale

network in Section VI. Proofs of supporting lemmas are

presented in the appendix.

II. ACO WITH STENCH PHEROMONE

The ACO-SP algorithm [12] originates from the AS al-

gorithm [2]. Ants in ACO-SP can independently choose

arcs with a pre-defined probability, and deposit pheromone

according to the cost on each arc when traveling in the

network. In ACO-SP, there is a critical number of ants

on each arc in the network. Once the critical number is

exceeded, congestion is considered to occur on that arc.

Therefore, the goal of ACO-SP is to determine an optimal

assignment of ants in the network so as to find minimum

cost routes and to prevent congestion. The function of the

stench pheromone is to decrease the pheromone levels on
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Algorithm 1 ACO-SP

Input: Ntotal, Ncrit
i, j , τ0, ρ , T , τmin

1: τi, j← τ0, ∀(i, j)
2: for t = 0, . . . ,T do

3: Rupd← /0

4: A ←{1,2, . . . ,Ntotal}
5: for all ants a ∈A in parallel do

6: ra← /0

7: put ant a in one origin vertex i

8: repeat

9: select the next vertex j according to (1)

10: ra← ra∪{(i, j)}
11: until ant a has reached a destination vertex

12: Rupd←Rupd∪{ra}
13: end for

14: calculate the stench function values Gi, j(Ni, j) based

on the number of ants Ni, j that traveled each on arc

(i, j)
15: update τi, j: apply (3) for all (i, j)
16: end for

Output: τi, j, ∀(i, j)

the congested arcs so that ants will be pushed away and

start to search an alternative route. The description of ACO-

SP is presented in Algorithm 1. For the inputs, Ntotal is

the total number of ants traveling in the network, τ0 is the

initial pheromone level, ρ is the evaporation rate, T is the

maximum number of iteration steps, and τmin is a given

constant preventing the denominator of (1) from becoming

zero. The algorithm is explained next.

An ant network is presented by a graph consisting of

vertices and arcs that connect vertices. In this network, an ant

a constructs a route ra by moving from one vertex to another

vertex and adding the corresponding arc into ra, until it

reaches a destination vertex. More specifically, ant a staying

at vertex i chooses vertex j based on a probability pa( j|i)
w.r.t the pheromone τi, j associated with arc (i, j). Since the

stench pheromone may result in the total pheromone level

τi, j becoming negative, a lower bound τmin > 0 is used to

prevent the pheromone levels from becoming negative. The

probability pa( j|i) is calculated by:

pa( j|i) =















max(τmin,τi, j)
α

∑
l∈Ni,a

(

max{τmin,τi,l}
)α , ∀ j ∈Ni,a

0, ∀ j /∈Ni,a,

(1)

with α ≥ 1 a parameter, and Ni,a the set of nodes that are

connected to i and that have not yet been visited by ant a.

After the ants reached their destination vertices,

pheromone is deposited on arc (i, j) according to the fitness

function f :

∆τi, j(ra) =

{

f (ra) if (i, j) ∈ ra

0 otherwise

where f assigns strictly positive values to each route ra,

and a higher value of f corresponds to a better solution.

At the same time, the stench pheromone is also deposited

by a stench function G(·), which can e.g. be defined as the

following piecewise affine function:

Gi, j(Ni, j(t)) = max(0,P(Ni, j(t)−Ncrit
i, j )) (2)

where Ni, j(t) denotes the number of ants that traveled on

arc (i, j) in iteration t, Ncrit
i, j denotes the critical number of

ants on arc (i, j), and P > 0 denotes a slope. Therefore, the

pheromone update equation can be formulated as:

τi, j(t +1) = (1−ρ)τi, j(t)+ ∑
ra∈Rupd

∆τi, j(ra)−G(Ni, j(t)) (3)

where ρ denotes the evaporation rate and Rupd denotes the

set of routes that ants constructed from an origin vertex to a

destination vertex.

III. PROBLEM STATEMENT

A. Notations and formulations

f1

f2

Fig. 1. Simple network with two arcs

Definition 1: The ACO-SP algorithm is said to converge,

if the pheromone levels on all arcs converge as the iteration

step t→ ∞.

As the first step of the convergence proof, in this paper

we investigate a simple network with two arcs as shown

in Figure 1. Without loss of generality, we assume that arc

1 is a better solution than arc 2, so the value of the fitness

function f1 of arc 1 is larger than the value of the fitness

function f2 of arc 2:

Assumption 1: f1 > f2.

