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Optimal Trajectory Planning for Trains under a Moving Block

Signaling System

Yihui Wang1, Bart De Schutter1, Ton van den Boom1, and Bin Ning2

Abstract— The optimal trajectory planning problem for
trains under a moving block signaling system is considered.
This optimal trajectory planning problem is significant for
punctuality, energy consumption, passenger comfort, etc. In a
moving block signaling system, the minimum distance between
two successive trains is the instantaneous braking distance
required by the following train plus a safety margin. The
constraints caused by the moving block signaling system are
described as nonlinear inequalities, which can be transformed
into linear inequalities using piecewise affine approximations.
The optimal trajectory planning problem is subsequently recast
as a mixed integer linear programming problem, which can be
solved efficiently by existing solvers. A case study is used to
demonstrate the performance of the proposed approach.

I. INTRODUCTION

The energy efficiency of railway systems is more and more

significant due to the rising energy price and environmental

concerns. Furthermore, the energy consumption is one of

the major expenses components in the operational costs

in railway systems, e.g. in China they are about 13-16%

of the annual operation and maintenance costs of urban

railway systems [1]. Even a small improvement in the energy

consumption can make the railway operators save a lot of

money.

The research on the optimal control of train operations

began in the 1960s and since then various methods have

been proposed for the problem. These methods can be

grouped into two main categories: analytical solutions and

numerical optimization. For analytical solutions, the max-

imum principle is applied and it results in four optimal

regimes (maximum traction, cruising, coasting, and maxi-

mum braking) [2]–[4]. It is difficult to obtain the analytical

solution if more realistic conditions are considered, which

introduce more complex nonlinear terms into the model and

the constraints [5]. Numerical optimization approaches are

applied more and more to the train optimal control problem

due to the comparable high computing power available

nowadays. A number of advanced techniques such as fuzzy
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and genetic algorithms have been proposed to calculate

the optimal reference trajectory. But in these approaches,

the optimal solution is not always guaranteed. Therefore,

in [6] a mixed integer linear programming (MILP) approach

has been proposed to solve the optimal trajectory problem.

The resulting MILP problem can be solved efficiently using

existing commercial and free solvers that guarantee finding

the global optimum of the MILP problem.

However, the approaches mentioned above ignore the

impact caused by the signaling systems, e.g. a fixed-block

signaling system or a moving block signaling (MBS) system.

Especially in busy railway systems, the train’s operation

must be adjusted by the signaling system. Lu and Feng [7]

consider the constraints caused by the leading train in a four-

aspected fixed block signaling system when optimizing the

trajectory of the following train. More specifically, a parallel

genetic algorithm is used to optimize the trajectories for the

leading train and the following train and it results a lower

energy consumption [7]. In addition, Gu et al. [8] applied

nonlinear programming method to optimize the trajectory

for the following train. Two situations of the leading train,

i.e. running and stopped, are studied and the corresponding

strategies are proposed for the following train. Ding et

al. [1] took the constraints caused by the MBS system

into account and developed an energy-efficient multi-train

control simulator to calculate the optimal trajectories for the

locomotives with discrete levels of control. However, the

control sequences in their simulator are determined by a

predefined logic, which is not necessarily optimal. Therefore,

in this paper we will extended our MILP approach of [6] to

solve the trajectory planning for two trains under an MBS

system since the MILP problem can be solved efficiently.

This paper is structured as follows. Section II summarizes

the train model and the MILP approach for a single train

based on [6]. Section III introduces the constraints for the

following train caused by the leading train under the MBS

system. Section IV shows how to include these constraints

into the MILP formulation. Two approaches are proposed

here. In the first approach the leading train’s trajectory is

assumed to be fixed or just given, and the optimal control

problem is solved for the following train only with the

constraints caused by the MBS system. The second approach

consists in optimizing the trajectories of the leading train and

the following train simultaneously. Section V illustrates the

calculation of the optimal trajectories using the data from

Beijing Yizhuang subway line.



