
Delft University of Technology
Delft Center for Systems and Control

Technical report 13-023

Optimal leader functions for the reverse
Stackelberg game: Splines and basis

functions∗

N. Groot, B. De Schutter, and H. Hellendoorn

If you want to cite this report, please use the following reference instead:
N. Groot, B. De Schutter, and H. Hellendoorn, “Optimal leader functions for the
reverse Stackelberg game: Splines and basis functions,” Proceedings of the 2013
European Control Conference, Zürich, Switzerland, pp. 696–701, July 2013.

Delft Center for Systems and Control
Delft University of Technology
Mekelweg 2, 2628 CD Delft
The Netherlands
phone: +31-15-278.24.73 (secretary)
URL: https://www.dcsc.tudelft.nl

∗ This report can also be downloaded via https://pub.bartdeschutter.org/abs/13_023.html

https://www.dcsc.tudelft.nl
https://pub.bartdeschutter.org/abs/13_023.html


Optimal Leader Functions for the Reverse Stackelberg Game: Splines

and Basis Functions

Noortje Groot, Bart De Schutter, and Hans Hellendoorn

Abstract— In order to deal with the control of large-scale in-
frastructures, a multi-level approach may be required in which
several groups of decision makers have different objectives. A
game formulation can help to structure such a control task. The
reverse Stackelberg game has a hierarchical structure in which
the follower player acts subsequent to the leader’s disclosure
of her leader function, which maps the follower decision space
into the leader decision space. The problem of finding a leader
function such that the leader’s objective function is optimized,
given an optimal response w.r.t. the follower objective function,
is in general a difficult problem. So far, the set of optimal
affine leader functions has been delineated. However, for the
more general class of nonlinear leader functions, no structured
solution approach exists yet. In this paper, we consider several
nonlinear structures for an optimal leader function based on
basis functions as well as based on interpolating splines and we
show how these approaches can be adopted to find an optimal
leader function.

I. INTRODUCTION

In multi-level control problems, a hierarchical decision

structure can be adopted as an alternative to e.g., a de-

centralized and distributed communication framework [1].

In this paper, we focus on a specific type of hierarchical

game that has been studied in problem settings like traffic

tolling and route guidance problems [2], [3] and electricity

network pricing [4]. In this reverse Stackelberg game [5],

also known as inverse Stackelberg game [2], [6] or as a

Stackelberg game with incentive strategies [7], a leader

player first provides a mapping of her decision space into the

follower’s decision space, who subsequently decides upon his

optimal variable along with the associated leader variable.

The original Stackelberg game [8] is a special case in which

the follower’s decision space is mapped into a singleton,

i.e., the leader acts directly by making her leader decision

available.

In the current literature, mostly games are considered

in which the follower objective function is quadratic and

in which the state update equation in a dynamic game is

linear [7], [9], [10]. In such a game, a leader function with

an affine structure is automatically optimal [11]. To the

best knowledge of the authors, only a few papers consider

nonlinear leader functions; however, they appear in specific,

numerical examples [4], [6], [12]. A general nonlinear leader

function is considered though in [13], i.e., in the form of

a hyperparaboloid or hypersphere tangent to the follower’s

objective function JF at the desired equilibrium (ud
L, u

d
F)

of leader and follower decisions, in a (linear) quadratic
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reverse Stackelberg game. There, the so-called quantity of

threat is analyzed, which represents the likelihood of the

follower player to chose his optimal variable for a given

leader function. In particular, the hypersphere tangent is

parameterized by its radius and it has a center on the gradient

line. It should however be noted that in [13] the follower

objective functional is assumed to be strictly convex and

differentiable, and that therefore, the results cannot said to be

sufficiently general for the purpose of deriving a systematic

solution approach. It is stated that the nonlinear strategies

proposed in [13] can solve problems for which no optimal

affine leader function exists. However for the given problem

instance of the reverse Stackelberg game, unless the follower

objective functional is insensitive to the leader’s decision, an

optimal affine leader function always exists.