Before we proceed with the convergence proof, we first

introduce some important notation. The pheromone levels in

iteration t on arc 1 and 2 are denoted by τ1(t) and τ2(t),
respectively. According to (2) and (3), they are given by:

τ1(t +1) =(1−ρ)τ1(t)+N1(t) · f1

−max
(

0,P(N1(t)−Ncrit
1 )

)

τ2(t +1) =(1−ρ)τ2(t)+N2(t) · f2

−max
(

0,P(N2(t)−Ncrit
2 )

)

(4)

where N1(t) and N2(t) are the numbers of ants that chose arc

1 and arc 2 in iteration t, respectively. Since there are only

two arcs in the network, it always holds that N1(t)+N2(t) =
Ntotal, t = 1,2, . . . According to the attraction mechanism

of the ACO algorithm, the arc accumulated with more

pheromone has a higher probability to be chosen by ants.

The probabilities p1(t) and p2(t) for selecting respectively
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arc 1 and arc 2 are computed based on1 (1):

p1(t) =
max(τmin,τ1(t))

max(τmin,τ1(t))+max(τmin,τ2(t))

p2(t) =
max(τmin,τ2(t))

max(τmin,τ1(t))+max(τmin,τ2(t))
(5)

We make the following assumptions regarding the parameters

of the ACO-SP algorithm:

Assumption 2:

1) P 6 min

(

Ntotal · f1−ρτmin

Ntotal−Ncrit
1

,
Ntotal · f2−ρτmin

Ntotal−Ncrit
2

)

2) τmin 6
f2
ρ and τmin 6 τ0

3) Ntotal is sufficiently large such that N1(t),N2(t)> 1, ∀t

4) Ntotal 6= Ncrit
1 and Ntotal 6= Ncrit

2

Lemma 1: If Assumptions 2.1 to 2.3 are satisfied,

τ1(t),τ2(t)> τmin holds for all t.

Proof: For t = 0, we have τ1(t) = τ2(t) = τ0 > τmin

according to Assumption 2.2. For t = 1,2, . . . the proof will

be done by introducing 3 cases.

Case A. If there is no stench pheromone, we have

G(Ni, j(t)) = 0 according to (2). Therefore, based on (3), the

pheromone update equations are given by:

τ1(t +1) = (1−ρ)τ1(t)+N1(t) · f1

τ2(t +1) = (1−ρ)τ2(t)+N2(t) · f2 (6)

Since we want to prove that τ1(t+1),τ2(t+1)> τmin, when

τ1(t),τ2(t)> τmin, we should show that

(1−ρ)τ1(t)+N1(t) · f1 > τmin

(1−ρ)τ2(t)+N2(t) · f2 > τmin (7)

According to Assumption 2.3, N1(t) > 1 and N2(t) > 1.

Therefore, a sufficient condition for (7) to hold is

(1−ρ)τmin + f1 > τmin

(1−ρ)τmin + f2 > τmin

To satisfy the inequalities above, we need τmin 6
f1
ρ and

τmin 6
f2
ρ . Because of Assumption 1, we only need τmin 6

f2
ρ

in Assumption 2.2 as the sufficient condition.

Case B. If the stench pheromone is deposited on arc 1,

i.e., N1(t)> Ncrit
1 . According to (2) and (3), the pheromone

update equation is then given by:

τ1(t +1) = (1−ρ)τ1(t)+N1(t) · f1−P(N1(t)−Ncrit
1 )

Since we want to prove that τ1(t +1)> τmin, when τ1(t)>
τmin, we should show that

(1−ρ)τ1(t)+N1(t) · f1−P(N1(t)−Ncrit
1 )> τmin

1For illustration purposes, we set α = 1 in this paper, but the proof is
similar for α > 1

This inequality holds if

P 6
(1−ρ)τ1(t)− τmin +N1(t) · f1

N1(t)−Ncrit
1

6
(1−ρ)τ1(t)− τmin

N1(t)−Ncrit
1

+
N1(t) · f1

N1(t)−Ncrit
1

(8)

Given a rational function defined by y(x) =
ax

x−b
, with x > b

and a,b > 0, it is easy to verify that y(·) is a monotonically

decreasing function. Since we know that τ1(t) > τmin, and

N1(t)6 Ntotal, a sufficient condition for (8) to hold is

P 6
(1−ρ)τmin− τmin

Ntotal−Ncrit
1

+
Ntotal · f1

Ntotal−Ncrit
1

6
Ntotal · f1−ρτmin

Ntotal−Ncrit
1

Case C. Similarly, if stench pheromone is deposited on arc

2, a sufficient condition for τ2(t)> τmin is that

P 6
Ntotal · f2−ρτmin

Ntotal−Ncrit
2

As a conclusion, we need Assumption 2.1:

P 6 min

(

Ntotal · f1−ρτmin

Ntotal−Ncrit
1

,
Ntotal · f2−ρτmin

Ntotal−Ncrit
2

)

