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Abstract

A distributed model predictive control (DMPC) approach based on distributed optimization is

applied to the power reference tracking problem of a hydro power valley (HPV) system. The

applied optimization algorithm is based on accelerated gradient methods and achieves a conver-

gence rate of O
(

1
k2

)
, where k is the iteration number. Major challenges in the control of the HPV

include a nonlinear and large-scale model, nonsmoothness in the power-production functions,

and a globally coupled cost function that prevents distributed schemes to be applied directly. We

propose a linearization and approximation approach that accommodates the proposed the DMPC

framework and provides very similar performance compared to a centralized solution in simula-

tions. The provided numerical studies also suggest that for the sparsely interconnected system

at hand, the distributed algorithm we propose is faster than a centralized state-of-the-art solver

such as CPLEX.

Keywords: Hydro power control, Distributed optimization, Accelerated gradient algorithm,

Model predictive control, Distributed model predictive control

1. Introduction

Hydro power plants generate electricity from potential energy and kinetic energy of natural

water, and often a number of power plants are placed along a long river or a water body system

to generate the power at different stages. Currently, hydro power is one of the most important

means of renewable power generation in the world [36]. In order to meet the world’s electricity

demand, hydro power production should continue to grow due to the increasing cost of fossil

fuels. However, hydro electricity, like any renewable energy, depends on the availability of a pri-

mary resource, in this case: water. The expected trend for future use of hydro power is to build

small-scale plants that can generate electricity for a single community. Thus, an increasingly

important objective of hydro power plants is to manage the available water resources efficiently,
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while following an optimal production profile with respect to changes in the electricity mar-

ket, to maximize the long-term benefit of the plant. This water resource management must be

compatible with ship navigation and irrigation, and it must respect environmental and safety con-

straints on levels and flow rates in the lakes and the rivers. By significantly increasing the power

efficiency of hydro power valley (HPV) systems, real-time control of water flows becomes an

important ingredient in achieving this objective.

An HPV may contain several rivers and lakes, spanning a wide geographical area and ex-

hibiting complex dynamics. In order to tackle the plant-wide control of such a complex system,

an HPV is often treated as a large-scale system consisting of interacting subsystems. Large-scale

system control has been an active research area that has resulted in a variety of control techniques,

which can be classified in three main categories: decentralized control, distributed control, and

centralized control. The application of these approaches can be found in a rich literature on

control of water canals for irrigation and hydro systems [16, 14]. We are interested in applying

model predictive control (MPC), a control method that has been successfully used in industry

[25], thanks to its capability of handling hard constraints and the simple way of incorporating

an economical objective by means of an optimization problem. For the control problem of open

water systems, centralized MPC has been studied in numerical examples using nonlinear MPC

approaches in combination with model smoothing and/or model reduction techniques [13, 18],

and in real implementations with linear MPC of low-dimensional systems [33, 34]. However,

centralized MPC has a drawback when controlling large-scale systems due to limitations in com-

munications and the computational burden. These issues fostered the studies of decentralized

MPC and distributed MPC for large-scale water systems. Early decentralized MPC methods for

irrigation canals used the decomposition-coordination approach to obtain decentralized versions

of LQ control [6]. Several decentralized MPC simulations applied to irrigation canals and rivers

were presented in [7, 30, 10, 26]. Distributed MPC approaches based on coordination and coop-

eration for water delivery canals were presented in [7, 20, 12, 1]. The typical control objective

in these studies is to regulate water levels and to deliver the required amount of water to the right

place at some time in the future, i.e., the cost function does not have any special term except

the quadratic penalties on the states and the inputs. On the other hand, in hydro power control,

there are output penalty terms in the cost function that represent the objective of manipulating

power production. Recent literature taking into account this cost function includes centralized

nonlinear MPC with a parallel version of the multiple-shooting method for the optimal control

problem using continuous nonlinear dynamics [29], and a software framework that formulates a

discrete-time linear MPC controller with the possibility to integrate a nonlinear prediction model

and to use commercial solvers to solve the optimization problem [24]. The hydro power control

problem considered in the current paper is similar to the setup in [29, 24]. However, it distin-

guishes itself by using a distributed control structure that aims to avoid global communications

and that divides the computational tasks into local sub-tasks that are handled by subsystems,

making the approach more suitable for scaling up to even more complicated hydro power plants.

The distributed MPC design approach proposed in this paper is enabled by a distributed op-

timization algorithm that has recently been developed by the authors in [8]. This optimization

algorithm is designed for a class of strongly convex problems with mixed 1-norm and 2-norm

terms in the cost function, which perfectly suits the power reference tracking objective in the

HPV control benchmark. The underlying optimization algorithm in [8], although being imple-

mented in a distributed way, is proved to achieve the global optimum with an O( 1
k2 ) convergence

rate, where k is the iteration number. This is a significant improvement compared to the dis-

tributed MPC methods presented in [5, 4, 9, 19], which achieve an O( 1
k
) convergence rate. There
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are three main challenges in applying distributed MPC using the algorithm from [8] to the HPV

benchmark problem. The first one is that the nonlinear continuous-time model yields a rela-

tively large linear model after spatial and temporal discretizations. We present a decentralized

model order reduction method that significantly reduces the model complexity while maintain-

ing prominent dynamics. The second challenge is that the power production functions are non-

smooth, which prevents gradient-based methods to be applied directly. A method to overcome

this difficulty and to enable optimal control using the algorithm from [8] is also presented. The

third challenge is that the whole system should follow a centralized power reference which, if

the algorithm from [8] is applied directly, requires centralized communication. We propose a

dynamic power division approach that allows to track this centralized power reference with only

distributed communications. By means of numerical examples, we will demonstrate the fast con-

vergence property of the distributed algorithm which, when implemented on a single core, can

outperform a state-of-the-art centralized solver (CPLEX) when solving the same optimization

problem.

