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Ant Colony Routing Algorithm for Freeway Networks

Zhe Conga,∗, Bart De Schuttera, Robert Babuškaa

aDelft Center for Systems and Control, Delft University of Technology, 2628 CD Delft, The Netherlands

Abstract

Dynamic traffic routing refers to the process of (re)directing vehicles at junctions in a traffic net-

work according to the evolving traffic conditions. The traffic management center can determine

desired routes for drivers in order to optimize the performance of the traffic network by dynamic

traffic routing. However, a traffic network may have thousands of links and nodes, resulting in a

large-scale and computationally complex nonlinear, non-convex optimization problem. To solve

this problem, Ant Colony Optimization (ACO) is chosen as the optimization method in this paper

because of its powerful optimization heuristic for combinatorial optimization problems. ACO is

implemented online to determine the control signal — i.e., the splitting rates at each node. How-

ever, using standard ACO for traffic routing is characterized by four main disadvantages: 1.

traffic flows for different origins and destinations cannot be distinguished; 2. all ants may con-

verge to one route, causing congestion; 3. constraints cannot be taken into account; and 4. neither

can dynamic link costs. These problems are addressed by adopting a novel ACO algorithm with

stench pheromone and with colored ants, called Ant Colony Routing (ACR). Using the stench

pheromone, the ACR algorithm can distribute the vehicles over the traffic network with less or

no traffic congestion, as well as reduce the number of vehicles near some sensitive zones, such

as hospitals and schools. With colored ants, the traffic flows for multiple origins and destinations

can be represented. The proposed approach is also implemented in a simulation-based case study

in the Walcheren area, the Netherlands, illustrating the effectiveness of the approach.

Keywords: Ant Colony Optimization, Model Predictive Control, Dynamic Traffic Routing,

Stench pheromone.

1. Introduction

Traffic network control involves complex traffic conditions related to traffic flow dynamics,

driver behavior, and traffic demand. With the rapid growth of human population and jobs dis-

tributed unevenly in different locations, effective and efficient operation of traffic networks is

required more than ever. Nowadays, increasing and expanding infrastructures is costly and im-

practical, and it often only temporarily relieves the burden of traffic networks rather than aiming

for a long-term solution. Therefore, development of traffic control strategies is much more de-

sirable. Dynamic traffic routing is one of such promising methods, which is often used to guide
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drivers in the traffic networks, seeking to achieve some objectives, such as user equilibrium or

system optimum (Wardrop, 1952).

A broad literature exists on this topic (Peeta and Ziliaskopoulos, 2001; Ziliaskopoulos, 2000;

Carey and Subrahmanian, 2000; Ran et al., 1993; Mahmassani and Peeta, 1993, 1995). Peeta and

Ziliaskopoulos (2001) summarize the main dynamic traffic assignment approaches, ranging from

mathematical programming (Ziliaskopoulos, 2000; Carey and Subrahmanian, 2000), to optimal

control (Ran et al., 1993; Kotsialos et al., 2002), and to simulation-based methods (Mahmas-

sani and Peeta, 1993, 1995). Specifically, in mathematical programming models, the problem

is usually formulated in a discrete-time setting. Ziliaskopoulos (2000) uses the so-called cell

transmission model to formulate the single destination system optimum dynamic traffic assign-

ment problem as a linear programming problem. Carey and Subrahmanian (2000) also propose a

linear system optimum formulation, aiming at deriving insights in the properties of the dynamic

traffic assignment model. For optimal control method, Ran et al. (1993) use it to obtain a convex

model for the instantaneous user equilibrium dynamic traffic routing problem by defining link

inflows and outflows as control variables. Kotsialos et al. (2002) formulated the dynamic traffic

routing as a discrete-time optimal control problem for finding the system optimum solution, and

used a numerical non-linear optimization algorithm to solve it. The simulation-based approaches

focus on traffic simulations instead of analytical evaluation. Mahmassani and Peeta (1993, 1995)

use a mesoscopic traffic simulator, DYNASMART, and an iterative algorithm to find the sys-

tem optimum and user equilibrium solutions. Other work, e.g., (Bottom et al., 1999; Paz and

Peeta, 2009b,a), focuses on the drivers’ reaction to the guidance information provided in the

route choice mechanism. Bottom et al. (1999) developed an analysis framework for generating

route guidance instructions, by using real-time measurements and short-term predictions. Paz

and Peeta (2009b,a) aim at enhancing the traffic network performance while explicitly account-

ing for drivers’ likely reactions to the real-time information.