Further, evolutionary approaches have been proposed for

finding equilibria that are optimal for the leader in original

Stackelberg games or multi-level programming problems

[14], [15]. These proposed iterative learning methods could

also be applied for deriving nonlinear leader functions in re-

verse Stackelberg games. In [16], neural networks have been

adopted to determine coefficients of a 2-degree polynomial

leader function that leads to an equilibrium that is close-to-

optimal for the leader, the value of which is evaluated and

updated throughout the learning process. While this approach

yields a feasible leader function and the associated leader

objective function value, it may result in a local optimum;

in addition, no guarantee is given on the rate of convergence

and the gap from the leader’s global optimum. Moreover,

the decision spaces considered in [16] are unconstrained.

Differently, in this paper, we propose methods to derive

leader functions that are guaranteed to yield the desired

equilibrium (which is assumed to be known a priori, e.g., as a

result of the leader’s optimization of her objective function).

In order to make the theory of reverse Stackelberg games

more easily applicable in control settings, our aim is to

build forward towards a more general and structured solution

approach. Thus far, we have relaxed the conditions in which

an affine leader function structure automatically leads to

optimality for the leader [17], and delineated the full set of

optimal affine leader functions [18]. In many cases however,

no optimal affine solution exists; we therefore further extend

that approach in this paper by also including nonlinear

functions in a constrained decision space. The proposed

methods are mainly based on deriving optimal parameters

of a particular set of basis functions as well as on selecting

suitable points of the decision space in order to compute an

interpolating spline.



This paper is structured as follows. After a brief definition

of the reverse Stackelberg game in Section II, Section III

includes the basis function, gridding, and spline approaches

we propose to derive an optimal nonlinear leader function.

The methods are illustrated in Section IV and subsequently

the paper is concluded in Section V.

II. THE REVERSE STACKELBERG GAME

The basic single-leader single-follower, static reverse

Stackelberg game can be defined through the leader and

follower decision variables up ∈ Ωp ⊆ Rnp , np ∈ N and the

objective (cost) functions Jp : ΩL × ΩF → R, p ∈ {L,F}.

A common approach to the reverse Stackelberg problem

is for the leader player to first determine a particular de-

sired equilibrium that she seeks to achieve, e.g., her global

optimum (ud
L, u

d
F) ∈ argmin(uL,uF)∈ΩL×ΩF

JL(uL, uF) [5],

[19], [20]. Given such a desired point, the remaining problem

can be written as:

To find: γL ∈ ΓL, (1)

s.t. arg min
uF∈ΩF

JF(γL(uF), uF) = ud
F, (2)

γL(u
d
F) = ud

L, (3)

with ΓL the particular class of leader functions γL : ΩF →
ΩL that is allowed in the game context.

Given this formulation of the reverse Stackelberg game,

the problem is reduced to finding a leader function that

solves the game to optimality, i.e., that leads to the desired

leader optimum. When assuming a particular leader function

structure, the problem further reduces to finding parameters

for which the given leader function is optimal. In this paper,

nonlinear leader functions are analyzed that satisfy (2)–(3),

where the constraint (2) implies that the function γL(uF)
should remain outside of the sublevel set

Λd := {(uL, uF) ∈ ΩL × ΩF|JF(uL, uF) ≤ JF(u
d
L, u

d
F)},

except in the point (ud
L, u

d
F). In the following, we assume

(ud
L, u

d
F) to be a boundary point of Λd; if this does not hold,

no optimal leader function exists.

Necessary and sufficient existence conditions for an opti-

mal affine leader function

uL := γL(uF) = ud
L +B(uF − ud

F), B ∈ RnL×nF (4)

for the unconstrained case, with Ωp = Rnp , p ∈ {L,F} were

proposed in [17], while a characterization of the full set of

such optimal functions was given in [18]. This set may be

further reduced in the constrained case that we consider,

with Ωp  Rnp , p ∈ {L,F}. Clearly, in case an optimal

affine leader function exists, nonlinear functions can also

be considered. This may be preferred in case the nonlinear

alternatives are more robust to deviations of the follower to

his optimal decision, which is even more strongly of interest

when asymmetric, partial information applies.

III. COMPUTATION OF A NONLINEAR LEADER FUNCTION

Next, we consider γL to take the form of either a linear

combination of basis functions, a linear combination of basis

functions based on a gridding of the decision spaces, or of

a piecewise polynomial. These three methods will be used

to compute an optimal leader function in both a 2- and 3-

dimensional decision space in Section IV.