The remaining parts of the paper are organized as follows. In Section 2, we describe the HPV

system and the power reference tracking problem that were formulated in the HPV benchmark

problem [28]. Section 3 provides a summary of the distributed optimization framework that the

authors have developed in [8]. In Section 4, we present our approach for modeling and model

reduction of the HPV system, followed by a reformulation of the MPC optimization problem,

and developing a distributed estimator so that the closed loop distributed MPC scheme can be

implemented using neighbor-to-neighbor communications only. The simulation results are pre-

sented in Section 5, which also features a comparison with centralized MPC and decentralized

MPC. Through the various aspects of the comparison including performance, computational ef-

ficiency, and communication requirements, the advantages of the distributed MPC algorithm will

be highlighted. Section 6 concludes the paper and outlines future work.

2. Problem description

In this section, we provide a summary of the hydro power valley benchmark [28] and we

present the linearized model that serves as the starting point of our controller design.

2.1. Hydro power valley system

We consider a hydro power plant composed of several interconnected subsystems, as illus-

trated in Figure 1. The plant can be divided into 8 subsystems, of which subsystem S 1 is com-

posed of the lakes L1, L2, the duct U1 connecting them, and the ducts C1,T1 that connect L1 with

the reaches1 R1, R2, respectively. Subsystem S 2 is composed of the lake L3 and the ducts C2,T2

that connect L3 to the reaches R4,R5, respectively. There are 6 other subsystems, each of which

consists of a reach and a dam at the end of the reach. These six reaches R1,R2,R3,R4,R5, and

R6 are connected in series, separated by the dams D1,D2,D3,D4, and D5. The large lake that

follows the dam D6 is assumed to have a fixed water level, which will absorb all the discharge.

The outside water flows enter the system at the upstream end of reach R1 and at the middle of

reach R3.

There are structures placed in the ducts and at the dams to control the flows. These are the

turbines placed in the ducts T1,T2 and at each dam for power production. In the ducts C1,C2

1A reach is a river segment between two dams.
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there are composite structures that can either function as pumps (for transporting water to the

lakes) or as turbines (when water is drained from the lakes).

The whole system has 10 manipulated variables, which are composed of six dam flows (qD1,

qD2, qD3, qD4, qD5, qD6), two turbine flows (qT1, qT2) and two pump/turbine flows (qC1, qC2).

Further, the system has 9 measured variables, the water levels in the three lakes (hL1, hL2, hL3)

and the water levels at the end of each reach (hR1, hR2, hR3, hR4, hR5, hR6).

Figure 1: Overview of the HD-MPC hydro power valley system [28]

2.2. Power reference tracking problem

One of the control problems specified in [28] is the power reference tracking problem. We

introduce state variables x, which consist of water levels in the lakes and reaches and water flows

within the reaches, and control variables q, which are the manipulated water flows. The problem

is to track a power production profile, pref(t), on a daily basis using the following cost function:

J ,

∫ T

0

γ

∣∣∣∣∣∣∣
pref(t) −

8∑

i=1

pi(x(t), q(t))

∣∣∣∣∣∣∣
dt

+

8∑

i=1

∫ T

0

(xi(t) − xss
i )T Qi(xi(t) − xss

i )dt

+

8∑

i=1

∫ T

0

(qi(t) − qss
i )T Ri(qi(t) − qss

i )dt (1)

subject to the nonlinear dynamics and linear constraints on outputs and inputs as specified in [28].

The weights Qi,Ri, i = 1, . . . , 8, γ, and the testing period T are parameters of the benchmark.

The quadratic term in the cost function represents the penalties on the state deviation from the

steady state xss and the energy used for manipulating the inputs away from the steady state flows

qss. The 1-norm term represents the power reference tracking mismatch, in which the function
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pref is the power reference and the function pi represents the locally produced/consumed power

by a subsystem i ∈ {1, . . . , 8}. For i = 1, 2 the produced/consumed power is (cf. [28])

pi(x(t), q(t)) = kCi
(qCi

(t))qCi
(t)∆xCi

(t) + kTi
qTi

(t)∆xTi
(t) (2)

where qCi
and qTi

are the flows through ducts Ci and Ti, ∆xCi
and ∆xTi

are the relative differences

in water levels before and after ducts Ci and Ti respectively, kTi
is the power coefficient of the

turbine Ti, and

kCi
(qCi

(t)) =

{
kTCi
, qCi

(t) ≥ 0

kPCi
, qCi

(t) < 0
(3)

is a discontinuous power coefficient that depends on whether the duct Ci acts as a turbine (qCi
(t) ≥

0) or as a pump (qCi
(t) < 0). For i = 3, . . . , 8 we have

pi(x(t), q(t)) = kDi−2
qDi−2

(t)∆xDi−2
(t) (4)

which is the power produced by the turbine located at dam Di−2. The produced/consumed power

functions given in (2) and (4) are nonlinear, and even nonsmooth for subsystems 1 and 2 due to

the differences of kTCi
and kPCi

in (3), thus complicating a direct application of a standard MPC

scheme.

Still, the complexity of the system and control objective suggests an optimization based con-

trol strategy, such as MPC. Further, the distributed nature of the system makes it possible to

consider distributed MPC techniques. However, the stated optimization problem (1) is a nonlin-

ear continuous-time dynamic optimization problem, which in general is very hard to solve. In

the next sections we will discuss the modeling of the hydro power valley that leads to a linearized

model.

2.3. Nonlinear hydro power valley model

The model of the reaches is based on the one-dimensional Saint Venant partial differential

equation, representing the mass and momentum balance (see [28] for details):



∂q(t, z)

∂z
+
∂s(t, z)

∂t
= 0

1

g

∂

∂t

(
q(t, z)

s(t, z)

)
+

1

2g

∂

∂z

(
q2(t, z)

s2(t, z)

)
+
∂h(t, z)

∂z
+ If(t, z) − I0(z) = 0

(5)

with z the spatial variable, t the time variable, q the river flow (or discharge), s the cross-section

surface of the river, h the water level w.r.t. the river bed, If the friction slope, I0(z) the river bed

slope, and g the gravitational acceleration constant.