Some of the work above uses a numerical non-linear optimization methods, which require

extremely high computational burden, while others sacrifice performance for improving the com-

putation speed. In order to find a well-balanced trade-off between the performance and the com-

putation speed, we propose a novel, alternative algorithm for dynamic traffic routing based on

artificial ants in this paper. Ants in nature can display surprisingly intelligent collective behavior

to find the shortest route between their nest and a source of food, although each individual ant

only has a very local searching capability. This results from the fact that ants use a medium

called pheromone to communicate with each other so that they can indirectly exchange infor-

mation. The class of Ant Colony Optimization (ACO) algorithms (Dorigo and Stützle, 2004)

originates from this self-organizing behavior of ants, and has been developed to solve a number

of combinatorial optimization problems, such as shortest path problems, optimal task assign-

ment problems, best routing scheme problems, and so on. Furthermore, some work has also

been done in solving the dynamic traffic routing problem (Tatomir and Rothkrantz, 2006; Alves

et al., 2010), through using the standard ACO algorithm. However, most of the algorithms re-

ported in literature have their own limitations. Tatomir and Rothkrantz (2006) use a routing table

containing possible splitting rates of traffic flows in every network node. At each node, ants

choose one group of splitting rates from the table to apply in the traffic network. This method

may result in an exponentially increasing computational burden when more nodes are added in

the network, which makes the algorithm less efficient. Moreover, Alves et al. (2010) only in-

vestigate single-origin single-destination networks, and they use a static traffic model where the

traffic conditions are time-invariant.

In fact, using the standard ACO algorithm for dynamic traffic routing suffers from four main

2



issues:

1. Ants in ACO have no individually pre-assigned destinations, while each vehicle in a traffic

network has its own pre-determined destination;

2. Ants only strive for the user equilibrium, while traffic management has global objectives;

3. Ant networks have no limiting capacities on links, while traffic networks are constrained

by link capacity;

4. Link costs in ant networks are fixed and static, while link costs in traffic networks dynam-

ically depend on the time-varying traffic conditions.

Motivated by the four issues above, we introduce an ant-based routing algorithm for traffic net-

works, called Ant Colony Routing (ACR), in this paper. The first issue has been addressed

by Cong et al. (2011) by introducing a variant of the ACO algorithm, called ACO with stench

pheromone (ACO-SP), which is developed to solve a network routing problem. The stench

pheromone has an opposite function to the regular pheromone in the standard ACO algorithm,

and it is used to disperse ants over the network for the sake of a system-wide objective. In order

to tackle the second issue, we add a new concept called colored ants, in which each color is

assigned to a corresponding destination, and colored ants are only sensitive to their own color.

Moreover, the capacity constraints, as well as other limitations on the numbers of vehicles on

links, are addressed by properly selecting the stench pheromone function. Finally, time-variant

traffic variables, obtained from dynamic traffic models, are taken into account into the link cost

for the ant network, and an iterative algorithm is used to capture the dynamic nature.

The ACR algorithm is going to be applied within a Model Predictive Control (MPC) (Ma-

ciejowski, 2002; Rawlings and Mayne, 2009; Hegyi et al., 2005) framework. However, before

that, we first implement a network pruning step. This is because a traffic network may involve

thousands of links and nodes, and some of the links and nodes compose routes that could be rela-

tively long such that they are unlikely to be chosen by drivers. We hence use the network pruning

step to remove such “unnecessary” links and nodes to reduce the complexity of the traffic net-

work, and to decrease the computational burden of the ACR algorithm. The network pruning step

involves a static optimization problem, which is not solved by ACO but by linear programming,

and is only performed once. For on-line dynamic traffic routing, the MPC controller is repeat-

edly executed by using the ACR algorithm as optimization method. Specifically, at each control

step, we first measure the current state of the traffic network, and use a dynamic traffic model to

predict the future state for a certain prediction period. Then, both current and predicted states are

used to calculate the link cost assigned to each link in the ant network, and accordingly the ACR

algorithm is used to optimize the routing problem. As a result, the control signals in the traffic

network — splitting rates, are determined by the numbers of ants that have traveled on each link

in the ant network. We keep on recycling such a prediction-optimization loop at the same control

step until a given convergence criterion is satisfied, and then we will apply the resulting splitting

rates to the real traffic network. Next, we shift both control horizon and prediction horizon of

MPC one sample time step forward, and repeat the whole process. The structure of the proposed

control strategy is illustrated in Figure 1.