A. Basis Functions

Basis functions are universal approximators, meaning that

in principle each function can be described by means of a

set of functions that form a basis for a particular class of

functions. We denote the set of selected multidimensional

basis functions [21] by:

B = {bi(·)}
n
i=1, (5)

for a finite set of basis functions bi : RnF → RnL , i =
1, . . . , n, each of which is composed of nL scalar basis

functions. The leader function can then be represented by

a linear combination of basis functions, with parameters

ai ∈ RnL , i = 1, . . . , n, where the leader function can be

written:

γL(uF) =

n
∑

i=1

ai ⊙ bi(uF), (6)

where ⊙ denotes the element-by-element matrix (Schur)

product.

1) Choice of basis functions: The choice of a set of basis

functions depends on the requirements of the setting to which

a reverse Stackelberg approach is applied.

For instance, in multi-level control settings with precise

instruments and an accurate knowledge of the desired equi-

librium (ud
L, u

d
F), nonsmooth optimal leader functions can

be applied, whereas in settings where the true equilibrium

may be in a neighborhood of (ud
L, u

d
F), the control actions

may need to be steered with a smooth leader function in

order to prevent from a large deterioration of the objective

function value; see Fig. 1 for an illustration. There, ̂(ud
L, u

d
F)

is the assumed desired leader equilibrium, while the true

value is within an ellipsoidal set. Such analyses however

strongly depend on the geometry of the sublevel set Λd.

Similarly, robustness of the leader function w.r.t. devia-

tions from the optimal follower response could play a role

in the determination of a particular leader function; such an

analysis will be part of further research.

For different types of orthonormal basis functions and

their properties, please refer to [21]. In principle, also com-

binations of basis functions can be considered. Similarly,

the basis functions can be further parameterized, yet this

extension is left for more elaborate analysis of possible leader

function structures.
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Fig. 1. Illustration of the effect of smoothness in case the ‘true’ desired

solution (ud

L
, ud

F
) lies in an ellipse around the estimated solution ̂(ud

L
, ud

F
).

2) Solving for a given set of basis functions: The follow-

ing feasibility program can be used to find an optimal n-th

order leader function for a particular set of basis functions

{bi}
n
i=1:

To find: ai∈R
nL , i = 1, . . . , n, (7)

s.t. JF(γL(uF), uF) > JF(u
d
L, u

d
F)

∀uF ∈ ΩF \ {ud
F}, (8)

ud
L = γL(u

d
F), (9)

γL(uF) ∈ ΩL ∀uF ∈ ΩF, (10)

γL(uF)=

n
∑

i=1

ai⊙bi(uF), i = 1, . . . , n. (11)

In order to be able to efficiently solve the program (7)–

(11), the constraints (8) and (10), which are complicating due

to the sets of variables for which they need to be satisfied,

can be substituted by a lower-level optimization problem, for

which we begin by introducing its main components.

First, the distances d1 and ω refer to the signed (shortest)

distances between a point (uL, uF) and the boundary of the

set Λd, and between a point uL and the boundary of the

decision space ΩL, respectively. These Euclidean distances

are allocated a negative sign if it concerns an exterior point

of the set Λd and ΩL, respectively. Further, d2 denotes the

Euclidean distance between a point (uL, uF) and (ud
L, u

d
F),

i.e.:

d1((uL, uF),Λd) =

S(uL,uF) · min
(ub

L,u
b
F)∈bd(Λd)

‖(ub
L, u

b
L)− (uL, uF)‖2,

(12)

S(uL,uF) =

{

− if JF(uL, uF) ≥ 0

+ if JF(uL, uF) ≤ 0
, (13)

d2((uL, uF), (u
d
L, u

d
F)) = ‖(ud

L, u
d
F)− (uL, uF)‖2, (14)

ω ((uL, uF),ΩL)) = SuL
· min
ub
L∈bd(ΩL)

‖ub
L − uL‖2, (15)

SuL
=

{

− if uL 6∈ ΩL

+ if uL ∈ ΩL

, (16)

d1(x,Λd) = 0

d1(x,Λd) = 0

d1(x,Λd) < 0
d1(x,Λd) > 0

d2(x, (u
d
L, u

d
F)) = 0

d2(x, (u
d
L, u

d
F)) > 0

γ1
L

γ2
L

γ3
L

γ4
L

Λd

(ud
L, u

d
F)1 (ud

L, u
d
F)2

Fig. 2. Illustration of distance measures w.r.t the sublevel set Λd. The
symbol x indicated on the different curves is used to represent the black
points (uL, uF).

where bd(Λd) can be alternatively represented by the set:

{(uL, uF) : JF(uL, uF) = JF(u
d
L, u

d
F)}.