With Lemma 1, we can further simplify (5) as:

p1(t) =
τ1(t)

τ1(t)+ τ2(t)

p2(t) =
τ2(t)

τ1(t)+ τ2(t)
(9)

The expected values of the numbers of ants that will select

arc 1 and arc 2 in iteration t can be computed based on (9):

N1(t) = p1(t) ·N
total =

τ1(t)

τ1(t)+ τ2(t)
·Ntotal

N2(t) = p2(t) ·N
total =

τ2(t)

τ1(t)+ τ2(t)
·Ntotal (10)

B. Cases and modes

According to the relationship between the total number of

ants Ntotal and the critical numbers of ants on arcs 1 and 2,

Ncrit
1 and Ncrit

2 , we have four different cases:

1) Case 1: Ntotal < min(Ncrit
1 ,Ncrit

2 );

2) Case 2: Ncrit
1 < Ntotal < Ncrit

2 ;

3) Case 3: Ncrit
2 < Ntotal < Ncrit

1 ;

4) Case 4: Ntotal > max(Ncrit
1 ,Ncrit

2 );

where Ntotal neither equals to Ncrit
1 nor Ncrit

2 due to As-

sumption 2.4. In each case, we can divide the process of

pheromone updating into four different modes based on

whether stench pheromone is deposited or not on the arcs:

1) M1: No stench pheromone is deposited;

2) M2: Stench pheromone is only deposited on arc 1;

3) M3: Stench pheromone is only deposited on arc 2;

4) M4: Stench pheromone is deposited on both arcs.
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In this section, we introduce an auxiliary function F(t) =
τ1(t)
τ2(t)

. Since both τ1(t) and τ2(t) are positive, we have F(t)>
0 for all t. This function can be used to mathematically

define the four modes M1 to M4. Taking M1 as an example,

if there is no stench pheromone deposited on either of the

arcs, the numbers N1(t) and N2(t) are not greater than the

corresponding critical number on each arc, that is N1(t) 6
Ncrit

1 and N2(t)6 Ncrit
2 . By using (10), we then have:

τ1(t)

τ1(t)+ τ2(t)
Ntotal =

F(t)

F(t)+1
Ntotal

6 Ncrit
1 , (11)

τ2(t)

τ1(t)+ τ2(t)
Ntotal =

1

F(t)+1
Ntotal

6 Ncrit
2 . (12)

For the sake of compactness, we let Fb
1 =

Ncrit
1

Ntotal−Ncrit
1

and Fb
2 =

Ntotal−Ncrit
2

Ncrit
2

. In Case 1, we simplify (11) and (12) to obtain

F(t)> Fb
1 and F(t)> Fb

2 . Since in Case 1 both Fb
1 and Fb

2

are negative, and F(t) > 0 always holds by definition, in

Case 1 only M1 is possible, whereas the other modes cannot

occur. Using a similar reasoning, each of the 4 cases can be

summarized as follows:

Case 1: Ntotal < min(Ncrit
1 ,Ncrit

2 )

M1 : F(t)> 0 ,

M2 : NR ,

M3 : NR ,

M4 : NR

where NR indicates “not reachable”. The process of

pheromone updating will stay in M1 as shown in Figure

2.

Case 2: Ncrit
1 < Ntotal < Ncrit

2

M1 : 0 < F(t)6 Fb
1 ,

M2 : F(t)> Fb
1 ,

M3 : NR ,

M4 : NR

The process of pheromone updating will transit from M1 to

M2, and stay in M2 as shown in Figure 3.

Case 3: Ncrit
2 < Ntotal < Ncrit

1

M1 : F(t)> Fb
2 ,

M2 : NR ,

M3 : 0 < F(t)< Fb
2 ,

M4 : NR

The process of pheromone updating will transit from M3 to

M1, and stay in M1 as shown in Figure 4.

Case 4: Ntotal > max(Ncrit
1 ,Ncrit

2 )

M1 : Fb
2 6 F(t)6 Fb

1 ,

M2 : F(t)> max(Fb
1 ,F

b
2 ) ,

M3 : 0 < F(t)< min(Fb
1 ,F

b
2 ) ,

M4 : Fb
1 < F(t)< Fb

2 .

2The transition indicated by the dashed line can only occur once.