II. TRAIN MODEL AND THE MILP APPROACH

The literature on train optimal control usually uses the

mass-point model of train [9]. The motion of a train can be

described by [4]:

mρ
dv

dt
= u(t)−Rb(v)−Rl(s,v), (1)

ds

dt
= v, (2)

where m is the mass of the train, ρ is a factor to consider

the rotating mass [10], v is the velocity of the train, s is

the position of the train, u is the control variable, i.e. the

traction or braking force, which is bounded by the maximum

traction force umax and the maximum braking force umin,

umin ≤ u ≤ umax. According to the Strahl formula [11] the

basic resistance Rb(v) can be described as

Rb(v) = m(a1 +a2v2),

where a1 and a2 depend on the train characteristics and the

wind speed. The line resistance Rl(s,v) caused by track slope,

curves, and tunnels can be described by [12]

Rl(s,v) = mgsinα(s)+ fc(r(s))+ ft(lt(s),v), (3)

where g is the gravitational acceleration, α(s), r(s), and lt(s)
are the slope, the radius of the curve, and the length of the

tunnel at position s along the track, respectively. The curve

resistance fc(·) and the tunnel resistance ft(·) are given by

empirical formulas (see [12] for details).

Franke et al. [9] choose kinetic energy per mass unit

Ẽ = 0.5v2 and time t as states, and the position s as

the independent variable. The reference trajectory planning

problem for trains is formulated as [6]:

J =
∫ send

sstart

(

u(s)+λ ·
∣

∣

∣

du(s)

ds

∣

∣

∣

)

ds (4)

subject to the model (1) and (2), the constraints

umin ≤ u(s)≤ umax, (5)

0 < Ẽ(s)≤ Ẽmax(s), (6)

and the boundary conditions,

Ẽ(sstart) = Ẽstart, Ẽ(send) = Ẽend, (7)

t(sstart) = 0, t(send) = T, (8)

where the objective function J is a weighted sum of the

energy consumption and the riding comfort of the train

operation; Ẽmax(s) is equal to 0.5V 2
max(s) and Vmax(s) is the

maximum allowable velocity, which depends on the train

characteristics and line conditions, and as such it is usually

a piecewise constant function of the coordinate s [3], [4];

sstart, Ẽ(sstart), and t(sstart) are the position, the kinetic energy

per mass, and the time at the beginning of the route; send,

Ẽ(send), and tend are the position, the kinetic energy per mass,

and the time at the end of the route; the scheduled running

time T is given by the timetable or the rescheduling process.

It is assumed that the unit kinetic energy Ẽ(s) > 0, which

means the train’s speed is always strictly larger than zero,

i.e. the train travels nonstop [3].

In [6], an operation of a train is described via a continuous-

time mass-point model, which is discretized in space. The

position horizon [sstart,send] is split into N intervals and it is

assumed that the track and train parameters as well as the

traction or the breaking force are constant in each interval

[sk,sk+1] with length ∆sk = sk+1− sk, for k = 1,2, . . . ,N. The

discrete-space model is then transcribed into a piecewise

affine (PWA) model by approximating the nonlinear terms

through PWA functions. Furthermore, by applying some

transformation properties [13], the PWA model is formulated

as the following mixed logical dynamic model:

x(k+1) = Akx(k)+Bku(k)+C1,kδ (k)+C2,kδ (k+1)

+D1,kz(k)+D2,kz(k+1)+ ek, (9)

R1,kδ (k)+R2,kδ (k+1)+R3,kz(k)+R4,kz(k+1)

≤ R5,ku(k)+R6,kx(k)+R7,k, (10)

where the states x(k) involves kinetic energy per mass E(k)

and time t(k), i.e. x(k) =
[

E(k) t(k)
]T

, u(k) is the control

variable, i.e. the traction or braking force, which is bounded

by the maximum traction force umax and the maximum

braking force umin, δ (k) and z(k) are a vector of logical

variables and a real-valued vector of auxiliary variables

respectively, which are introduced by the transformation

properties of [13].

The objective of the trajectory planning problem is consid-

ered as the energy consumption of the train operation without

regenerative braking, which could be described as

J =
N

∑
k=1

max(0,u(k))∆sk. (11)

As shown in [6], the optimal control problem can be recast

as the following mixed integer linear programming (MILP)

problem by introducing a new variable ω(k) to deal with the

function max(0,u(k)) in the objective function (11):

min
Ṽ

CT
J Ṽ , (12)

subject to

F1Ṽ ≤ F2x(1)+ f3 (13)

F4Ṽ = F5x(1)+ f6 (14)

where CJ =
[

0 · · · 0 ∆s1 · · · ∆sN

]T
,

Ṽ =
[

ũT δ̃ T z̃T ω̃T
]T

, ũ =
[

uT (1) uT (2) . . . uT (N)
]T

, δ̃ =
[

δ T (1) δ T (2) . . . δ T (N +1)
]T

, z̃ =
[

zT (1) zT (2) . . . zT (N +1)
]T

, ω̃ =
[

ωT (1) ωT (2) . . . ωT (N)
]T

, for properly defined

F1, F2, f3, F4, F5, and f6. The MILP problem (12)-(14) can

be solved by several existing commercial and free solvers,

such as CPLEX, Xpress-MP, GLPK.



