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Abstract—The real-time scheduling problem for urban rail
transit systems is considered with the aim of minimizing the total
passenger travel time, i.e. the sum of passenger waiting time at
stations and passenger on-board time. The operation of trains
and passenger demand characteristics are formulated in the real-
time scheduling model. The minimum headway constraints are
also taken into account to ensure the running safety of trains
in urban rail transit. The resulting real-time scheduling problem
is a nonlinear non-convex programming problem, which can be
solved using state-of-the art algorithms to obtain the optimal
departure times, running times, and dwell times of trains. A
case study based on the data of Beijing Yizhuang line is used to
demonstrate the performance of the proposed approach.

I. INTRODUCTION

Urban rail transit plays a key role in the public trans-
portation of a city. More specifically, a safe, fast, energy
efficient, and comfortable railway system is important for the
sustainability of the overall transportation system. With the
increasing passenger demand for urban rail transit systems,
such as subway systems, the frequency of train operations
is very high, especially in these large cities like Beijing,
Shanghai, New York, where a train arrives every 3 or 5
minutes. The schedule of trains has a significant effect on the
passenger waiting time and the passenger on-board time.

Train scheduling is one of the most challenging problems
in railway planning, and it has been studied for decades via
different techniques [1], such as the linear programming [2],
[3], integer or nonlinear programming [4], [5], [6], [7], and
graph theory [8]. In these papers, the available resources,
e.g. the single tracks and the crossings, are shared by trains
with different origins and destinations. Thus, the trains need
overtake and cross each other at some specific locations, such
as sidings and crossings. The overtaking and crossing positions
and times are taken into account in the train scheduling
problem in these papers. However, the lines in urban rail
transit usually have double tracks, where each track is used for
one direction of train operation. Train overtaking and crossing
is normally not allowed during the operations. On the other
hand, the passenger demands of urban rail transit vary from
station to station during everyday’s operation, which is usually
not considered directly in the train scheduling problem in
the papers mentioned before. Therefore, the train scheduling
problem of urban rail transit is different from that of the
interurban rail transit systems. In this paper, we will consider
real-time scheduling for urban rail transit.

In the literature, there are many researchers studying the

rescheduling of urban transit systems. The rescheduling strate-
gies can be grouped into five general categories [9]: holding,
zone scheduling, short turning, deadheading, and dynamic
stop-skipping. Holding is used to regulate the headways by
holding an early-arriving train, or a train with a relatively
short leading headway [10]. In zone scheduling [11], the whole
line is divided into several zones, where the trains stop at all
stations within a single zone and then run without stopping
to the terminal station. The required number of trains and
drivers and passenger travel times may be reduced by the zone
scheduling, where the zones are defined based on the passenger
flows. There are short-turn and full-length trips operating on
the line in the short turning strategy [12], [13], where the
short-turn trips serve only the zone with high demands and the
full-length trips run the whole line. The deadheading strategy
involves some trains to run empty through a number of stations
at the beginning of their trips to reduce the headways at
later stations [9], [14]. The dynamic stop-skipping strategy is
frequently used in lines with high demands, which allows those
trains that are late and behind the schedule to skip certain low-
demand stations and increase the running speed.

All the strategies mentioned above are based on a fixed
schedule or a fixed service headway. However, the distance
between two stations in urban rail transit is generally less than
3 km and the running time is then less than 3 minutes. As
a consequence, if a delay occurs at the platform due to too
many passengers boarding the train, then it is not easy to get
back to the preplanned timetable because of the short running
time. So as different from the state-of-the art methods in urban
rail transit, we propose a real-time scheduling approach to
minimize the passenger waiting time and the passenger trav-
eling time, where a predefined timetable or service headway
is not needed and the schedule of trains can be optimized in a
receding horizon way based on the passenger flows at stations.

The rest of this paper is structured as follows. Section II
formulates the model of train movement, the passenger demand
characteristics, and the passenger/vehicle interaction. Section
III describes the objective function and constraints of the real-
time scheduling problem. Section IV proposes to solve the
resulting nonlinear non-convex programming problem using
sequential quadratic programming approach. Section V illus-
trates the real-time optimization of the schedule of trains via
a case study. We conclude with a short discussion in Section
VI.