M1 M2 M3 M4

Fig. 2. Mode transitions in Case 1

M1 M2 M3 M4

Fig. 3. Mode transitions in Case22

M1 M2 M3 M4

Fig. 4. Mode transitions in Case 3

M1 M2 M3 M4

Fig. 5a. Mode transitions of Subcase (a) in Case2 4

M1 M2 M3 M4

Fig. 5b. Mode transitions of Subcase (b) in Case2 4

M1 M2 M3 M4

Fig. 5c. Mode transitions of Subcase (c) in Case2 4

The process of pheromone updating has three sub-cases as

shown in Figure 5a–5c:

Subcase 4.a

Ntotal
6 Ncrit

1 +Ncrit
2

Subcase 4.b

Ntotal > Ncrit
1 +Ncrit

2 and P 6
( f1− f2)(N

total−Ncrit
2 )

Ntotal−Ncrit
1 −Ncrit

2

Subcase 4.c

Ntotal > Ncrit
1 +Ncrit

2 and P >
( f1− f2)(N

total−Ncrit
2 )

Ntotal−Ncrit
1 −Ncrit

2

This will be explained in more detail in Section V.

IV. CONVERGENCE PROPERTIES OF F

In this section, we investigate the properties of F . All

lemmas in this section are proven in the appendix. Given

in Section III-B, we see that Fb
1 and Fb

2 represent the mode
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boundaries of F . If the value of F becomes larger or smaller

than Fb
1 or Fb

2 , it means a transition occurs from one mode

to another.

Lemma 2: In M1 and M3, F is a monotonically increasing

function.

Define

F
equ
1 =

PNcrit
1

Ntotal( f2− f1)+P(Ntotal−Ncrit
1 )

,

F
equ
2 =

1

2PNcrit
2

(

Ntotal( f1− f2)+P(Ncrit
1 −Ncrit

2 )+

√

(

Ntotal( f1− f2)+P(Ncrit
1 −Ncrit

2 )
)2

+4P2Ncrit
1 Ncrit

2

)

Lemma 3: If F
equ
1 > max(Fb

1 ,F
b
2 ), F

equ
1 is the only equi-

librium point of F in M2. In M2, when F(t) > F
equ

1 , then

F(t+1)< F(t), and when F(t)< F
equ
1 , then F(t+1)> F(t).

If Fb
1 < F

equ
2 < Fb

2 , F
equ
2 is the only equilibrium point of F

in M4. In M4, when F(t)> F
equ
2 , then F(t +1)< F(t), and

when F(t)< F
equ
2 , then F(t +1)> F(t).

Assumption 3:

P >
Ntotal( f1− f2)

Ntotal−Ncrit
1

With Assumption 3, it is easy to verify F
equ
1 > 0, and F

equ
2 > 0

always holds based on its formulation. Therefore, if F(t)<
F

equ
1 when F(t) is in M2, or if F(t) < F

equ
2 when F(t) is

in M4, F(t) is a monotonically increasing function, while

if F(t)> F
equ
1 when F(t) is in M2, or if F(t)> F

equ
2 when

F(t) is in M4, F is a monotonically decreasing function.

In the other words, F always moves towards an equilibrium

point when it stays in M2 or M4. However, Lemma 3 does

not guarantee that F will converge to either F
equ
1 or F

equ
2

as it could still oscillate around F
equ
1 or F

equ
2 . Therefore, we

introduce another lemma.

Lemma 4: In M2, lim
t→∞
|F(t) − F

equ
1 | = 0, and in M4,

lim
t→∞
|F(t)−F

equ
2 |= 0.

From Lemma 4, we know that F will asymptotically con-

verge to these equilibrium points. However, Lemma 4 can

only be applied if F always stays in M2 or M4. It is possible

that F jumps out of M2 or M4 due to the mode transition.

In such case, the convergence is still not guaranteed.

Lemma 5: In all four modes, if F transits from M† to M∗,

where M† denotes a mode without an equilibrium point, and

M∗ denotes a mode with an equilibrium point, F will stay

in M∗.

Lemma 5 shows that F will not jump out of M2 or M4 when

it enters these modes. More specifically, as shown in Figure

3 and 5a, when F transits from M1 to M2, F will not go

back to M1. The case that F may transit from M2 to M1

(shown by the dash line) can only occur when F is initialized

in M2, and such a transition can only occur once. Similarly,

in Figure 5b, when F transits from M4 to M2, F will not

go back to M4, and in Figure 5c, when F transits from M2

and M3 to M4, F will not go back to neither M2 nor M3.

V. CONVERGENCE OF THE PHEROMONE LEVELS

Proposition 1: In Case 1, the pheromone levels on both

arcs asymptotically converge to a finite value.

Proof: In Case 1, F will only stay in M1. According

to Lemma 2, F is a monotonically increasing function in

M1, so the value of F(t) will monotonically converge when

t→ ∞. Let3 F ′ = limt→∞ F(t). According to (10),

lim
t→∞

N1(t) = lim
t→∞

F(t)

F(t)+1
·Ntotal =

1/F ′

1/F ′+1
·Ntotal ,

lim
t→∞

N2(t) = lim
t→∞

1

F(t)+1
·Ntotal =

1

F ′+1
·Ntotal .