Based on the above definitions, we can introduce the

following auxiliary distance expressions for a particular

leader function γL parameterized according (11):

d (γL,Λd) = max
(uL,uF)∈γL

(

d1((uL, uF),Λd) (17)

+ αd2
(

(uL, uF), (u
d
L, u

d
F)
)

)

,

ω (γL,ΩL) = min
(uL,uF)∈γL

ω ((uL, uF),ΩL) , (18)

with 0 < α ≪ 1.

The distance expressions are illustrated in Fig. 2 by four

independent situations. If for all points (uL, uF) on γL the

distance d(γL,Λd) ≤ 0, this means that the curve does not

intersect with Λd, except in the point (ud
L, u

d
F), which is

already guaranteed to be a point on γL by (9) in the higher-

level program. The addition of the distance from (ud
L, u

d
F),

multiplied by a small constant α, ensures that in case a

particular point is outside Λd and far from (ud
L, u

d
F), it should

retain a sufficient distance to bd(Λd) in order to prevent

deviations from the desired follower response, as elaborated

upon in the Remark below. A similar approach is adopted to

ensure that γL(ΩF) ⊆ ΩL. If the minimum signed shortest

distance ω((uL, uF),ΩL) for a point (uL, uF) on γL to ΩL

is nonnegative, all leader elements fall within the leader

decision space, satisfying γL : ΩF → ΩL.

Finally, the program (7)–(11) can now be solved by

solving (19)–(21) below, together with the constraints (9)

and (11) from the original program. The computation of

the distances (12)-(18) required in (19)–(21) can thus be

interpreted as a lower-level problem.



max
{ai}n

i=1

d (γL,Λd) (19)

s.t. d (γL,Λd) ≤ 0, (20)

ω (γL,ΩL) ≥ 0. (21)

ud
L = γL(u

d
F), (22)

γL(uF) =

n
∑

i=1

ai⊙bi(uF), i = 1, . . . , n. (23)

Remark: By maximizing d (γL,Λd), curves that follow

the boundary of Λd closely and that therefore could result

in the unwanted selection of a follower decision variable

value different from ud
F, will be less likely o be selected. By

adopting an objective function based on this criterion, we

thus enter the area of sensitivity and robustness issues, where

the sensitivity could be defined based on the (weighted)

vicinity of γL(uF) to bd(Λd), potentially with increasing

weights for the variable uF approaching (ud
L, u

d
F).

B. A Gridding Approach

In order to simplify the multi-level optimization problem

explained in Section III-A.2 above that leads to an optimal

leader function, a relaxed problem can be solved at a lower

computational burden (depending on the accuracy of the

approach and on the dimension of ΩL ×ΩF), yet at the cost

of a potentially suboptimal leader function. By adopting a

gridding approach in which the follower decision space is

approximated by a grid Ωg
F of a desired accuracy and with

ud
F ∈ Ωg

F, the constraints (12)-(21) can be removed, leaving

solely the feasibility program (7)-(11) in which (8) and (10)

now form regular, i.e., easy-to-handle constraints. In other

words, the expressions (8) and (10) can then be evaluated at

each relevant grid point:

JF(γL(uF), uF) > JF(u
d
L, u

d
F) ∀uF ∈ Ωg

F\{u
d
F}, (24)

γL(uF) ∈ ΩL ∀uF ∈ Ωg
F. (25)

In particular, when a uniform grid is applied with a

grid-size of precision δ, a point uF can be at most ǫ :=
√

nF · (δ/2)2 in Euclidean distance far from some grid point

ug
F ∈ Ωg

F. This implies that an undesirable intersection of

a leader function γL with the sublevel set Λd can occur

in an area of ǫ distance from ud
F in case the follower’s

decision is in the confined decision space Ωg
F. In order

to yield a leader function that is certain to result in an

equilibrium that is within ǫ distance from ud
F no part of

Λd can be overlooked due to gridding that may result in

an optimal follower decision that does not coincide with any

grid point and that is far (≫ ǫ) from the computed optimum.