III. MOVING BLOCK SIGNALING SYSTEM CONSTRAINTS

A. Constraints caused by moving block signaling system

A moving block signaling (MBS) system relies on the

continuous bidirectional communication links between trains

and zone controllers. A zone controller calculates the limit-

of-movement-authority for every train in the zone it controls

and make sure that trains will be running with a safe distance

with respect to other trains. More specifically, the limit-of-

movement-authority indicates the tail of the preceding train

with a safety margin included, i.e. the maximum position

that a train is allowed to move to. In addition, the limit-

of-movement-authority of the following train moves forward

continuously as the leading train travels. There exists four

moving block signaling schemes theoretically [14]: moving

space block signaling, moving time block signaling, pure

moving block signaling, and relative moving block signal-

ing. Takeuchi et al. [15] evaluated the first three schemes

and compared them with the fixed block signaling scheme

based on two basic criteria, namely steady state performance

and perturbed performance. It is concluded that the pure

moving block signaling scheme gives the best performance.

Furthermore, the pure moving block signaling scheme is the

basis of all currently implemented systems [15], such as the

European train control system levels 2 and 3 [16] and the

positive train control system in the US [17]. The pure moving

block signaling scheme adjusts the minimum instantaneous

distance between two successive trains using the speed of

the following train according to the following equation:

sL(t)− sF(t)≥ (vF(t))2/(2aF
b)+SSM, (15)

where sL(t) and sF(t) are the positions of the noses of

the leading train and the following train at time t, vF(t) is

the speed of the following train, aF
b is the normal braking

rate, i.e. 0.75 times the maximum deceleration, and SSM is

the safety margin distance. The minimum distance between

two successive trains is basically the instantaneous braking

distance required by the following train plus a safety margin.

Therefore, even if the leading train comes to a sudden

halt, a collision can be avoided by using the minimum

distance. Therefore, the MBS system in this paper uses the

pure moving block signaling scheme. However, the approach

proposed could be extended to other moving block signaling

schemes.

In practice, the minimum distance in the MBS system

is larger than that of (15) because the driver or of the

automatic train control system need time to react situations.

Furthermore, the train length has to be considered too.

Therefore, the minimum distance of a practical MBS system

is modified as [15]

sL(t)− sF(t)≥ LF
r +(vF(t))2/(2aF

b)+SSM +LL
t , (16)

where LF
r is the distance that the following train will

travel during the reaction time tF
r of the driver and/or train

equipment of the following train, and LL
t is the length of

the leading train. The value of the reaction time could be

obtained from experience. The minimum distance between

two successive trains (16) is equivalent to the minimum time

difference of two successive trains

tF(s)− tL(s)≥ tF
r + tF

b (s)+ tF
safe(s), (17)

where tL(s) and tF(s) are the time instants at which of the

front of respectively the leading train and the following train

pass position s. The braking time of the following train

tF
b (s) and the time margin tF

safe(s) caused by the safe margin

distance and the train length are defined as

tF
b (s) = vF(s)/aF

b , (18)

tF
safe(s) = (SSM +LL

t )/vF(s), (19)

where vF(s) is the speed of the following train at position s.

In order to ensure that near stations a train’s operation is

not impeded by the signaling system, i.e. a train’s operation

is not then affected by the (in principle slowly moving or

stopped) train in front, the minimum headway is introduced.

This is the minimum time separation between successive

trains at train stations, and it is defined as [15]

Hmin = tL
d + tin−out = tL

d + tF
r + tF

b,max + tL
safe, (20)

with the run-in/run-out time tin−out = tF
r + tF

b,max+ tL
safe, where

tF
b,max is the time it takes the following train to come to a full

stop when it is running at its maximum speed, i.e. tF
b,max =

vF
max/ab, tL

d is the station dwell time of the leading train, and

the run-out time tL
safe is the time that the leading train needs

to completely clear the secure section (i.e. a special section

to protect the leading train), if present, and including a safety

margin, i.e. tL
safe =

√

2(SSM +LL
t +Ls)/aL

acc. The acceleration

of the leading train aL
acc is usually considered as a constant

value for the minimum headway calculation.