The rest of this paper is structured as follows. Section 2 defines the dynamic traffic routing

problem. Next, the ACO-SP algorithm is briefly recapitulated in Section 3. Section 4 illustrates

the ACR algorithm for solving the dynamic traffic routing problem. In Section 5, a two-step

control strategy — network pruning and MPC — is elaborated on. Section 6 illustrates the new

dynamic traffic routing control method using a study case involving the freeway network in the
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Figure 1: Structure of the proposed dynamic traffic routing control strategy
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Figure 2: Illustration of inflow qin
o,d(k) of origin-destination pair (o,d) distributed over multiple routes.

Walcheren area, the Netherlands. A short discussion of open issues and topics for future work

finally conclude the paper in Section 7.

2. Problem Statement

The objective of this paper is twofold:

1. We aim at finding an optimal routing solution to reduce the travel costs (total time spent

(TTS) in this paper1) in the traffic network;

2. We aim at reducing the number of vehicles on each link in the traffic network, especially

in some sensitive zones, e.g., near hospitals and schools, in order to improve safety and to

reduce noise and pollution.

Unlike in most other optimization-based traffic control methods, we do not use an explicit overall

objective function in the ACR algorithm, because the two sub-objectives introduced above are

respectively evaluated by cost function and stench pheromone function in ACR. More specifi-

cally, the first sub-objective is based on the fact that artificial ants always strive for the optimal

solution, and the second sub-objective is achieved by the stench pheromone pushing artificial

ants away when ants converge on the same link. Through this attracting and pushing mechanism,

the two sub-objectives can be implicitly included the ACR algorithm. This paper aims at finding

a well-balanced trade-off between sub-objectives 1 and 2. In practice, such a trade-off should

depend on traffic policies made by traffic management authorities.

Next, we will introduce some important concepts related to the traffic networks, which will be

used in this paper. A traffic network, especially a freeway network, can be modeled as a directed

graph with nodes and links as shown in Figure 2. In a traffic network, a stretch of road with

uniform characteristics — i.e., without any on-ramp or off-ramp and without any major changes

in geometry — is called a link (indicated by the index m). For more accurate modeling, each link

m, with a length Lm, is divided into Nm segments (indicated by the index i). If major changes

occur in the characteristics of a link, then a node is placed there and a new link starts. There

are three different types of nodes in the network, origins (indicated by the index o), destinations

1Any other cost, e.g., tolling, fuel consumption, emission, can be added to the travel costs in the ACR algorithm.
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symbol unit meaning

s, t [-] vertex in the ant network

n [-] node in the traffic network

O [-] set of origins in the traffic network

D [-] set of destinations in the traffic network

N [-] set of intermediate nodes in the traffic network

M [-] set of all links in the traffic network

I(n) [-] set of incoming links for node n

O(n) [-] set of outgoing links for node n

k [-] simulation step counter

kc [-] control step counter

T [s] simulation sample time

Tc [s] control sample time

qin
o,d(k) [veh/h] traffic inflow from origin o to destination d at simulation step k

qm,i,d(k) [veh/h] traffic flow with destination d on segment i of link m at simulation step

k

Qn,d(k) [veh/h] total traffic flow with destination d in node n at simulation step k

βn,m,d(kc) [-] splitting rate of vehicles with destination d turning from node n to link

m at control step kc

Np [-] prediction horizon

ℓ [-] map associating an arc (s, t) in the ant network to a link m = ℓ(s, t) in

the traffic network

ϕs,t(kc) [-] link cost on arc (s, t) = ℓ−1(m) in the ant network at control step kc

Table 1: Symbols used for networks

(indicated by the index d), and intermediate nodes (indicated by the index n). From an origin o

to a destination d, a concatenation of links without loops is defined as a route (indicated by the

index r). All important symbols used in the paper are listed in Table 1.