Instead of refining the gridding precision, this issue could

be prevented by considering non-equidistant grid points on

bd(Λd) or in particular points coinciding with the vertices

of Λd in case it represents a polytope. Alternatively, grid

points could be classified according to conv(Λd) instead of

to Λd in (8). In this case, the computed leader functions

are known to be at most ǫ in Euclidean distance far from

an undesirable intersection with conv(Λd) hence with Λd.

However, it should be noted that no feasible solution exists

in this case unless (ud
L, u

d
F) ∈ bd(conv(Λd)).

C. Multidimensional Interpolation

A third and final approach proposed here to derive a

nonlinear leader function is by using multivariate interpo-

lation also called curve or (hyper)surface fitting by using

piecewise polynomials (splines) [22], [23]. This method can

provide an alternative to using basis functions especially in

the case of a 2 or 3-dimensional decision space, where a

spline approach benefits from the possibility to use graphical

tools. Just as applies to the gridding approach in Section III-

B, interpolation can also be useful in case the sublevel set

Λd is not available analytically to the leader but instead a

collection of data points is available.

Interpolation points could be systematically selected that

are a given measure δ in Euclidean distance separated from

the boundary of Λd. In the case that for a given set of

data points, any interpolating spline yields an intersection

with Λd \ {(ud
L, u

d
F)}, a new interpolation point should be

added, further dividing the interval in which intersection

occurred. Alternatively, in the case in which smoothness

does not exhibit a desired property, one can immediately

adopt an optimal, piecewise-affine function, where selection

of points such that a linear interpolating function through

these points does not intersect with Λd is facilitated by

choosing interpolation points outside conv(Λd).
More information on deriving interpolating multivariate

piecewise polynomials with different levels of continuity, can

be found in [22], [23].

A Note on The Computational Complexity: The reverse

Stackelberg game, defined in its most general form without

the specification of a desired leader equilibrium, is a general

version of the original Stackelberg game [8] in which the

leader directly proposes the singleton {ud
L} to the follower

instead of the mapping of ΩF to the set ΩL. By equivalence

with the linear bilevel programming problem [24], (reverse)

Stackelberg games can be proven to be strongly NP-hard.

By first selecting a desired leader equilibrium (ud
L, u

d
F)

and by specifying a particular class of leaders functions,

the problem becomes easier to handle. Nonetheless, the

numerical complexity of the proposed methods should be

evaluated. Here it should be noted that finding a suitable

leader function based on the program (7)–(11) is easier to

approach in the case that the sublevel set Λd represents a

polytope, i.e., JF(uL, uF) is linear in uL and uF, while

the decision spaces are convex. In general, the complexity

of finding a suitable leader function depends strongly on

the geometry of the sublevel set, the choice of the basis

functions, and the order of the basis functions or splines. The

computational time required to compute a leader function is

evaluated in Section IV below for two different scenarios.

IV. WORKED EXAMPLE

In this section, the multilevel and gridding-based basis

function approach as well as the interpolation method are ap-
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Fig. 3. The Rosenbrock function and several level curves.

plied to a sublevel set derived from the nonconvex (extended)

Rosenbrock function that is adopted as a function structure

for JF(uL, uF), for both a 2- and 3-dimensional decision

space. The nonconvex Rosenbrock function [25] is often used

to illustrate the performance of optimization algorithms and

can be written as follows in terms of decision variables of

the reverse Stackelberg game:

f(uL, uF) = (1− uL)
2 + 100(uF − u2

L)
2, (26)

as depicted in Fig. 3 together with several level curves.