B. Considering the constraints of moving block signaling

system into MILP approach

Recall that the mixed logical dynamic model of the train’s

operation is discrete in space with N space intervals with grid

points sk, k = 0,1, . . . ,N as shown in Section II. Here, we

discretize the constraint (17) caused by the MBS system at

the grid points sk as

tF(k)≥ tL(k)+ tF
r + tF

b (k)+ tF
safe(k), for k = 1,2, . . . ,N −1,

(21)

tF(k)≥ tL(k)+ tF
r + tF

b,max + tL
d + tL

safe, for k = N. (22)

In addition, some intermediate constraints are introduced to

ensure that the points between the grid points also satisfy the

constraints caused by the MBS system. According to (17),

we obtain the following constraint for each s ∈ [sk,sk+1] as:

tF(s)− tF
r − tF

b (s)− tF
safe(s)≥ tL(s), (23)

If we assume the left-hand side of (23) to be an affine

function in the interval [sk,sk+1], then we can add the

following constraints:

(1−α)(tF(k)− tF
r − tF

b (k)− tF
safe(k))+α(tF(k+1)− tF

r

− tF
b (k+1)− tF

safe(k+1))≥ tL(s+α∆sk),
(24)



for some real values α in a finite subset Sα ∈ [0,1), e.g.

Sα = {0.1,0.2, . . . ,0.9}, where tL(s+α∆sk) is known if the

optimal trajectory of the leading train is fixed. Note that for

α = 0 and α = 1 (21) is retrieved (except if k =N−1). How-

ever, if the leading train’s trajectory is not known beforehand,

then we need to optimize both trajectories simultaneously. In

this case, the term tL(s+α∆sk) is unknown. If we assume

the right-hand side of (23) is also an affine function, i.e.

tL(s+α∆sk) = (1−α)tL(k)+αtL(k+1), then it is sufficient

to check (23) in the points k and k+1 (i.e., for α = 0 and α =
1), since due to linearity (23) will then also automatically be

satisfied for all intermediary points.

Note that the constraints (21), (22), and (24) are linear in

tL(k), tL(k+1), tF(k). However, they are nonlinear in vF(k)
and vF(k+1) since the time safe margin (19) is a nonlinear

function of the following train’s velocity vF(k). Furthermore,

the kinetic energy per mass EF(k) is one of the states instead

of vF(k) with EF(k) = 0.5(vF(k))2 (cf. Section II). Therefore,

both the braking time tF
b (k) and the safe time margin tF

safe(k)
are nonlinear functions of EF(k), where

tF
b (k) =

1

aF
b

√

2EF(k) (25)

and

tF
safe(k) = (SSM +LL

t )
1

√

2EF(k)
. (26)

The nonlinear functions f1(·) : EF(k)→
√

2EF(k) and f2(·) :

EF(k)→ 1√
2EF(k)

could be approximated by PWA functions

as follows. There are various methods for approximating

functions in a PWA way, see e.g., the overview by Azuma et

al. [18]. In this paper, we first select the number of regions

of the PWA function and optimize the interval lengths

and parameters of the affine functions using least-squares

optimization for (25). Then the same number of regions and

same interval lengths are used for the approximation of (26).

If we consider approximations with 2 affine subfunctions,

the PWA approximations of functions f1(·) and f2(·) can be

written as

f1,PWA(E
F(k))=

{

α1EF(k)+β1 for Emin ≤ EF(k)< E1,
α2EF(k)+β2 for E1 ≤ EF(k)≤ Emax,

f2,PWA(E
F(k))=

{

λ1EF(k)+µ1 for Emin ≤ EF(k)< E1,
λ2EF(k)+µ2 for E1 ≤ EF(k)≤ Emax,

with optimized parameters α1, α2, β1, β2, λ1, λ2, µ1, µ2,

and E1. For more details and extension of this transformation

into PWA functions, see [18]. Now the constraint (21) can

be approximated as the following linear constraint:

tF(k)≥tL(k)+ tF
r +

1

aF
b

(α1EF(k)+β1)+(SSM +LL
t )(λ1EF(k)

+µ1), if Emin ≤ EF(k)< E1

tF(k)≥tL(k)+ tF
r +

1

aF
b

(α2EF(k)+β2)+(SSM +LL
t )(λ2EF(k)

+µ2), if E1 ≤ EF(k)≤ Emax

Similarly, the constraints (22) and (23) can also be written

as linear constraints. These approximated linear constraints

caused by the MBS system can be easily included in the

MILP approach and we still get an MILP problem.