Fig. 1. The subway line

Fig. 2. Segment j with all variables

II. MODEL FORMULATION

In this paper, we consider one direction of a urban transit
line consisting of J stations as shown in Figure 1. Station 1 is
the origin station and station J is the final station. We assume:

A1. Station j for j ∈ {2,3, . . . ,J −1} can only accommodate
one train at a time and no overtaking can occur at any
point in the subway line.

Assumption A1 generally holds for most urban transit systems,
which are usually operated in first-in first-out order from
station 1 to J. In addition, the order of the running trains
is denoted that vehicle i always precedes train i + 1 for
i ∈ {1,2, . . . , I −1}.

A. The model of train movement

In the literature on train scheduling, the detailed dynamics
of trains is usually ignored. The movement of trains is de-
scribed by running times, departure times, and arrival times.
In [15], it is assumed that each train runs at a fixed speed
except when approaching (or departing from) a station where
extra time is required for deceleration (or acceleration). So the
running time in [15] is considered as a constant. In this paper,
the running time is considered in a certain interval, i.e.

ri, j ∈ [ri, j,min,ri, j,max], (1)

where ri, j is the running time of train i from station j to
station j+1 as shown in Figure 2, and ri, j,min and ri, j,max are
the minimal and maximal running time for train i traversing
segment j, respectively. The minimal and maximum running
time can be calculated based on the detailed train dynamic
model, the speed limits and the grade profiles along the line.
Furthermore, the optimal running time will be obtained by
solving the real-time scheduling problem.

The departure time di, j of train i at station j is equal to the
sum of the arrival time ai, j and the dwell time τi, j of train i
at station j, i.e.

di, j = ai, j + τi, j. (2)

The dwell time is usually considered as a constant. However, in
practice it is influenced by the number of passengers boarding
and alighting the train, as will be explained in Section II-C.
The arrival time ai, j+1 of train i at station j + 1 equals the

sum of the departure time at station j and the running time on
segment j for train i, i.e.

ai, j+1 = di, j + ri, j. (3)

The arrival times and departure times must satisfy the mini-
mum headway constraints caused by the fixed or moving block
signaling systems. The minimum headway is the minimum
time interval between two successive trains such that they can
enter and depart from a station safely [16], i.e.

ai, j −di−1, j ≥ h0, (4)

with h0 the minimum headway between two trains.

B. Passenger demand characteristic

The passenger arrival rate at station j for j ∈ {1,2, . . . ,J}
is denoted by λ j. We assume:

A2. Passengers arrive uniformly at a constant rate λ j at station
j.

This assumption is consistent with observed passengers arrivals
for short headway (less than 10 minutes) services [17]. An
estimate of these passenger arrival rates at stations can be
obtained by analyzing historical data of the passenger flow.
In addition, we make the following assumption:

A3. The number of passengers waiting at station and the
number of passengers on-board immediately after a the
departures of trains are real numbers.

Since the number of passengers are large, the error made
by this assumption is small. Furthermore, this assumption
simplifies the optimization of the train scheduling problem
later on.

The number of passengers still remaining at station j
immediately after the departure of train i−1 defined as wi−1, j.
The number of passengers who want to get on train i at station
j can then be formulated as

wi−1, j +λ j(di, j −di−1, j),

where λ j(di, j −di−1, j) is number of passengers newly arrived
at station j during the departure of train i−1 and the departure
of train i. In addition, we assume:

A4. The number of passengers alighting at station j for j ∈
{1,2, . . . ,J} is a fixed proportion ρ j of its arrival load.

The passenger alighting proportions can also be estimated
using the historical data of the passenger flow.

By defining the number of passengers on train i immedi-
ately after its departure at station j−1 as ni, j−1, the remaining
capacity of train i at station j immediately after the alighting
process of passengers is

Ci,max −ni, j−1(1−ρ j),

where Ci,max is the maximum capacity of train i and ni, j−1(1−
ρ j) is the number of passengers remaining on train i imme-
diately after all the passengers that wanted to leave the train
have gotten off.