We consider a discrete-time set-up for traffic networks in this paper. The simulation sample

time T is used to describe the traffic model, and the control sample time is denoted by Tc. Cor-

respondingly, we define k as the simulation step counter, and kc as the control step counter. For

the sake of simplicity, we assume that T is an integer divisor of Tc with a relationship Tc = MT ,

where M is an integer.

For each origin-destination (OD) pair (o,d) ∈O×D , with O the set of origins and D the set

of destinations in the network, qin
o,d(k) is the traffic inflow with destination d entering at origin

o at simulation step k. For each segment i of link m ∈M , with M the set of all links, the flow

of vehicles at simulation step k that are traveling towards destination d is denoted by 2 qm,i,d(k).
Without loss of generality3, we assume from now on that each origin o∈O has only one outgoing

2All the future traffic states, i.e. flow qm,i(k), density ρm,i(k), speed variable vm,i(k), and queue length wm(k) at each

simulation step k can be predicted by a dynamic traffic model, provided the O-D demands and the current traffic states

are known. More specifically, the O-D demands can be obtained in two ways: via O-D estimation Zhou et al. (2003) or

via on-board devices. Usually, the current total flow variable qm,i(k), the density variable ρm,i(k), or the speed variable

vm,i(k) can be directly measured by loop detectors or cameras, and the partial flow variable qm,i,d(k) can be furthermore

estimated by using state estimators Stano et al. (2013).
3If necessary, we can always introduce a virtual link with zero length and zero travel time connected to a virtual

node.
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link, and that each destination d ∈ D has only one incoming link. For a specific node n ∈N ,

with N the set of intermediate nodes in the network, the total inflow Qn,d(k) with destination d

at simulation step k is given by:

Qn,d(k) = ∑
m′∈I(n)

qm′,Nm′ ,d
(k)

with I(n) the set of incoming links of node n, and qm′,Nm′ ,d
(k) the traffic flow of vehicles with

destination d on the last segment (with index Nm′ ) of incoming link m′ ∈ I(n) at simulation

step k. The traffic flow qm,1,d(k) on the initial segment (with index 1) of outgoing link m ∈
O(n) at simulation step k is then determined by the splitting rate βn,m,d(kc) at the corresponding

control step kc, denoted by kc(k) with kc = floor(k/M), where function floor(x) denotes the

largest integer less than or equal to x:

qm,1,d(k) = βn,m,d(kc(k))Qn,d(k) .

As mentioned in Section 1, the optimal traffic routing solution is applied through the splitting

rate βn,m,d(kc(k)) in each node. In the other words, the goal of the ACR algorithm can also be

considered as determining the optimal splitting rate βn,m,d(kc(k)) in the traffic network.

3. ACO algorithm with Stench Pheromone

The ACO-SP algorithm (Cong et al., 2011) has been developed to solve a network routing

problem by using artificial ants. This algorithm aims at dispersing ants over the network without

ending up in a situation where all ants travel on the best4 route that may cause congestion.

More specifically, ants in ACO-SP always strive for the best route at the beginning of the

optimization; if the best route becomes too crowded5,6 for ants to travel on, then ants will strive

for the second best route; if the second best route also gets fully loaded, the third best one will

be chosen, etc. The reason that ants can be dispersed rather than converging to the same route

is because ACO-SP is characterized by two types of pheromone: the same regular pheromone

as in the standard ACO algorithm and the newly introduced stench pheromone. The former is

used to attract ants to the best routes in the network so as to guarantee the effectiveness of the

algorithm, while the latter is used to decrease the total amount of pheromone levels on the arcs

to prevent the regular pheromone from being accumulated too much5,6 on the same arc. In such

a way, a part of the ants are pushed away from their previously selected route, and start to choose

an alternative route in the network.