The partial differential equation (5) is converted into a system of ordinary differential equa-

tions by using spatial discretization. To achieve this, each reach is divided into 20 cells, yielding

20 additional states, which are the water levels at the beginning of the cells. For details of the

spatial discretization and the equations for the resulting nonlinear dynamical system the reader is

referred to [28, Section 2.1.1]. The resulting nonlinear dynamical system has in total 249 states,

10 inputs, and 9 outputs.
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2.4. Model linearization and discretization

As mentioned in Section 2.3 a set of nonlinear ordinary differential equations that describe

the hydro power valley dynamics is presented in [28, Section 2.1.1]. A linear continuous-time

model which is linearized around the steady state operating point (xss, qss) is also provided in the

HPV benchmark package [28]. Discretizing this model using zero-order-hold gives a discrete-

time linear system with 249 states and 10 inputs. The coupling of the subsystems is through the

inputs only. This implies that discretization using zero-order-hold of the continuous-time system

keeps the structure of the original system description. Thus, the resulting discrete time system

has a block-diagonal dynamics matrix, a block-diagonal output matrix, and a sparse input matrix,

and each subsystem i = 1, . . . , 8 can be expressed in the following form:

xd
i (k + 1) = Aiix

d
i (k) +

8∑

j=1

Bi jq
d
j (k) (6)

yd
i (k) = Cix

d
i (k)

in which the variables xd, qd, and yd stand for the deviation from the steady-state values, and the

subscripts i, j stand for the subsystem indices. As mentioned the subsystems are coupled through

the inputs only and at least for some j ∈ {1, . . . , 8} we have Bi j = 0 for every i = 1, . . . , 8.

The use of a discrete-time linearized model enables controller design with some specific ap-

proaches, which include our proposed distributed optimization technique presented in [8]. Before

describing our main contributions, we now provide a summary of this distributed optimization

framework in the next section.

3. Distributed optimization framework for MPC

In this section, we describe the distributed optimization algorithm developed in [8] which

is based on an accelerated gradient method. The first accelerated gradient method was devel-

oped in [21] and further elaborated and extended in [2, 22, 23, 31, 32]. The main idea of the

algorithm presented in [8] is to exploit the problem structure of the dual problem such that accel-

erated gradient computations can be distributed to subsystems. Hence, the distributed algorithm

effectively solves the centralized optimization problem. Dual decomposition has been used in

the past to tackle the complexity of large-scale optimization problems arising in water supply

networks [3]. In our work however, in addition to simplifying the local computations, we apply

this decomposition philosophy in order to distribute the decision-making process.

The algorithm in [8] is developed to handle optimization problems of the form

min
x,xa

1

2
xT Hx + gT x + γ‖xa‖1 (7)

s.t. Ax = b

Cx ≤ d

xa = Px − p

where x ∈ Rn and xa ∈ R
m are vectors of decision variables, and x is partitioned according to:

x = [xT
1 , . . . , x

T
M]T , (8)
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and xi ∈ R
ni . Further, the matrix H ∈ Rn×n is positive definite and block-diagonal, the matrices

A ∈ R
q×n, C ∈ R

r×n, and P ∈ R
m×n have sparse structures, and g ∈ R

n, p ∈ R
m, b ∈ R

q,

d ∈ R
r. We introduce the partitions g = [gT

1
, . . . , gT

M
]T , p = [pT

1
, . . . ,pT

M
]T , b = [bT

1
, . . . ,bT

M
]T ,

d = [dT
1
, . . . ,dT

M
]T ,

H =



H1

. . .

HM


, A =



A11 . . . A1M

...
. . .

...

AM1 . . . AMM



C =



C11 . . . C1M

...
. . .

...

CM1 . . . CMM


, P =



P11 . . . P1M

...
. . .

...

PM1 . . . PMM



where the partitions are introduced in accordance with (8) and gi ∈ R
ni , pi ∈ R

mi , bi ∈ R
qi ,

di ∈ R
ri , Hi ∈ R

ni×ni , Ai j ∈ R
qi×n j , Ci j ∈ R

ri×n j and Pi j ∈ R
mi×n j . The assumption on sparsity of

A, C and P is that Ai j = 0, Ci j = 0, and Pi j = 0 for some i, j and we assume that the constraint

matrices are built such that Aii , 0, Cii , 0, and Pii , 0 for all i = 1, . . . ,M. Based on the

coupling, we define for each subsystem a neighborhood set, denoted by Ni, as follows:

Ni =
{
j ∈ {1, . . . ,M}| Ai j , 0 or A ji , 0 or Ci j , 0 or C ji , 0 or (9)

Pi j , 0 or P ji , 0
}
.

Note that there are two type of equality constraints in (7), the first one involves only x and the

matrix A has a sparsity pattern, i.e., there is no global coupling introduced in that equality con-

straint; the last one involves both x and xa, moreover introduces a global coupling due to the fact

that xa is penalized in the 1-norm term of the cost function, thus it is not straightforward to deal

with this constraint as we could treat the first constraint. Throughout the paper, the dual variables

corresponding to these constraints are treated differently, and a distributed approximation of the

1-norm term is introduced to treat the second type of equality constraint.

We introduce dual variables λ ∈ R
q, µ ∈ R

r, ν ∈ R
m for the equality constraints, inequal-

ity constraints, and equality constraints originating from the 1-norm cost in (7) respectively.

We also introduce the dual variable partitions λ = [λT
1
, . . . , λT

M
]T , µ = [µT

1
, . . . , µT

M
]T , and

ν = [νT
1
, . . . , νT

M
]T where λi ∈ R

qi , µi ∈ R
ri , and νi ∈ R

mi . Based on [8], the dual problem

of (7) can be cast as the minimization of the negative dual function

f (λ, µ, ν) =
1

2
(ATλ + CTµ + PTν)T H−1(ATλ + CTµ + PTν)+ (10)

+ bTλ + dTµ + pTν

and the dual variables are constrained to satisfy

λ ∈ Rq, µ ∈ Rr
+
, ν ∈ [−γ, γ]m (11)

where R+ denotes the non-negative real orthant. The negative dual function (10) has a Lipschitz

continuous gradient with constant (cf. [8])

L = ‖[AT CT PT ]T H−1[AT CT PT ]‖2 (12)

and can hence be minimized using accelerated gradient methods. The distributed accelerated

gradient method as presented in [8] is summarized below in a slightly different form that is

adapted to our HPV application problem at hand.
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Algorithm 1. Distributed accelerated gradient algorithm

Initialize λ0
= λ−1, µ0

= µ−1, ν0 = ν−1 and x−1 with the last values from the previous sampling

step. For the first sampling step, these variables are initialized by zeros.