Therefore, the numbers of ants N1(t) and N2(t) also con-

verge.

Given a difference equation x(t + 1) = ax(t)+ b(t), with

0 < a < 1, if we have limt→∞ b(t) = B, we know that:

∀ε > 0, ∃T : B− ε < b(t)< B+ ε ,∀t > T.

Therefore,

ax(t)+B− ε < ax(t)+b(t)< ax(t)+B+ ε ,∀t > T.

This is equivalent to

ax(t)+B− ε < x(t +1)< ax(t)+B+ ε ,∀t > T.

From x(t +1)< ax(t)+B+ ε , we can conclude that

x(t +1)< atx(0)+(at−1 +at−2 + · · ·+1)(B+ ε)

Now select T ′ > T such that

atx(0)<
ε

1−a
, ∀t > T ′

Since 0 < a < 1, we can always find such a T ′. Then for all

t > T ′ we have

x(t +1)<
ε

1−a
+

1

1−a
(B+ ε)

<
B

1−a
+

2ε

1−a

Moreover, since a > 0, we have

x(t +1)>
1

1−a
(B− ε)>

B

1−a
−

2ε

1−a

Defining ε ′ =
2ε

1−a
, we find

∀ε ′ > 0, ∃T ′ :
B

1−a
− ε ′ < x(t +1)<

B

1−a
+ ε ′,∀t > T ′.

Hence,

lim
t→∞

x(t +1) =
B

1−a
(13)

Using (13) for (6), it is proven that pheromone levels τ1(t)
and τ2(t) converge.

Proposition 2: In Case 2, the pheromone levels on both

arcs asymptotically converge.

Proof: We first prove the mode transition in Figure 3.

In Case 2, M3 and M4 cannot be reached. Due to Lemma 2,

3F ′ can be ∞. In that case, limt→∞ N1(t) = Ntotal, and limt→∞ N2(t) = 0.
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if F is initialized in M1, it will keep increasing until reaching

Fb
1 , and then it will transit to M2. If F is initialized in M2,

it may transit from M2 to M1. However, Lemma 5 proves

that after F transits from M1 to M2, it will stay in M2,

because M2 has an equilibrium point F
equ

1 , while M1 has

no equilibrium point. In this way, the process described by

Figure 3 is proved.

Since F finally stays in M2 , it will converge to F
equ
1 , as

stated in Lemma 4. According to (10),

lim
t→∞

N1(t) = lim
t→∞

F(t)

F(t)+1
·Ntotal =

F
equ
1

F
equ
1 +1

·Ntotal ,

lim
t→∞

N2(t) = lim
t→∞

1

F(t)+1
·Ntotal =

1

F
equ
1 +1

·Ntotal .

Therefore, the numbers of ants N1(t) and N2(t) also con-

verge, which results in convergence of the pheromone levels

τ1(t) and τ2(t).

Proposition 3: In Case 3, the pheromone levels on both

arcs asymptotically converge.

Proof: Similar to Proposition 2.

Lemma 6: In Case 4, if Ncrit
1 < Ntotal 6 Ncrit

1 +Ncrit
2 , then

Fb
1 > Fb

2 , and if Ntotal > Ncrit
1 +Ncrit

2 , then Fb
1 < Fb

2 .

Proof: We have

Fb
1 −Fb

2 =
Ncrit

1

Ntotal−Ncrit
1

−
Ntotal−Ncrit

2

Ncrit
2

=
Ncrit

1 Ncrit
2 − (Ntotal−Ncrit

1 )(Ntotal−Ncrit
2 )

(Ntotal−Ncrit
1 )Ncrit

2

=
Ntotal(Ncrit

1 +Ncrit
2 −Ntotal)

(Ntotal−Ncrit
1 )Ncrit

2

If Ncrit
1 < Ntotal 6 Ncrit

1 +Ncrit
2 , then Fb

1 > Fb
2 , and if Ntotal <

Ncrit
1 +Ncrit

2 , then Fb
1 > Fb

2 .

Proposition 4: In Case 4, the pheromone levels on both

arcs asymptotically converge.

Proof: In Subcase 4.a, we know that Fb
1 > Fb

2 from

Lemma 6. The four modes M1 –M4 can be further described

as:

M1 : Fb
2 6 F(t)6 Fb

1 ,

M2 : F(t)> Fb
1 ,

M3 : 0 < F(t)< Fb
2 ,

M4 : NR.

As proved in Lemma 2, F monotonically increases in both

M1 and M3. Therefore, if F is initialized in M3, it will

eventually transit to M1, and if F is initialized in M1, it

will eventually transit to M2. Because f1 > f2 according to

Assumption 1, F
equ

1 > Fb
1 always holds, which means that

F
equ
1 is always located in the range of M2 due to Lemma 3.