An ant network is a network traveled by ants. It is usually modeled as a weighted graph

according to a specific optimization problem (see e.g. Stützle and Dorigo (1999); Salari and

Eshghi (2008); Rivero et al. (2012)). Moreover, a particular route ra in the ant network is a

4‘Best’ is in the sense of e.g. minimal travel time.
5The terms “too crowded” and “too much” may sound vague due to the fact that their definitions could vary in

different cases, e.g. a small number of ants could mean “crowded” on the links that represent sensitive zones in the traffic

network, while a large number of ants could still mean “not crowded” on the links that represent non-sensitive zones in

the traffic network. This indicates an interplay between policy decisions and tuning parameters.
6The terms “too crowded” and “too much” are used to explain the second objective, which is related to the occurrence

of traffic congestion. Travel costs like the TTS or the other objective (see Footnote 1) should be included in the first

objective so that they are properly used in the ACR algorithm.
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concatenation of arcs (s, t) chosen by ant a from the origin vertex to the destination vertex,

where vertices s and t connected by the arc (s, t). A pheromone variable τs,t is associated with

each arc (s, t) in the network, and it represents the knowledge acquired by ants about the optimal

solution over time. At the beginning of the ACO-SP algorithm, all pheromone variables should

be set to some initial value τ0 > 0.

There are two loops in the ACO-SP algorithm: an inner loop, which is called as the route

construction, and an outer loop, which is called as the pheromone updating. We explain these

two loops in more detail as follows.

• In the inner loop, all ants repeatedly select arcs to construct a route from an origin vertex

to a destination vertex. For each ant a, a route construction starts with an empty route

ra = /0, and at each construction step ra is extended by adding a feasible arc (s, t) if ant

a currently stands at vertex s and moves to vertex t. In this loop, ant a chooses the next

solution component (s, t) with the probability pa(t|s) calculated as follows:

pa(t|s) =
(max{τmin,τs,t})

α

∑
t̃∈Ns,a

(

max{τmin,τs,t̃}
)α , (1)

with τmin > 0 a given constant which prevents the denominator of (1) from becoming zero,

the parameter α > 1 determining the relative importance of pheromone, i.e. ants are more

likely to choose links with high pheromone level when the value of parameter α is higher,

and Ns,a the set of vertices that are connected to node s and have not yet been visited by

ant a. If Ns,a = /0, ra cannot lead to a valid route and the construction of route ra is aborted.

The construction of the route is completed when a destination vertex is added to ra.

• In the outer loop, the pheromone value on each arc τs,t is updated by the ants that have

chosen arc (s, t). After all the ants have finished constructing the solutions, the pheromone

value is updated by:

τs,t ← (1−ρevap)τs,t +



 ∑
r∈Rupd

∆τs,t(r)



−Gs,t(N
ant
s,t (kc)), (2)

where Nant
s,t (kc) denotes the number of ants that choose link (s, t) in the current iteration of

the outer loop, Rupd denotes the set of solutions that are used for updating. In fact, there

exist various specifications of Rupd, but the one we consider in this paper belongs to the

most basic ACO algorithm, called the Ant System (Dorigo et al., 1996). This update rule

uses all the valid solutions found in the current trial. The parameter ρevap ∈ (0,1] is called

the evaporation rate, which has the purpose of uniformly decreasing the pheromone values

to avoid too rapid a convergence towards a sub-optimal solution. The regular pheromone

deposited by ant a on arc (s, t) is given by:

∆τs,t(r) =

{

F(r), if (s, t) ∈ r,

0, otherwise,
(3)

where F is a cost function assigning strictly positive values to each solution r, where a

higher value of F corresponds to a better solution. The stench pheromone deposited on arc
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(s, t) should correspond to the number of ants Nant
s,t (kc). The more ants choose arc (s, t),

the more stench pheromone is required to be deposited. Similar to the regular pheromone,

we calculate the stench pheromone on arc (s, t) through a function Gs,t(·), that has the

following properties:

1. If there are no ants visiting link (s, t), i.e. Nant
s,t (kc) = 0, Gs,t(0) = 0 because then no

stench pheromone has to be deposited;

2. Gs,t(·) has a low value for a small number of ants, and the value of Gs,t(N
ant
s,t (kc)) will

be monotonically non-decreasing as Nant
s,t (kc) increases;

3. Gs,t can include one or more intermediate threshold levels, at which the value of Gs,t

will significantly change (see Section 4 for details);

4. When Nant
s,t (kc) reaches the storage capacity of link N

ant,cap
s,t , the value of Gs,t(N

ant
s,t (kc))

steeply rises.