IV. OPTIMAL CONTROL PROBLEM FOR TWO TRAINS IN

THE MOVING BLOCK SIGNALING SYSTEM

There exist two solution approaches for the optimal trajec-

tory planning problem for two trains in the MBS system. One

is a greedy approach, where we first schedule the leading

train, and next schedule the following train based on the

results of the leading train. The other solution approach

consists in optimizing trajectories of the two trains simul-

taneously. Furthermore, the approaches proposed here can

be extended to more than two trains.

A. Given the trajectory of the leading train

If the optimal trajectory of the leading train is fixed

and known by the zone controller, then the optimal control

problem for two trains is reduced to the trajectory planning

problem for the following train, which is then similar to

the one in [6]. However, the constraints (21), (22), and

(24) caused by the leading train in MBS system should be

included. These constraints are significant for the trajectory

planing, especially when the capacity utilization of the rail-

way network is high. In this situation, the headway between

successive trains is shorter, and therefore, it is more likely

that the leading train would affect the following train, i.e.

the train’s operation could be impeded by the MBS system.

The coefficient matrices in the mixed logical dynamic

model (9) and (10) are determined by the following train.

Since the trajectory of the leading train is known by the

zone controller, then tL(k) and tL(s+α∆sk) are known for

the trajectory planning problem for the following train.

B. Optimizing trajectories of two trains simultaneously

We could also optimize the trajectories of the leading train

and the following train simultaneously. The models for these

two trains are of the form (9)-(10). The optimal control

problem of these two successive trains can be rewritten in

the form of the MILP problem (12), (13), (14). However,

the numbers of the state variables, binary variables, auxiliary

variables, and constraints are doubled now compared to the

case of Section IV-A. Therefore, the size of this optimal

trajectory planning problem is much bigger than the problem

for a single train and the computation time of the bigger

problem will be much longer. However, since optimizing

the trajectories of two trains at the same time is a global

optimization problem for these two trains, the control per-

formance will in general be better than the case that the

leading train’s is optimized first or just given.

V. CASE STUDY

In order to demonstrate the performance of the MILP

approach for optimal trajectory planning for two trains under

the MBS system, the line data and train characteristics of the

Beijing Yizhuang subway line are used as a test case study.
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Fig. 1. Speed limits and grade profile between Ciqu and Yizhuang station

TABLE I

PARAMETERS OF TRAIN AND LINE PATH

Property Symbol Value

Train mass [kg] m 4.15 ·105

Basic resistance [N/kg] Rb 0.0142+4.1844 ·10−5v2

Mass factor ρ 1.06
Maximum velocity [m/s] Vmax 22.2
Line length [m] send 2610
Kinetic energy [J] Emin 0.1
Traction force [N] umax 3.15 ·105

Braking force (regular) [N] umin −3.32 ·105

In this paper, we only consider the last two stations in the

Yizhuang subway line: Ciqu and Yizhuang. The track length

between these two stations is 2610 m and the speed limits

and grade profile are shown in Figure 1. The parameters of

the train and the line path are listed in Table I. The rotating

mass factor is often chosen as 1.06 in the literature [10]

and therefore we also adopt this value. According to the

assumption made in [6], the unit kinetic energy should be

larger than zero. In this test case, the minimum kinetic

energy is chosen as 0.1 J. The maximum traction force of

the train in the Yizhuang line is a nonlinear function of the

train’s velocity and the maximum value of this function is

315 kN. The objective function of the optimal train control

problem considered here is the energy consumption of the

train operation without regenerative braking (cf. (11)), since

the energy generated by regenerative braking scheme is

consumed by electric resistance in the Yizhuang line.

The parameters for the MBS system constraints are listed

in Table II. The length of the train is 90 m and the reaction

time of the driver is 1 s. Based on the parameters given in

Table II, the run-in/run-out time tin−out in (20) is equal to

44.6 s and the minimum headway equals to 69.6 s. In the

case study, the minimum headway is assumed as 70 s. In

addition, we assume that there exist two extra constraints on

the leading train from the scheduling process due to technical

reasons: the speed after 1300 m is limited to 40 km/h, i.e.