The number of passengers boarding train i at station j
is equal to the minimum of the remaining capacity and the
number of waiting passengers, i.e.

min
(

Ci,max −ni, j−1(1−ρ j),wi−1, j +λ j(di, j −di−1, j)
)

. (5)

The number of passengers at station j immediately after the
departure of train i, i.e. the passengers who cannot get on train
i, is then given by

wi, j =wi−1, j +λ j(di, j −di−1, j)−min
(

Ci,max −ni, j−1(1−ρ j),

wi−1, j +λ j(di, j −di−1, j)
)

,

(6)
which can be rewritten as

wi, j =max
(

wi−1, j +λ j(di, j −di−1, j)− (Ci,max

−ni, j−1(1−ρ j)),0
)

.

(7)

In addition, the number of passengers on train i when it departs
from station j is equal to the sum of the passengers arriving
but not getting off at station j and the passengers boarding on
train i at station j, which can be formulated as

ni, j =ni, j−1(1−ρ j)+min
(

Ci,max −ni, j−1(1−ρ j),wi−1, j

+λ j(di, j −di−1, j)
)

.

(8)

We can rewrite (8) as

ni, j = min
(

Ci,max,ni, j−1(1−ρ j)+wi−1, j +λ j(di, j −di−1, j)
)

.

(9)

C. Passenger/vehicle interaction

As mentioned before, the dwell time is influenced by the
number of alighting and boarding passengers, which can be
described as a linear function of the alighting and boarding
passengers [18]. The minimal dwell time can be defined as

τi, j,min =α1,d +α2,dni, j−1ρ j +α3,d min
(

Ci,max −ni, j−1(1−ρ j),

wi−1, j +λ j(di, j −di−1, j)
)

,

(10)
where α1,d, α2,d, and α3,d are coefficients that can be estimated
based on historical data. The dwell time τi, j should be larger
than the minimal dwell time τi, j,min such that the passengers
can get on and get off the train. However, it should be less
than a maximum dwell time τi, j,max to ensure the passengers
do not complain.

III. THE REAL-TIME SCHEDULING PROBLEM

Based on the model of train movement and the passenger
demand characteristic, we now consider the real-time schedul-
ing problem.

In the real-time scheduling problem, the total travel time of
all passengers is minimized, which is the sum of the passenger
waiting time and the passenger in-vehicle time. The passenger
waiting time twait,i, j at station j for train i includes the waiting
time of both passengers left by the previous train i−1 and the
newly arrived passengers, and it can be calculated by

twait,i, j = wi−1, j(di, j −di−1, j)+
1

2
λ j(di, j −di−1, j)

2
, (11)

where the first term represents the waiting time of the pas-
sengers left by train i− 1 at station j, and the second term
represents the waiting time of uniformly arriving passengers

between the departures of train i−1 and train i. The passenger
in-vehicle time for train i running from station j to j + 1
includes the running time for all passengers on train i after its
departure form station j and the waiting time of the passengers
who do not get off the train at station j + 1, which can be
formulated as

tin−vehicle,i, j = ni, jri, j +ni, j(1−ρ j+1)τi, j+1. (12)

The total passenger travel time for all I trains can then be
formulated as

ttotal =
I

∑
i=1

J−1

∑
j=1

(twait,i, j + tin−vehicle,i, j). (13)

The constraints of the real-time scheduling problem con-
sist of the running time constraints, dwell time constraints,
headway constraints, capacity of trains, and the equalities
mentioned in Section II.

IV. SOLUTION APPROACH

The variables of the scheduling problem are the departure
times di, j, the running times ri, j, the dwell times τi, j, the
passengers waiting at stations wi, j, and the passengers on-board
the trains ni, j for i = {1,2, . . . , I} and j = {1,2, . . . ,J−1}. The
other variables are auxiliary variables, such as the passenger
waiting times twait,i, j, the passenger on-board times tin−vehicle,i, j.
After the elimination of the auxiliary variables, the real-
time scheduling problem formulated in the previous section
becomes a nonlinear non-convex programming problem with
nonlinear, non-convex constraints (due to the min function).
Hence, multi-start local optimization (e.g. sequential quadratic
programming (SQP), genetic algorithm, simulated annealing,
active-set algorithm) [19, Section 5.3] can be used to solve the
problem. In this paper, we will apply the SQP algorithm to the
real-time scheduling problem.