When a given maximum number L of iterations of the outer loop has then been reached, the

entire algorithm stops; the optimal routing solution is then determined based on the assignment

of ants in the ant network.

4. Ant Colony Routing (ACR)

The ACR algorithm is proposed to tackle the four differences that are stated in Section 1,

between an ant network and a traffic network. The solutions are detailed in the rest of this section.

Please recall that we have two sub-objectives in this paper: minimizing TTS and penalizing a

large number of vehicles in the sensitive zones. Therefore, the regular pheromone function F is

defined based on the travel time, and the stench pheromone function G is defined based on the

number of ants/vehicles, with parameters determined according to traffic policy preferences.

4.1. ACO-SP

The ACO-SP algorithm introduced in Section 3 is used to solve the traffic routing problem

for reducing the travel cost in a traffic network without creating any congestion, if possible. This

is the goal that traffic policy decisions generally aim at. Since ACO-SP is applied for dynamic

routing in traffic networks, the ant network should be built up according to the traffic network

that we want to optimize. More specifically, the ant network has the same topology as the traffic

network7, i.e., the arcs and the vertices in the ant network respectively correspond to the links

and the nodes in the traffic network, and moreover at each control step kc the cost ϕs,t(kc) on arc

(s, t) is translated from the traffic information on the corresponding link m = ℓ(s, t). Since we

choose TTS as the main objective8 in this paper, the cost ϕs,t(kc) is calculated according to the

travel time on link m = ℓ(s, t). The cost function9 F(r,kc) in (3) can be defined as the inverse of

travel time on route r:

F(r,kc) =
Q

∑(s,t)∈r ϕs,t(kc)
,

7In fact, we apply a network pruning step before running ACR to reduce the size of the traffic network. Therefore,

strictly speaking, the ant network has the same topology as the pruned traffic network in this paper.
8Recall that we can also add other costs (see Footnote 1)
9Since we have dynamic link costs in the ACR algorithm, the function F in (3) now should depend on the control

step kc.
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with Q > 0 is a weight parameter.

Although ants individually strive for a user equilibrium when searching routes, the stench

pheromone can push them away from the best route so as to avoid congestion. In this way, in

general it yields the assignment of ants in the network results in neither a user equilibrium nor

a system optimum, but instead a trade-off between two states. This is exactly the same as the

overall goal that we aim at in the traffic network, i.e. to achieve a balance between minimizing

the TTS and penalizing a large number of vehicles on the roads.

4.2. Colored ants

Colored ants are used to distinguish vehicles with different destinations, with color γ(d)
assigned to destination d. The entire ant network consists of (possibly) overlapping subnetworks

for each color γ(d) (see Section 5.1 for more details). For each subnetwork, the total number

of ants N
ant,total
d should depend on the structure of the subnetwork. The more nodes and links

the subnetwork has, the more ants are needed to guarantee timely convergence. We assume that

the number of ants N
ant,total
d is fixed and time-invariant during the whole ACR run. Furthermore,

we define a dynamic factor ηγ(d)(kc) to relate the total number N
ant,total
d of ants with color γ(d)

to the number of incoming vehicles N
veh,in
d (kc) with destination d during a prediction period

[kcTc,(kc +Np)Tc], with Np the prediction horizon. The factor ηγ(d)(kc) is defined as:

ηγ(d)(kc) =
N

ant,total
d

N
veh,in
d (kc)

, (4)

which indicates how many vehicles an ant with color γ(d) represents at each control step kc. On

each arc in the ant network, the regular pheromone produced by colored ants is colored as well,

and it only attracts the ants with the corresponding color, whereas the stench pheromone is not

colored because it is used to push all of the ants away from the arc.

4.3. Stench function

Several constraints and thresholds of the number of ants are considered for each arc in the

ant network, in order to include the constraints of the number of vehicles in the traffic network.