For higher dimensions we adopt the extended Rosenbrock

function [26], i.e., in this particular case it can be written as:

f(uL,1, uL,2, uF) = (1− uF)
2 + 100(uL,1 − (uF)

2)2

+ (1− uL,1)
2 + 100(uL,2 − (uL,1)

2)2. (27)

We chose to adopt a cubic spline interpolator as well as

a simple polynomial of the 5-th order for the basis function

cases, implying the following leader functions for the 2D

(28) and 3D (29) case:

γL(uF)=
5

∑

i=0

ai · (uF)
i, uL∈R, uF∈R, (28)

γL(uF)=

[

∑5
i=0 ai · (uF)

i

∑11
j=6 aj · (uF)

j−6

]

, uL∈R
2, uF∈R, (29)

where the respective decision spaces are restricted to uF ∈
[−1.5, 1.5], uL, uL,1 ∈ [−1, 2], and uL,2 ∈ [−0.75, 1.5].

A. Results

In Fig. 4 several leader functions are plotted for both the

2- and 3-dimensional case. It can be seen that the curves

indeed remain within the constrained decision space ΩL and

outside Λd \{(u
d
L, u

d
F)}, except in case gridding was applied

with an insufficient precision (δ = 0.1); there, the computed

curves intersect with Λd.

In order to give an indication of the computational require-

ments, Table I shows the computation time1 for deriving the

leader functions for this particular (extended) Rosenbrock

function. First, it is interesting to observe that while the

1These CPU times were obtained adopting the 64-bit Matlab 7.12.0
(R2011a) fmincon environment on a Linux PC with a 3GHz Intel Core
Duo processor and 3.7Gb RAM.

 

 

−1.5 −1 −0.5 0 0.5 1 1.5
−1

−0.5

0

0.5

1

1.5

2

2.5

3

5

10

15

20

25
Gridding δ=0.01

Gridding δ=0.1

Multi−level

Cubic Spline

ud
L

uF

u
L

uL

(a) uF ∈ R, uL ∈ R

(b) uL ∈ R2, uF ∈ R

Fig. 4. Nonlinear leader functions through (ud

L
, ud

F
) and outside the

sublevel set Λd for JF.

curves in 3D have a larger number of coefficients, the

computation time is in fact lower for all methods but the

spline approach. This may be explained by the larger degree

of freedom for possible curves staying outside Λd but within

ΩL, i.e., it easier to find a curve that satisfies these constraints

in this particular 3D case. Further, it can be observed that

increasing the gridding precision to δ = 0.001 leads to a

relatively large increase in time, while an optimal curve is

already obtained for δ = 0.01. Finally, the interpolating

spline functions are significantly more time-efficient for the

current cases. This can however be explained by the fact

that the constraints (8) and (10) are not incorporated in this

method in comparison to the other approaches, which causes

the risk of a suboptimal solution based on the chosen data

points. Moreover, only a small number of data points were

required to obtain an optimal leader function in this case.

As a part of further research, a more elaborate computa-



TABLE I

SUMMARY OF COMPUTATIONAL RESULTS

Method CPU time

2-D Basis Functions (multilevel) 5.2369 s
2-D Gridding δ = 0.1 1.3485 s
2-D Gridding δ = 0.01 1.7664 s
2-D Gridding δ = 0.001 6.7659 s
2-D Interpolating Cubic Spline 0.0028 s (5 data points)

3-D Basis Functions (multilevel) 1.5734 s
3-D Gridding δ = 0.1 1.1548 s
3-D Gridding δ = 0.01 1.6780 s
3-D Gridding δ = 0.001 9.5181 s
3-D Interpolating Cubic Spline 0.1750 s (4 data points)

tional analysis should be conducted, investigating the effect

of different levels of complexity, i.e., of basis functions and

in particular of higher dimensional decision spaces with

nF > 1, in which case the leader function embodies a

(hyper)surface instead of a curve.

V. CONCLUSION

A systematic approach is provided for computing non-

linear leader functions that solve the single-leader single-

follower reverse Stackelberg game to optimality. This hier-

archical game can be applied as an optimization structure

in multi-level control problems, yet thus far mostly leader

functions of the affine structure have been investigated that

are not able to solve the game in general. Three methods have

been proposed: in the basis function approaches, suitable

parameters are determined either through multi-level opti-

mization, or on the basis of a gridding of the decision spaces.

The third method relies on the derivation of interpolating

splines. While all methods were able to compute an optimal

nonlinear leader function, their computational efforts were

different. As computational efficiency is a critical aspect

of the implementation of a reverse Stackelberg game in a

multi-level control framework, a more elaborate evaluation

of higher-dimensional cases should also be considered.
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