In every node, i, the following computations are performed:

For k = 0, 1, 2, . . .

1. Compute

xk
i = −H−1

i

( ∑

j∈Ni

(
AT

jiλ j + CT
jiµ j + PT

jiν j

) )

x̄k
i = xk

i +
k − 1

k + 2
(xk

i − xk−1
i )

2. Send x̄k
i

to each j ∈ Ni, receive x̄k
j

from each j ∈ Ni

3. Compute

λk+1
i = λk

i +
k − 1

k + 2
(λk

i − λ
k−1
i ) +

1

L

( ∑

j∈Ni

Ai jx̄ j − bi

)

µk+1
i = max

{
0, µk

i +
k − 1

k + 2
(µk

i − µ
k−1
i ) +

1

L

( ∑

j∈Ni

Ci jx̄ j − di

)}

νk+1
i = min

{
γ,max

[
− γ, νki +

k − 1

k + 2
(νki − ν

k−1
i )+

+
1

L

( ∑

j∈Ni

Pi jx̄ j − pi

)]}

4. Send λk+1
i

, µk+1
i

, νk+1
i

to each j ∈ Ni, receive λk+1
j

, µk+1
j

, νk+1
j

from each j ∈ Ni.

The Lipschitz constant L of ∇ f is used in the algorithm. For MPC purposes we only need to

compute L once in a centralized way and use it through all MPC problem instances.

Besides the suitability for distributed implementation, another merit of Algorithm 1 is its fast

convergence rate. The main convergence results of Algorithm 1 are given in [8], stating that both

the dual function value and the primal variables converge towards their respective optima with

the rate of O
(

1
k2

)
where k is the iteration index. This convergence rate is much better than the

convergence rate of classical gradient-based optimization algorithms, which is O
(

1
k

)
.

4. Control of HPV using distributed MPC

We have so far described the linear discrete-time model of the HPV in Section 2 and the fast

distributed optimization method, Algorithm 1, that serves as a basis for designing a distributed

model predictive controller to be applied to the HPV. However, there are three major challenges

for this application. First, the linear discrete-time model cannot be directly used in an MPC

context due to the existence of a number of unobservable and uncontrollable modes. These un-

observable/uncontrollable modes are a result of the spatial discretization in each reach which
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creates states that cannot be observed/controlled separately. In addition, the linear discrete-time

model has a large number of states, causing a large computational burden. Second, the power

functions associated with the ducts C1 and C2 are nonsmooth (cf. (2) and (3)). The nonsmooth-

ness is caused by the fact that the flow through C1 and C2 is bidirectional and the powers con-

sumed/produced do not have equivalent coefficients. The third major challenge is the global

coupling in the cost function due to the fact that we have to track a central power reference

function that specifies the desired sum of locally generated power outputs. This global coupling

prevents a distributed implementation of Algorithm 1 since the sparsity in the constraints is lost.

These issues are addressed in the following sections.

4.1. Modification of the linear model

In this section we show how to create a model of the HPV that is suitable for the DMPC

framework presented in [8]. First we present a model reduction technique that keeps the system

structure, then the nonsmooth power function is treated.

4.1.1. Decentralized model order reduction

The block-diagonal structure of discrete-time dynamical system (6) makes it possible to per-

form model reduction on each subsystem individually. Several model reduction methods have

been proposed for interconnected systems [35, 27]. In this work, we use a straightforward bal-

anced truncation method [11, 17] to reduce the order of each local model (6).

Let us introduce Bi = [Bi1 . . . Bi8] and qd
= [(qd

1
)T . . . (qd

8
)T ]T to get the following discrete-

time linear model of each subsystem:

xd
i (k + 1) = Aiix

d
i (k) + Biq

d(k) (13)

yd
i (k) = Cix

d
i (k).

Applying the balanced truncation technique yields transformation matrices denoted by T r
i

and T
r,inv
i

for each subsystem, where T r
i
T

r,inv
i
= I. By denoting the new state variables, xr

i
= T r

i
xd

i
,

and the control variable qr
= qd, we represent the reduced order model as:

xr
i(k + 1) = Ar

iix
r
i(k) + Br

iq
r(k) (14)

yr
i(k) = Cr

i x
r
i(k) (15)

where Ar
ii
= T r

i
AiiT

r,inv
i

, Br
i
= T r

i
Bi and Cr

i
= CiT

r,inv
i

. It should be noted that the block-sparsity

structure of Br
i

is the same as in the non-reduced input matrix Bi, since the model reduction is

performed for each local model separately. Moreover, all the modes of the reduced model are

both observable and controllable.

The model reduction gives a 32-state reduced model that approximately represents the dy-

namics of the full linear model with 249 states.

4.1.2. Treatment of nonlinear and nonsmooth power function

One of the difficulties in applying a linear MPC approach to the hydro power valley is the

nonsmoothness of the power function associated with the ducts C1 and C2, which is included in

the expression for power generation (2) in subsystem 1 and subsystem 2, respectively. In order

to handle this nonsmoothness, we use a double-flow technique, which means introducing two

nonnegative positive variables to express the flow in Ci, i = 1, 2 at a sampling step k:

9



• qCiP
(k): virtual flow such that Ci functions as a pump

• qCiT
(k): virtual flow such that Ci functions as a turbine

The introduction of virtual flows requires the input-matrices, Br
i
, to be augmented with two extra

columns identical to the ones multiplying qCi
, i = 1, 2 with the opposite sign to capture that pump

action is also introduced with a positive flow. The resulting reduced order model has 12 inputs

instead of the original 10. Using the introduced flows qCiP
and qCiT

, the power function (2) for

subsystems 1 and 2 can be rewritten as

pi(x(k), q(k)) =
(
kTCi

qCiT
(k) − kPCi

qCiP
(k)

)
∆xCi

(k) + kTi
qTi

(k)∆xTi
(k) (16)

with the additional constraints:

qCiT
(k) ≥ 0 (17)

qCiP
(k) ≥ 0 (18)

qCiT
(k)qCiP

(k) = 0 (19)

The constraint (19) expresses the fact that water flows in only one direction at a time, i.e., that ei-

ther the pump or the turbine is active. Note that the power function (2) is captured in the 1-norm

term of the cost function (1), which complicates the problem and prevents using a smooth refor-

mulation approach that would achieve optimality while ensuring either qCiT
(k) = 0 or qCiP

(k) = 0.