V. CASE STUDY

In order to demonstrate the performance of the real-time
scheduling approach proposed in this paper, the line data and
train characteristics of the Yizhuang subway line in Beijing are
used as a test case study. There are 14 stations in the Yizhuang
line and the total length is 22.773 km. The speed limit for the
whole line is 80 km/h, i.e. 22.2 m/s. The detailed information
of the Yizhuang line and the parameters used in the case study
are listed in Table I. Note that the passenger arrival rate at the
final station Yizhuang is 0 passenger/s since we only consider
one direction of the line. In addition, the proportion of the
alighting passengers is also listed in Table I. There are no
passengers alighting the train at the origin and all passengers
on the train should get off at the final station.

Furthermore, in this paper the minimum running time be-
tween these stations is calculated by taking a fixed acceleration
and a fixed deceleration, which are both chosen as 0.8 m/s2

in absolute value. In addition, the train is assumed to run at
the maximum speed vmax = 22.2 m/s between the acceleration
phase and the deceleration phase. Therefore, the minimum
running time between station j and station j + 1 with an
interstation distance s j can be calculated as

ri, j,min =
s j − sacc−dec

vmax
+ tacc−dec, (14)



Fig. 3. The layout of the Yizhuang subway line

TABLE I. THE INFORMATION OF THE YIZHUANG SUBWAY LINE AND

OTHER PARAMETERS

Station Station Distance Passenger Passenger Minimum

number name to next arrival rate alighting running

station [m] [passenger/s] proportion time [s]

1 Songjiazhuang 1332 2 0 87.700

2 Xiaocun 1286 2 0.1 85.628

3 Xiaohongmen 2086 2 0.3 121.664

4 Jiugong 2265 4 0.5 129.727

5 Yizhuangqiao 2331 4 0.3 132.700

6 Wenhuayuan 1354 4 0.4 88.691

7 Wanyuan 1280 3 0.3 85.358

8 Rongjing 1544 2 0.4 97.250

9 Rongchang 992 3 0.2 72.385

10 Tongjinan 1975 4 0.4 116.664

11 Jinghai 2369 3 0.4 134.412

12 Ciqunan 1349 2 0.7 88.466

13 Ciqu 2610 1 0.6 145.268

14 Yizhuang – 0 1 –

where sacc−dec and tacc−dec are the running distance and the
running time of the acceleration and deceleration phase, re-
spectively. The computed minimum running times are also
shown in Table I. The maximum running time is assumed as

ri, j,max = ζ ri, j,min, (15)

where ζ is larger than 1. We have chosen ζ as 1.5 in order to
ensure the passengers do not complain the train is too slow.

The dwell time at stations has a significant effect on the
real-time scheduling problem for urban rail transit. Based on
the dwell time research about Beijing subway stations [20],
the value of the dwell time coefficients are chosen as shown
in Table II. The minimum dwell time can then be calculated
by (10). The maximal dwell time is chosen as 150 s. The
capacity of each train is 1468 passengers according to the train
characteristics in the Yizhuang line. In addition, the minimum
headway h0 between two successive trains is 90 s.

In this case study, we consider the real-time scheduling
problem for 7 trains, i.e. train i ∈ {1,2, . . . ,7}. In addition,
it is assumed that train 0 precedes train 1. The schedule of
train 0 shown as the red line in Figure 4 is already given and
fixed, where it arrives at the platform of station 1 at 0 s, runs
with the minimum running time, and stops at each station for
120 s. Furthermore, we assume that there are no passengers
left by train 0, i.e. w0, j = 0 for all j ∈ {1,2, . . . ,13}. We
use the SNOPT solver via the Tomlab interface to Matlab