Therefore, similarly to Case 2, if F is initialized in M2, it

may transit from M1 to M2, but after F transits from M1 to

M2, it will stay in M2 according to Lemma 5. Moreover,

F will finally converge to F
equ
1 , which proves the mode

transitions of Figure 5a.

In Subcase 4.b and Subcase 4.c, we know that Fb
1 < Fb

2

from Lemma 6. The four modes M1–M4 can be further

described as:

M1 : NR ,

M2 : F(t)> Fb
2 ,

M3 : 0 < F(t)6 Fb
1 ,

M4 : Fb
1 < F(t)< Fb

2 .

In Subcase 4.b, we have P 6
( f1− f2)(N

total−Ncrit
2 )

Ntotal−Ncrit
1 −Ncrit

2

, and

one can prove that F
equ
1 > Fb

2 and F
equ
2 > Fb

2 . As a result,

F
equ
1 is in M2, while F

equ
2 is outside the range of M4. Since

F is a monotonically increasing function in M4, we can use

a method similar to that of Subcase 4.a to prove the mode

transitions of Figure 5b, where F will also converge to F
equ

1

in M2.

In Subcase 4.c, we have P >
( f1− f2)(N

total−Ncrit
2 )

Ntotal−Ncrit
1 −Ncrit

2

, and

one can prove that F
equ
1 < Fb

2 , and Fb
1 < F

equ
2 < Fb

2 . As a

result, F
equ

1 is outside the range of M2, while F
equ
2 is in M4.

Since F is a monotonically decreasing function in M2, we

can also prove the mode transitions of Figure 5c similar to

Subcase 4.a, where F will converge to F
equ

2 in M4.

Since all of the three subcases of Case 4 lead to conver-

gence of F , we can prove that in Case 4 the numbers of ants

N1(t) and N2(t) converge, and accordingly the pheromone

levels also converge.

From Proposition 1–4, we know that in each case, the

pheromone levels always converge, which satisfies Definition

1. In conclusion, the convergence of ACO-SP in a network

with two arcs is proven.

VI. DISCUSSION

We have proven the convergence of ACO-SP in a simple

network with only two arcs by using an auxiliary function

F , as the first step of the convergence proof for the general

case. In fact, in the current paper, F(t) reflects the ratio of

τ1(t) and τ2(t) on two arcs, and furthermore, it implicitly

reflects the ratio of N1(t) and N2(t) on the arcs. Since the

total number Ntotal is determined at the beginning, N1(t) and

N2(t) can be obtained at iteration step t, and we hence know

whether the stench pheromone will be deposited or not by

comparing N1(t) with Ncrit
1 and N2(t) with Ncrit

2 . In that way,

F(t) reflects the deposition of stench pheromone on each arc,

and we can use F(t) to express the mode transitions.

However, the F(t) method already results in four different

cases, one of which has three sub-cases, in a simple network

just with two arcs. It is very difficult to extend this method

to a general network, because if the numbers of arcs and

nodes in the network increase, the numbers of different

cases and sub-cases will increase exponentially. Therefore,

for the future work, we will try to find a different method to

theoretically prove the convergence of ACO-SP in a general

network.
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APPENDIX

Proof of Lemma 2: In M1, the pheromone update

equations are formulated as:

τ1(t +1) = (1−ρ)τ1(t)+N1(t) f1

= (1−ρ)τ1(t)+
τ1(t)

τ1(t)+ τ2(t)
Ntotal f1

τ2(t +1) = (1−ρ)τ2(t)+N2(t) f2

= (1−ρ)τ2(t)+
τ2(t)

τ1(t)+ τ2(t)
Ntotal f2

The value F(t +1) can thus be written as:

F(t +1) =

(1−ρ)τ1(t)+
τ1(t)

τ1(t)+ τ2(t)
Ntotal f1

(1−ρ)τ2(t)+
τ2(t)

τ1(t)+ τ2(t)
Ntotal f2

= F(t)

(1−ρ)τ2(t)+
1

F(t)+1
Ntotal f1

(1−ρ)τ2(t)+
1

F(t)+1
Ntotal f2

Because of Assumption 1, i.e., f1 > f2, we can conclude that

F(t+1)>F(t), which means F(t) is a strictly monotonically

increasing function in M1.