One may try to deal with the nonsmoothness by using subgradient methods, which often have

slow convergence rates. We will show in this paper that by introducing the nonlinear constraint

(19) and applying a relaxation method and a two-phase optimization scheme (see Sections 4.2.2

and 4.2.3), this problem can be handled by a gradient-type algorithm that significantly outper-

form subgradient methods.

The resulting nonlinear expression (16) can in turn be linearized around the steady-state

solution (xss, qss). Since qss
Ci
= 0 for i = 1, 2 we get the following linear local power produc-

tion/consumption approximation for subsystems i = 1, 2:

p̂i(x(k), q(k)) = ∆xss
Ci

[
kTCi
− kPCi

] [qCiT
(k)

qCiP
(k)

]
+

+ kTi
qss

Ti

(
∆xTi

(k) − ∆xss
Ti

)
+ kTi
∆xss

Ti

(
qTi

(k) − qss
Ti

)
+

+ kTi
qss

Ti
∆xss

Ti

This reformulation results in a linear expression with a nonlinear constraint at each time step k,

qCiT
(k)qCiP

(k) = 0, that approximates the original nonsmooth nonlinear power production/consumption

expression (2). We show our approach to handle the nonlinear constraint in Section 4.2.

For subsystems i = 3, . . . , 8 we have smooth power production expressions (4) that can be

directly linearized without introducing virtual flows:

p̂i(x(k), q(k)) = kDi
qss

Di
∆xss

Di
+ kDi

qss
Di

(
∆xDi

(k) − ∆xss
Di

)
+

+ kDi
∆xss

Di

(
qDi

(k) − qss
Di

)

10



4.2. HPV optimization problem formulation

In this section we formulate an optimization problem of the form (7) that can be used for

power reference tracking in the HPV benchmark using MPC. We have obtained a linear discrete-

time dynamical system (14)-(15) for the HPV with state variables xr and control variables qr. The

constraints are upper and lower bounds on the outputs and inputs and their values can be found

in [28]. Using the transformations matrices T r
i

and T
r,inv
i

, these constraints can readily be recast

as linear constraints for the reduced order model variables xr, qr. The power reference problem

formulation (1) specifies a quadratic cost on states and control variables and a 1-norm penalty

on deviations from the provided power reference, pref . For control horizon, N, this optimization

problem can be written as

min
x,xa

N−1∑

t=0


8∑

i=1

[
xr

i(k)T Qix
r
i(k) + qr

i(k)T Riq
r
i(k)

]
+ γ‖xa(k)‖1

 (20)

s.t. (14), (15) k = 0, . . . ,N − 1 i = 1, . . . , 8

Cr
i
xr

i
(k) ∈ Yi k = 0, . . . ,N − 1 i = 1, . . . , 8

qi(k) ∈ Qi k = 0, . . . ,N − 1 i = 1, . . . , 8

xa(k) = pref(k) −
∑8

i=1 p̂i(xr(k), qr(k)) k = 0, . . . ,N − 1

qCiT
(k)qCiP

(k) = 0 k = 0, . . . ,N − 1 i = 1, . . . , 2

where Yi and Qi are sets representing the local output and input constraints, the additional vari-

able xa captures the power reference tracking mismatch, and the notation x represents the stack

of variables xr
i
(k) and qr

i
(k) for all i and k, while xa is the stacked variable of xa(k) for all k. Note

that we can write x = [xT
1
, . . . , xT

8
]T where each xi, i = 1, . . . , 8 includes all the variables that

belong to subsystem i.

4.2.1. Power reference division

Since the original cost function contains a non-separable 1-norm term, the power reference

constraints in the optimization problem (20) are coupled between all subsystems. This implies

that Algorithm 1 requires some global communication even though the only information needed

to be sent to the global coordinator is p̄i(xr(k), qr(k)) for k = 0, . . . ,N − 1 from each subsystem

i = 1, . . . , 8.

In order to obtain a suitable dual problem, we first need to reformulate the cost function in a

separable form. For the sake of brevity, we focus on one sampling step and drop the time index

k. Thus for now our simplified objective is to decompose the following problem:

min
{xi}i=1,...,8

∣∣∣∣∣p
ref −

8∑

i=1

Pix

∣∣∣∣∣ (21)

with x = [xT
1
, . . . , xT

8
]T , and Pi the matrix coefficient such that the power function produced or

consumed by each subsystem p̂i(xr(k), qr(k)) is linearized as Pix(k).

In this section we present two different ways that avoid global communication when solving

this problem. In the first approach, we divide and distribute the global power reference to the

subsystems in a static fashion. In the second approach, we show how the subsystems can trade

local power references between neighbors to achieve a satisfactory centralized reference tracking.

11



Static local power references. The idea here is straightforward. We divide the global power

reference into local ones, i.e., pref is divided into local parts pref
i

, i = 1, . . . , 8. We have chosen to

compute pref
i

such that it satisfies

pref
i

(k)
∑8

i=1 pref
i

(k)
=

pi(xss, qss)
∑8

i=1 pi(xss, qss)
, for k = 0, . . . ,N − 1 (22)

with pi(xss, qss) the power produced by subsystem i in the steady-state condition.

This means that the fraction of the total power reference given to subsystem i is constant.

The optimization problem is changed accordingly, i.e., the following cost function can be used

instead of (21):

min
{xi}i=1,...,8

8∑

i=1

∣∣∣∣∣p
ref
i − Pix

∣∣∣∣∣ (23)

with x = [xT
1
, . . . , xT

8
]T . This allows for a distributed implementation since the matrix Pi intro-

duces only local couplings, i.e., subsystem i needs only neighboring and local water levels and

local water flows to compute the corresponding power output. The disadvantage of the static

power reference division is that the global power reference tracking is not very accurate, as will

be shown in the simulations section.