TABLE II. THE PARAMETERS OF THE MINIMAL DWELL TIME

Parameter α1,d α2,d α3,d

Value [s] 4.002 0.0505 0.0466
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Fig. 4. The computed schedule for trains

for solving the nonlinear non-convex scheduling problem [21].
By solving the real-time scheduling problem for the following
7 trains using an SQP algorithm [22], the total passenger
travel time for the passengers traveled by these 7 trains is
2.1047 × 107 s. The resulting schedules of these trains are
shown in Figure 4. The departure times of these 8 trains at
station 1 are 120, 360, 600, 840, 961.2, 1065.7, 1170.3, and
1274.8, respectively. The headways between these trains are
then 240 s, 240 s, 240 s, 121.2 s, 104.6 s, 104.6 s, and 104.6 s,
respectively, which are shown in Figure 5. The departure
headway between train 0 and train 1 is quite large, and it
is equal to the sum of the minimum headway 90 s and the
maximum dwell time 150 s. This is because of the schedule
of train 0, which stops at each stations with dwell time 120 s.
Therefore, in order to satisfy the headway constraints at all
stations, the departure headway at the station 1 must be much
larger than the minimum headway 90 s. As we can observe
from Figure 5, most of the headways at stations are around
153 s, especially for the trains and stations with a higher index.
This is because passenger waiting times are closely related
to vehicle headways and evenly distributed headways usually
result in the least passenger waiting times when the passenger
arrival is a uniform process and the arrival rate is constant [15].
The calculated running times and dwell times of different trains
at different stations are shown in Figure 6 and Figure 7.

The number of passengers waiting at each station and the
number of passengers on each train immediately after the
train’s departure are shown in Figure 8 and Figure 9. As we
can see from Figure 8, there is no passenger left by these 7
trains at station 1, 2, 3, 4, 8, 11, 12, and 13. There are 11
passengers left by train 2 at station 5. The maximal number of
waiting passengers is left by train 6 at station 7 and the number
is 225 passengers. The number of waiting passengers at station
6 increases for the first 6 trains and it decreases after the
departure of train 7. If we let more trains run, then the number
of waiting passengers will decrease further like that of station
6. The different passenger arrival rates and passenger alighting
proportions at different stations have a significant effect on
the number of waiting passengers and on-board passengers.
As we can see from Table I, the passenger arrival rates at
station 4, 5, and 6 are equal to 4 passenger/s. Therefore,
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Fig. 5. The optimal headways for the trains
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Fig. 6. The running time of each train
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Fig. 7. The dwell time of each train
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Fig. 9. The number of passengers on each train

the number of passengers on-board increases quickly when
trains passing through these stations. On the other hand, the
passenger alighting proportions at station 5 and 6 are 0.3 and
0.4, respectively. Hence, there are not too many passengers
getting off the trains at these two stations. That is the reason
why there are many passengers left at station 6. The passenger
arrival rate at station 7 is 3 passenger/s, which is less than
4 passenger/s, but the passenger alighting proportion is 0.3.
In addition, the number of passengers waiting at station 7 is
also affected by the situation in station 6. Therefore, there
are also many passengers waiting at station 7. The passengers
on-board immediately after the departure of each train is less
than or equal to 1468 since the capacity of each train is 1468
passengers. The number of passengers on-board first increases
and then reaches the capacity. At the end of the line the number
of passengers is getting less since the passenger arrival rate is
lower and the passenger alighting proportion is higher.

VI. CONCLUSIONS

In the current paper, we have considered the real-time
scheduling problem for urban rail transit. The model of train
movement has been described by the departure times, the
running times, and the dwell times at stations. The minimum



headway constraints were also taken into account to ensure
the running safety of all trains. The passenger arrival rates and
alighting proportions have been used to represent the passenger
demand characteristics. The resulting nonlinear non-convex
scheduling problem minimizing the total passenger travel times
has been solved by the sequential quadratic programming
algorithm. The case study shows that the optimal headways
between these trains are not a constant which is usually used
in the planning phase of urban rail transit, but the optimal
headways are affected by the passenger demands at stations
and the current situation in the urban transit (the schedule of
the initial train, the initial waiting passengers at stations, etc.).
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