In M3, the pheromone update equations are formulated as:

τ1(t +1) = (1−ρ)τ1(t)+
τ1(t)

τ1(t)+ τ2(t)
Ntotal f1

τ2(t +1) = (1−ρ)τ2(t)+N2(t)( f2−P)+PNcrit
2

= (1−ρ)τ2(t)+
τ2(t)

τ1(t)+ τ2(t)
Ntotal( f2−P)+PNcrit

2

Hence, F(t +1) can be written as:

F(t +1) = F(t)

(1−ρ)τ2(t)+
Ntotal f1

F(t)+1

(1−ρ)τ2(t)+
Ntotal( f2−P)

F(t)+1
+PNcrit

2

Since we want to prove that F(t +1)> F(t), it should hold

(1−ρ)τ2(t)+
Ntotal f1

F(t)+1

(1−ρ)τ2(t)+
Ntotal( f2−P)

F(t)+1
+PNcrit

2

> 1

To satisfy the inequality above, we need

F(t)<
Ntotal( f1− f2)+P(Ntotal−Ncrit

2 )

PNcrit
2

, (14)

Because of Assumption 1, the right-hand side of (14) is

greater than Fb
2 . Therefore, in M3, (14) always holds, and F

is a strictly monotonically increasing function in M3.

Proof of Lemma 3: In M2, the pheromone update

equations are given by:

τ1(t +1) = (1−ρ)τ1(t)+N1(t) f1−P(N1(t)−Ncrit
1 )

= (1−ρ)τ1(t)+N1(t)( f1−P)+PNcrit
1

= (1−ρ)τ1(t)+
τ1(t)

τ1(t)+ τ2(t)
Ntotal( f1−P)+PNcrit

1

τ2(t +1) = (1−ρ)τ2(t)+N2(t) f2

= (1−ρ)τ2(t)+
τ2(t)

τ1(t)+ τ2(t)
Ntotal f2

The value F(t +1) can be written as:

F(t +1) = F(t)

(1−ρ)τ2(t)+
Ntotal( f1−P)

F(t)+1
+

PNcrit
1

F(t)

(1−ρ)τ2(t)+
Ntotal f2

F(t)+1

(15)

Since we want to find the equilibrium point, we let F(t+1)=
F(t) = Fe. Therefore, we have:

(1−ρ)τ2(t)+
Ntotal( f1−P)

Fe +1
+

PNcrit
1

Fe

(1−ρ)τ2(t)+
Ntotal f2

Fe +1

= 1 (16)

This yields

Fe =
PNcrit

1

Ntotal( f2− f1)+P(Ntotal−Ncrit
1 )

This is the equilibrium point F
equ
1 . Furthermore, if F(t) <

F
equ
1 , the factor that multiples F(t) in (15) is larger than 1,

which means F(t+1)> F(t), and if F(t)> F
equ
1 , that factor

is smaller than 1, which means F(t +1)< F(t).
Similarly, we can prove that F

equ
2 is the only equilibrium

point in M4 . When F(t)< F
equ
1 , we have F(t +1)> F(t),

and when F(t)> F
equ
1 , we have F(t +1)< F(t).

Proof of Lemma 4: We have

|F(t +1)−F
equ
1 |

=

∣

∣

∣

∣

∣

∣

∣

∣

F(t)

(1−ρ)τ2(t)+
Ntotal( f1−P)

F(t)+1
+

PNcrit
1

F(t)

(1−ρ)τ2(t)+
Ntotal f2

F(t)+1

−F
equ
1

∣

∣

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

∣

∣

1

(1−ρ)τ2(t)+
Ntotal f2

F(t)+1

∣

∣

∣

∣

∣

∣

∣

∣

·

∣

∣

∣

∣

(1−ρ)F(t)τ2(t)+PNcrit
1 +

F(t)

F(t)+1
Ntotal( f1−P)−F

equ
1

(

(1−ρ)τ2(t)+
Ntotal f2

F(t)+1

)∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

∣

∣

1

(1−ρ)τ2(t)+
Ntotal f2

F(t)+1

∣

∣

∣

∣

∣

∣

∣

∣

·

∣

∣

∣

∣

(1−ρ)(F(t)−F
equ
1 )τ2(t)+

1

F(t)+1

(

F(t)( f1Ntotal−PNtotal +PNcrit
1 )−F

equ
1 Ntotal f2+

PNcrit
1

)

∣

∣

∣

∣

(17)

From the definition of F
equ

1 , we know that

PNcrit
1 = F

equ
1

(

Ntotal( f2− f1)+P(Ntotal−Ncrit
1 )

)

(18)
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Putting (18) into (17) yields:

|F(t +1)−F
equ
1 |

=

∣

∣

∣

∣

∣

∣

∣

∣

1

(1−ρ)τ2(t)+
Ntotal f2

F(t)+1

∣

∣

∣

∣

∣

∣

∣

∣

·

∣

∣

∣

∣

(1−ρ)(F(t)−F
equ
1 )τ2(t)+

1

F(t)+1
(F(t)−F

equ
1 )