Dynamic local power references. The static power division essentially means that each sub-

system always tracks a fraction of power reference that is equal to the proportion it produces

in the steady-state condition. When the total power reference deviates significantly from the

steady-state power, this idea may not work well since the proportional change of the local power

reference can lead to sub-optimal performance. Inspired by an idea in [15], we now introduce the

dynamic power division, in which the subsystems have more flexibility in choosing the appro-

priate local power reference to be tracked. The main idea is that each subsystem will exchange

power references with its direct neighbors.

Let us define for each pair (i, j) with j ∈ Ni a node that is in charge of determining the power

exchange variable between subsystems i and j, denoted by δi j if node i is in charge and by δ ji if

node j is in charge 2. Then for each subsystem we form the set 3:

∆i = { j | j ∈ Ni, i is in charge of δi j}. (24)

Now we replace (21) by the following cost function:

min
{xi,δi}i=1,...,8

8∑

i=1

∣∣∣∣∣p
ref
i +

∑

j∈∆i

δi j −
∑

j∈Ni\∆i

δ ji − Pix

∣∣∣∣∣ (25)

with δi the vector containing all δi j, j ∈ ∆i, and pref
i

the nominal power reference for subsystem

i. In words, the local power reference for each subsystem i deviates from the nominal value by

adding the exchange amounts of the links that i manages and subtracting the exchange amounts

2Note that here we discuss the power division for each sampling step, i.e., there are δi j(k) or δ ji(k) with k = 0, . . . ,N−

1.
3A simple way is to let the subsystem with smaller index lead the exchange, i.e., ∆i = { j| j ∈ Ni, j > i}.
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of the links that affect i but are decided upon by its neighbors. Note that problem (25) has a

sparse structure that complies with the existing sparse structure of the HPV system, i.e., this

method does not expand the neighborhood set of each subsystem.

The advantage of this dynamic power division is that it makes use of the existing network

topology to form a sparse cost function, and the total power reference is preserved even if the

local power references can deviate from the nominal values, i.e., we always have:

8∑

i=1

{
pref

i +

∑

j∈∆i

δi j −
∑

j∈Ni\∆i

δ ji

}
= pref (26)

Now that we have a separable cost function by using either a static or a dynamic power

division technique, we can cast the approximate optimization problem in the form (7) that has

a separable dual problem, and apply Algorithm 1 at every sampling step. However, due to the

requirement of positive definiteness of the quadratic term in the objective function, the introduced

power exchange variables δi j must be penalized with a positive definite quadratic term. This

implies that power reference exchange has an associated cost.

Communication structures. In the preceding sections we have presented three different ways

to handle the power reference term. The first is the one with centralized power reference term

which we hereby denote by GLOBAL–REF. The second is the one with static local power ref-

erences which we denote by LOC–REF–STAT. The third is the dynamic local power reference

which from here on is denoted by LOC–REF–DYN. In Table 1 we provide an overview of the

neighborhood sets Ni for the different power reference tracking schemes.

Table 1: Neighborhoods of subsystems (Ni)

Subsystem GLOBAL–REF LOC–REF–DYN LOC–REF-STAT

1 {1, . . . , 8} {1, 3, 4} {1, 3, 4}

2 {1, . . . , 8} {2, 6, 7} {2, 6, 7}

3 {1, . . . , 8} {3, 1, 4} {3, 1, 4}

4 {1, . . . , 8} {4, 1, 3, 5} {4, 1, 3, 5}

5 {1, . . . , 8} {5, 4, 6} {5, 4, 6}

6 {1, . . . , 8} {6, 2, 7, 5} {6, 2, 7, 5}

7 {1, . . . , 8} {7, 2, 6, 8} {7, 2, 6, 8}

8 {1, . . . , 8} {8, 7} {8, 7}

We can see that all subsystems have the same neighborhood sets for the dynamic local refer-

ence tracking and the static local reference tracking.

4.2.2. Relaxation of nonlinear constraint

The second issue that hinders the optimization problem (20) from being solved using Algo-

rithm 1 are the nonlinear constraints qCiT
(k)qCiP

(k) = 0 with i = 1, 2. In this section we present a

way to relax these constraints.

Assuming in the cost function we have the penalty RCi
[qCiT

qCiP
]T on the pump and turbine

action in ducts Ci, i = 1, 2, with

RCi
=

[
RCiT

0

0 RCiP

]
. (27)
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We also have the constraints that qCiP
(k) ≥ 0, qCiT

(k) ≥ 0 and qCiT
(k)qCiP

(k) = 0. We relax this by

removing the nonlinear constraint and adding a cross-penalty α
√

RC1P
RC1T

for some α ∈ (0, 1) in

the cost function, i.e., we set

RCi
=

[
RCiT

α
√

RCiP
RCiT

α
√

RCiP
RCiT

RCiP

]
. (28)

This relaxation is implementable using the proposed algorithm since the nonlinear constraint is

removed and replaced by a cross-penalty. The cross-penalty gives an additional cost if both qCiT

and qCiP
are non-zero. The closer α is to 1, the larger the penalty. For α ≥ 1 it is easily verified

that we lose strong convexity on the quadratic cost function, i.e., RCi
loses positive definiteness

and such choices for α are therefore prohibited.

The relaxation is not equivalent to the original nonlinear constraint and thus cannot guarantee

that the nonlinear constraint is respected using this relaxation. However, it turns out that the

optimal solution using the cross-penalty in the cost (28) in most simulated cases coincides with

the optimal solution when the nonlinear constraint qCiT
(k)qCiP

(k) = 0 and the original diagonal

cost (27) are enforced. In some cases however, the optimal solution using the relaxation does not

respect the nonlinear constraint. To address this, a two-phase optimization strategy is developed

and presented next.