11.1 m/s and the dwell time of the leading train at Yizhuang

station is only 10 s. Note that these constraints only apply to

the leading train, not to the following train. Furthermore, the

running times for the leading train and the following train

are 216 s and 194 s, respectively.

The length ∆sk for interval [sk,sk+1] depends on the speed

limits, gradient profile, and so on. In addition, if the number

TABLE II

PARAMETERS FOR THE CALCULATION OF THE MBS CONSTRAINTS

Property Symbol Value

Train length [m] Lt 90
Safety margin [m] SSM 30
Secure section Ls 60

Started acceleration [m/s2] aL
acc 1

Braking deceleration [m/s2] aF
b 0.9

Braking reaction time [s] tr 1
Station dwell time [s] td 25

of the space intervals N is larger, then the accuracy will

be better but the computation time of the MILP approach

will be longer. According to the total length of the trip

and the speed limits and grade profile in Figure 1, we

choose 20 intervals, which implies that the length of each

interval is 130.5 m, i.e. ∆sk = 130.5 m for k = 1,2, . . . ,20.

That choice provides a good tradeoff of the computation

time and the accuracy. In fact, we selected space intervals

with a length of 500 m for the MILP approach in [25],

where we compared the MILP approach with a state-of-the-

art pseudospectral method with an average distance between

collocation points of 50 m, and where we found that the

MILP approach outperformed the pseudospectral method

with 10% for the control performance and with two to three

orders of magnitude for the computation speed.

Two cases will be considered here:

• Case A: the leading train’s trajectory is given

In this case, the trajectory of the leading train is opti-

mized using the MILP proposed in [6] , which is shown

as the solid line in Figure 2. The dashed line is the speed

limit along the track. Due to the extra speed limit for

the leading train, i.e. the speed limit is 11.1 m/s after

1300 m, the speed of the leading train obtained using

the optimal control input is lower than 11.1 m/s. The

trajectory planning problem of the following train with

the MBS constraints is solved using the trajectory of

the leading train given in Figure 2. The obtained optimal

control input and the trajectory by applying these inputs

to the nonlinear model for the following train is shown

as the dash-dotted line in Figure 2. In the space interval

[2000,2500], the following train is affected by the

leading train, where the following train starts to slow

down in order to satisfy the constraints caused by the

MBS system. Later on, it accelerates again to satisfy the

running time requirement. The energy consumption for

the leading train and the following train are 124.8 MJ

and 84.80 MJ respectively, as shown in Table III. The

calculation time for the trajectory planning problem of

the following train is 0.36 s.

• Case B: Optimizing the trajectories simultaneously

When the trajectories of the leading train and the fol-

lowing train are optimized simultaneously, the optimal

control inputs and the trajectories obtained by these

inputs are shown in Figure 3, where the solid line are

the trajectory and optimal input of the leading train and

the dash dotted line are the results for the following
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Fig. 2. The optimal trajectories and inputs with a headway 70 s when the
trajectory of the leading train is given
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Fig. 3. The optimal trajectories and inputs with a headway 70 s when
optimizing both trains simultaneously

train. The trajectory of the leading train is similar to that

in Figure 2. However, the trajectory of the following

train is smoother than that in Figure 2. In this case,

the leading train does not affect the following train.

The energy consumption for the leading train and the

following train are 128.7 MJ and 70.11 MJ respectively.

As we can see from Table III, the energy consumption

of Case A is bigger than that of Case B. However, the

computing time of the optimal control problem is 1.42 s,

which is longer than that of Case A.

VI. CONCLUSIONS AND FUTURE WORK

We have considered the optimal trajectory planning prob-

lem for trains under a moving block signaling (MBS) system.

The nonlinear train model is formulated as a mixed logical

dynamic model and the optimal control problem is recast

as an MILP problem. The constraints caused by the MBS

system can be approximated by piecewise affine approxi-

TABLE III

ENERGY CONSUMPTION AND COMPUTATION TIME

Case Leading
train

Following train Total con-
sumption

Computing time

Case A 124.8 MJ 84.80 MJ 209.6 MJ 0.36 s
Case B 128.7 MJ 70.11 MJ 198.8 MJ 1.42 s

mations and then included into the MILP formulation. The

simulation results show that the computation time of the

optimal problem for the following train given the leading

train’s trajectory is shorter than that of two trains at the same

time. However, when optimizing the trajectories of two trains

simultaneously, the energy consumption is smaller.