(

f1Ntotal−PNtotal +PNcrit
1

)

∣

∣

∣

∣

=|F(t)−F
equ
1 |·

∣

∣

∣

∣

∣

∣

∣

∣

(1−ρ)τ2(t)+
1

F(t)+1

(

f1Ntotal−PNtotal +PNcrit
1

)

(1−ρ)τ2(t)+
1

F(t)+1
Ntotal f2

∣

∣

∣

∣

∣

∣

∣

∣

(19)

From Assumption 3, we can derive from that Ntotal( f2− f1)+
P(Ntotal−Ncrit

1 ) > 0, which means that f1Ntotal−PNtotal +
PNcrit

1 < Ntotal f2. Recall from Assumption 2 f1Ntotal −
PNtotal +PNcrit

1 > 0. Therefore, we can conclude that

0 <

∣

∣

∣

∣

∣

∣

∣

∣

(1−ρ)τ2(t)+
1

F(t)+1

(

f1Ntotal−PNtotal +PNcrit
1

)

(1−ρ)τ2(t)+
1

F(t)+1
Ntotal f2

∣

∣

∣

∣

∣

∣

∣

∣

< 1

Hence, (19) is a contraction to 0, lim
t→∞
|F(t +1)−F

equ
1 |= 0.

We can similarly prove that lim
t→∞
|F(t +1)−F

equ
2 |= 0.

Proof of Lemma 5: When Ntotal 6 Ncrit
1 +Ncrit

2 as in

Subcase 4.a, the equilibrium point F
equ

1 is in M2, and F can

only transit from M1 to M2. We suppose that F(t0) is in

M1, in which F(t0)< Fb
1 , and F(t0 +1) is in M2, in which

F(t0 +1)> Fb
1 . From the contraction in (19), we know that

F always moves towards F
equ
1 in M2. If we can prove that

|F(t0+1)−F
equ
1 |<F

equ
1 −Fb

1 , then we have proved that F(t)
will stay in M2 from iteration step t0. Because F(t0 +1) >
Fb

1 , it is clear that Fb
1 −F

equ
1 < F(t0 + 1)−F

equ
1 . We only

need to prove F(t0 + 1)−F
equ
1 < F

equ
1 −Fb

1 . Since F(t0) is

in M1, F(t0 +1) is calculated by the equations of M1:

(F(t0 +1)−F
equ
1 )− (F

equ
1 −Fb

1 )

=F(t0)

(1−ρ)τ2(t0)+
Ntotal f1

F(t0)+1

(1−ρ)τ2(t0)+
Ntotal f2

F(t0)+1

+Fb
1 −2F

equ
1

<Fb
1

(1−ρ)τ2(t0)+
Ntotal f1

F(t0)+1

(1−ρ)τ2(t0)+
Ntotal f2

F(t0)+1

+Fb
1 −2F

equ
1

=Fb
1

2(1−ρ)τ2(t0)+
Ntotal( f1 + f2)

F(t0)+1

(1−ρ)τ2(t0)+
Ntotal f2

F(t0)+1

−2F
equ
1

=
Ncrit

1

Ntotal−Ncrit
1

·

2(1−ρ)τ2(t0)+
Ntotal( f1 + f2)

F(t0)+1

(1−ρ)τ2(t0)+
Ntotal f2

F(t0)+1

−

2PNcrit
1

Ntotal( f2− f1)+P(Ntotal−Ncrit
1 )

=
Ncrit

1

(Ntotal−Ncrit
1 )

(

(1−ρ)τ2(t0)+
Ntotal f2

F(t0)+1

) ·

1
(

Ntotal( f2− f1)+P(Ntotal−Ncrit
1 )

) ·

(

2(1−ρ)τ2(t0)N
total( f2− f1)+

Ntotal

F(t0)+1
( f2− f1)

(

Ntotal( f1 + f2)−P(Ntotal−Ncrit
1 )

)

)

By using f1 > f2, as well as Assumption 2.1, we can prove

that (F(t0 + 1)−F
equ
1 )− (F

equ
1 −Fb

1 ) < 0. As a conclusion,

we have |F(t0 +1)−F
equ
1 |< F

equ
1 −Fb

1 .

We can also use the similar method to prove that when

Ntotal > Ncrit
1 +Ncrit

2 , if F(t) transit into M2 or M4 , it will

stay in those modes.
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[4] T. Stützle and H. H. Hoos, “MAXMIN ant system,” Future Generation

Computer Systems, vol. 16, no. 8, pp. 889–914, 2000.
[5] G. D. Caro and M. Dorigo, “AntNet: distributed stigmergetic control

for communications networks,” Journal of Artificial Intelligence Re-

search, vol. 9, no. 1, pp. 317–365, Dec. 1998.
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