4.2.3. Two-phase optimization

We propose a two-phase optimization strategy as an ad-hoc branch and bound optimization

routine that uses two consecutive optimizations. In the first optimization the relaxed optimization

problem is solved. If the nonlinear constraints are respected, i.e., we get a solution that satisfies

qCiT
(k)qCiP

(k) = 0, the global optimal solution for the non-relaxed problem is found. If some of

the nonlinear constraints do not hold, the optimization routine is restarted with setting the smaller

flow between qCiT
(k) and qCiP

(k) to zero, for i = 1, 2, k = 0, . . . ,N − 1. The resulting algorithm is

summarized below.

Algorithm 2. Distributed branch and bound algorithm

1. Solve the relaxed problem using Algorithm 1

2. If qCiT
(k)qCiP

(k) , 0, i = 1, 2, t = 0, . . . ,N − 1

If qCiT
(k) > qCiP

(k)

Add constraint: qCiP
(k) = 0

Else

Add constraint: qCiT
(k) = 0

End

End

3. Solve relaxed problem using Algorithm 1 with the additional flow constraints

This ad-hoc branch and bound technique does not theoretically guarantee that the optimal

flow directions are chosen. However, we can guarantee that the nonlinear constraints are always

satisfied. Further, for the distributed MPC formulation we will see in the simulations section that

the global optimal solution for the non-relaxed problem is found at every time step using this

branch and bound algorithm.
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4.3. Distributed estimation

From Section 2 we know that not all states can be measured, which implies that an observer

needs to be used to feed an initial condition to the optimizer. The reduced-order linear model

(14)-(15) has local dynamics and outputs only, which implies that an observer can be designed

in decentralized fashion. We introduce the local estimate x̂r
i

and the local observer-gain Ki, and

the following local observer dynamics

x̂r
i(k + 1) = Ar

ii x̂
r
i(k) + Br

iq
r(k) + Ki(y

r
i(k) −Cr

i x̂
r
i(k))

Because of the sparse structure of Br
i

this observer can be implemented in a distributed fashion

where only the inflows to subsystem i need to be communicated. The estimation error x̃r
i
= xr

i
− x̂r

i

has local error dynamics

x̃r
i(k + 1) = (Ar

ii − KiC
r
i )x̃r

i(k)

Thus, the observer can be designed in a decentralized fashion and be implemented in a distributed

fashion.

5. Simulation results

We perform distributed MPC simulations of the hydro power valley using 3 different ways of

handling the power reference: GLOBAL–REF, LOC–REF–DYN, and LOC–REF–STAT, using

the proposed Algorithm 2. We also solve the problem (20) using a state-of-the-art MIQP-solver,

namely CPLEX. In CPLEX the nonlinear constraints given in (20) can be addressed by introduc-

ing binary variables. More specifically, for each duct Ci, i = 1, 2, we define two virtual flows,

qCiP
and qCiT

, and require that both values are nonnegative. Each virtual flow has a maximum

capacity, hence the constraints for these flows are:

0 ≤ qCiP
≤ qmax

CiP

0 ≤ qCiT
≤ qmax

CiT

(29)

We introduce binary variables bi ∈ {0, 1} and impose the following constraints:

qCiT
≤ qmax

CiT
bi

qCiP
≤ qmax

CiP
(1 − bi)

(30)

The constraints (29) and (30) ensure that either qCiP
= 0, qCiT

≥ 0 (if bi = 1) or qCiT
= 0, qCiP

≥

0 (if bi = 0).

This formulation results in an MIQP for which there are efficient Branch-and-Bound algo-

rithms implemented in CPLEX. To make the 1-norm term in (20) fit the MIQP-formulation used

in CPLEX we introduce auxiliary variables v and use the following equivalent reformulation

min
x
‖Px − p‖1 ⇔ min

x,v
1T v

s.t. − v ≤ Px − p ≤ v

We also compare the proposed distributed MPC method to a decentralized MPC approach in

which each subsystem solves its own local MPC problem without any communication, in order

to show the advantage of DMPC w.r.t. decentralized MPC.
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(a) Decentralized MPC
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(b) DMPC and LOC–REF–STAT
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(c) DMPC and LOC–REF–DYN
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(d) DMPC and GLOBAL–REF

Figure 2: Comparison of power reference tracking performance using DMPC and decentralized MPC approaches. Solid

lines: produced power, dashed lines: reference power, dotted lines: steady state power.

5.1. Simulation details

We use the original nonlinear continuous model presented in [28] as simulation model. The

ode-solver ode15s in MATLAB is used to perform the simulations. A MATLAB function that

computes the derivatives needed by ode15s is provided in the benchmark package [28]. The

control system consists of the distributed observer from Section 4.3 which feeds Algorithm 2,

with estimates of the current state.

Besides the mismatch between the model used for control and the model used for simulation

we have also added bounded process noise to capture mismatch between the simulation model

and the real plant. The magnitude of the worst case process noise was chosen to be 1% of the

steady-state level xss. We also use bounded additive measurement noise where the measured

water levels are within ±3 cm from the actual water levels.

We use a sampling time of 30 minutes in all simulations and the control horizon is N = 10,

i.e., 5 hours. The simulations are performed over a 24 hour period since the power reference

trajectories are periodic with this interval.

All simulations and optimizations were implemented on a PC running MATLAB on Linux

with an Intel(R) Core(TM) i7 CPU running at 3 GHz and with 4 GB RAM.

5.2. Control performance comparison

The power reference tracking results are plotted in Figures 2(d)–2(a) where the full power

reference and the sum of the local power productions are plotted. The scheme GLOBAL–REF
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achieves very good tracking performance, while the scheme LOC–REF–STAT shows a signifi-

cant deterioration in tracking performance. However, the introduction of the possibility to ex-

change power references in LOC–REF–DYN between subsystems restores the very good track-

ing performance while keeping the computations distributed. The tracking performance of the

decentralized MPC approach is very poor, due to the lack of communications. Hence, it is rec-

ommended not to use a decentralized MPC approach, unless communication is prohibited due to

the lack of communication facilities or due to the policy of different authorities.

In Appendix A and Appendix B there are figures that show the input and output evolutions

and the corresponding constraints with the scheme LOC–REF–DYN. We can observe that all

constraints are satisfied despite disturbances, model mismatch, and the use of an observer. For

the schemes GLOBAL–REF and LOC–REF–STAT all the constraints on the inputs and outputs

are also satisfied.