When the number of trains taken into account increases,

the size of the MILP problem will grow quickly and the

computing time will be much longer. Therefore, developing

efficient methods for solving large-scale trajectory planning

problem for trains will be an important topic for future work.

REFERENCES

[1] Y. Ding, Y. Bai, F. Liu, and B. Mao, “Simulation algorithm for energy-
efficient train control under moving block system,” in Proceedings

of the 2009 World Congress on Computer Science and Information

Engineering, Los Angeles, USA, Mar. 2009, pp. 498–502.
[2] P. Howlett, “The optimal control of a train,” Annals of Operations

Research, vol. 98, no. 1-4, pp. 65–87, Dec. 2000.
[3] E. Khmelnitsky, “On an optimal control problem of train operation,”

IEEE Transactions on Automatic Control, vol. 45, no. 7, pp. 1257–
1266, July 2000.

[4] R. Liu and I. M. Golovicher, “Energy-efficient operation of rail vehi-
cles,” Transportation Research Part A: Policy and Practice, vol. 37,
no. 10, pp. 917–931, Oct. 2003.

[5] H. Ko, T. Koseki, and M. Miyatake, “Application of dynamic program-
ming to optimization of running profile of a train,” in Computers in

Railways IX, WIT Press, vol. 15, Southhampton, Boston, USA, Sept.
2004, pp. 103–112.

[6] Y. Wang, B. De Schutter, B. Ning, N. Groot, and T. van den Boom,
“Optimal trajectory planning for trains using mixed integer linear pro-
gramming,” in Proceedings of the 14th International IEEE Conference

on Intelligent Transportation Systems (ITSC 2011), Washington, DC,
USA, Oct. 2011, pp. 1598–1604.

[7] Q. Lu and X. Feng, “Optimal control strategy for energy saving in
trains under the four-aspected fixed auto block system,” Journal of

Modern Transportation, vol. 19, no. 2, pp. 82–87, June 2011.
[8] Q. Gu, X. Lu, and T. Tang, “Energy saving for automatic train

control in moving block signaling system,” in Proceedings of the 14th

International IEEE Conference on Intelligent Transportation Systems,
Washington, DC, USA, Oct. 2011, pp. 1305–1310.

[9] R. Franke, P. Terwiesch, and M. Meyer, “An algorithm for the optimal
control of the driving of trains,” in Proceedings of the 39th IEEE

Conference on Decision and Control, Sydney, Australia, Dec. 2003,
pp. 2123–2128.

[10] I. Hansen and J. Pachl, Railway, Timetable & Traffic: Analysis,

Modelling, Simulation. Hamburg, Germany: Eurailpress, 2008.
[11] B. P. Rochard and F. Schmid, “A review of methods to measure

and calculate train resistances,” Proceedings of the Institution of

Mechanical Engineers, Part F: Journal of Rail and Rapid Transit,
vol. 214, no. 4, pp. 185–199, Apr. 2000.

[12] B. Mao, The Calculation and Design of Train Operation. Beijing,
China: People Transport press, 2008.

[13] A. Bemporad and M. Morari, “Control of systems integrating logic,
dynamics, and constraints,” Automatica, vol. 35, no. 3, pp. 407–427,
Mar. 1999.

[14] L. Pearson, Moving Block Signalling. Loughborough University of
Technology, England: Ph.D. thesis, 1973.

[15] H. Takeuchi, C. Goodman, and S. Sone, “Moving block signaling dy-
namics: performance measures and re-starting queued electric trains,”
IEE Proceedings - Electric Power Applications, vol. 150, no. 4, pp.
483–492, July 2003.

[16] J. Pachl, Railway Operation and Control Second Edition. Centralia
WA,US: Gorham Printing, 2009.

[17] R. R. Resor, M. E. Smith, and P. K. Patel, “Positive train control (PTC):
Calculating benefits and costs of a new railroad control technology,”
Journal of the Transportation Research Forum, vol. 44, no. 2, pp.
77–98, June 2005.

[18] S. I. Azuma, J. I. Imura, and T. Sugie, “Lebesgue piecewise affine
approximation of nonlinear systems,” Nonlinear Analysis: Hybrid

Systems, vol. 4, no. 1, pp. 92–102, Feb. 2010.