During the simulations, it is observed that all schemes achieve stable closed-loop behav-

iors, which can be explained that the HPV system is already marginally stable and does not

have critical dynamics, and the prediction horizon is long enough so that the MPC controllers

do not introduce instability to the closed loop. Note that neither the centralized MPC nor the

distributed or decentralized MPC approaches used in this simulations employ a method that pro-

vides guaranteed stability to the closed-loop system, since this property is beyond the scope of

this paper. Based on the techniques for distributing the computation and improving the efficiency

of the algorithm that are proposed in this paper, one can further incorporate other MPC schemes

that guarantee the closed-loop stability, which could be important for other types of applications

where there are large mismatch between the nonlinear and the linearized models.

5.3. Computational efficiency/accuracy

In Table 2 we provide a comparison of the execution times of the centralized MPC problems

(20). We compare the distributed Algorithm 2 to the solver CPLEX when solving (20), i.e., with

power-division GLOBAL–REF in Algorithm 2. To solve this problem using CPLEX, an MIQP

formulation is used. In every iteration of Algorithm 2 the relaxed problem is solved twice. We

also compare the above execution times to the case when we solve the first relaxed problem in

Algorithm 2, which is a QP, using CPLEX. At each sampling step, the same problem is solved,

and the execution time t is measured. Although in this example the solvers easily solve the

problem within the time frame of the sampling time, we can see that the computation time for

our MATLAB-implemented algorithm is always lower than the C-implemented CPLEX for both

the MIQP and QP cases.

Table 2: Comparison of computation time between Algorithm 2 and CPLEX for 48 instance of the same problem

Algorithm 2 CPLEX for MIQP CPLEX for QP

min t (s) 0.023 0.087 0.049

max t (s) 0.086 0.121 0.089

average t (s) 0.054 0.098 0.063

std dev t (s) 0.017 0.009 0.009

As previously discussed, Algorithm 2 cannot guarantee that the global optimum for (20) is

found. However, in the DMPC simulations presented in this section the global optimum of (20)

is found at every sampling step using Algorithm 2.
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5.4. Communication requirements

The sizes of the optimization problems using power reference division GLOBAL–REF, LOC–

REF–DYN or LOC–REF–STAT are almost equal. Comparing GLOBAL–REF to LOC–REF–

STAT we get some additional constraints due to the power reference division and comparing

LOC–REF–DYN to LOC–REF–STAT we get some additional decision variables δi j to enable

distributed power reference re-assignment.

In Table 3 the number of iterations niter needed to obtain the solution is presented. The

average and max values of niter and the standard deviation are computed using 48 simulation

steps, i.e., 24 hours.

Table 3: Number of iterations to solve the MPC optimization in one step

Alg. 1 with Alg. 1 with Alg. 1 with

GLOBAL–REF LOC–REF–DYN LOC–REF–STAT

average niter 311.3 579.1 942.5

max niter 498 1054 2751

std dev niter 93.8 210.9 440.8

We can notice that different DMPC schemes converge with different average numbers of

iterations. The reason is that for LOC–REF–STAT it is more difficult to satisfy the different

1-norm terms with equality, i.e., to follow the local power references. This implies that the

corresponding dual variable ν becomes large (close or equal to γ) and it takes more iterations to

achieve convergence. As a result, the scheme LOC–REF–STAT with a simpler communication

structure might require more communication resources than e.g., GLOBAL–REF, which has a

more complicated communication structure but needs fewer iterations.

In order to estimate the total time required for communications within each sampling time,

we now assume the worst case happens in every iteration of Algorithm 2, in which Algorithm 1

has to be executed two times. In Algorithm 1, also assume the worst case that every primal

and dual variable has to be exchanged between distributed controllers, with prediction horizon

N = 10 there are 10 × (44 + 65) = 1090 variables to be transmitted once per iteration. Let each

variable be a 32-bit floating-point, then the total time it would take for transmitting exchanged

variables in 1000 iterations is:

2 × 1090 × 32 × 1000 = 69, 760, 000(bits) (31)

or roughly 70 Mbits. With a decent wireless network that can connect each two nodes with

a rated transfer as 7 Mbps, the total time for communications is less than 10 seconds for one

thousand iterations. Note that in practice, there should be more communication delays due to

the initialization of transmissions. Since the communication time is considerably shorter than

the sampling time of 30 minutes, the iterative methods taking about one thousand iterations

sampling time can still be implemented in real time.

The scheme LOC–REF–DYN performs very well in terms of communication, computation,

as well as performance aspects and is therefore the chosen candidate for distributed implementa-

tion for the given case study.

6. Conclusions and future work

The proposed distributed MPC approach has been applied to the power reference tracking

problem of the HD-MPC hydro power valley benchmark. Two distributed schemes have been
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compared to centralized and decentralized MPC methods. We have provided relaxations and

approximations for the original nonlinear nonsmooth problem formulation as well as proposed

a way to follow a centralized power reference in a distributed fashion. Furthermore, we have

presented a practical branch-and-bound algorithm that solves all optimization problems encoun-

tered in the simulations and achieves as good performance as the centralized MPC that is known

to have global optimum. The simulation results show that the introduced approximations and

relaxations capture the behavior of the system well and that very good control performance is

achieved. Finally, a comparison to state-of-the-art optimization software (CPLEX) shows that

the proposed algorithm has significantly better execution times in general.

As the next step before implementation in real plants, the proposed distributed MPC ap-

proach should be tested against different hydraulic scenarios and other HPV setups. To cope

with varying water flows entering the system, these should be estimated and compensated for.

Furthermore, a weather model could be included that estimates the future inflows to the system.
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Appendix A.
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Figure A.3: Input constraint satisfaction using Algorithm 2 and power division LOC–REF–DYN. Dash-dotted lines:

upper bounds, dashed lines: lower bounds.
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Figure B.4: Output constraint satisfaction using Algorithm 2 and power division LOC–REF–DYN. Dash-dotted lines:

upper bounds, dashed lines: lower bounds.
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