For a link in the traffic network, there is a link capacity that can never be exceeded, a critical

density that should preferably not be exceeded since otherwise traffic congestion may occur,

and probably one or more threshold values for sensitive zones where a limit number of vehicles

are allowed, e.g., hospitals and schools. All these constraints and thresholds are implemented

through the stench function Gs,t defined on each arc (s, t) in the ant network. For instance, the

function Gs,t can be specified as a piecewise affine function as (see Figure 3):

Gs,t

(

Nant
s,t (kc)

)

= max
(

0,g1

(

Nant
s,t (kc)

)

,g2

(

Nant
s,t (kc)

)

,g3

(

Nant
s,t (kc)

))

, (5)

where g1(x), g2(x) and g3(x) are affine functions defined as:

g1(x) = Ps,t,1(x−N
ant,thresh
s,t ),

g2(x) = Ps,t,2(x−N
ant,crit
s,t )+Ps,t,1(N

ant,crit
s,t −N

ant,thresh
s,t ),

g3(x) = Ps,t,3(x−N
ant,cap
s,t )+Ps,t,2(N

ant,cap
s,t −N

ant,crit
s,t )+Ps,t,1(N

ant,crit
s,t −N

ant,thresh
s,t ),
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Figure 3: Piecewise affine stench functions Gs,t

where N
ant,thresh
s,t denotes the threshold number10 of ants corresponding to the threshold value for

sensitive zones, N
ant,crit
s,t denotes the critical number of ants corresponding to the critical density,

N
ant,cap
s,t denotes the capacity number of ants corresponding to the link capacity in the traffic

network, and Ps,t,1, Ps,t,2, and Ps,t,3 are slopes of the affine functions in each piece of the function

Gs,t , with a relationship Ps,t,1 < Ps,t,2 < Ps,t,3. Recall that the relationship between the number of

ants with color γ(d) and the number of vehicles with destination d in the period [kcTc,(kc+Np)Tc]
is characterized by the factor ηγ(d)(kc) (cf. (4)). In order to be able to add up numbers of ants for

different colors, which is required for computing the stench function Gs,t , we introduce so-called

standard ants, which have a one-to-one relationship with the vehicles. The number of standard

ants on arc (s, t) for period [kcTc,(kc +Np)Tc] is calculated as:

Nant
s,t (kc) = ∑

d∈D

Nant
s,t,d(kc)

ηγ(d)(kc)
. (6)

Moreover, the numbers N
ant,thresh
s,t , N

ant,crit
s,t , and N

ant,cap
s,t also represent standard ants.

Remark: In practice, the value of the slopes Ps,t,1 and Ps,t,2 can be dynamically assigned to

better serve and manage the traffic network. During a day, we can increase the value of Ps,t,1

and Ps,t,2 to allow fewer vehicles to enter the sensitive zones so as to avoid danger, pollution, and

noise, and if really needed, we can decrease the value of Ps,t,1 and Ps,t,2 to allow more vehicles to

enter the sensitive zones to guarantee the smoothness of traffic flow and to reduce the burden for

other zones.

10According to the requirements of traffic management center, no threshold value or even two or more threshold

values could be considered here.
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4.4. Dynamic model

A dynamic traffic model is used to assign a dynamic cost to each arc in the ant network.

There exists a wide variety of traffic models (Hoogendoorn and Bovy, 2001; Daganzo, 1997;

Papageorgiou, 1990), and in general one has to make a choice among the traffic models according

to the application area. For example, a static traffic model requires much less computational

effort than a dynamic traffic model, while a dynamic traffic model is much more accurate than a

static traffic model in describing the evolution of the traffic system. The desired traffic models in

our work should satisfy the following criteria:

• The model should be fast when it is simulated on a computer if the controller is going to

operate in real time;

• The model should reproduce the dynamic traffic process with sufficient accuracy.

In this paper, we primarily consider a discrete-time, discrete-space macroscopic traffic flow

model. We assume each link m is divided in Nm segments of length Lm (this is e.g. also done in

the METANET (Messmer and Papageorgiou, 1990) traffic model, which will be used in the case

study of Section 6). Recall from Section 2 that we define k as the simulation step counter and kc

as the control step counter, and that for a given value of kc corresponding value of the simulation

step counter is given by k = Mkc. The traffic model is used to predict the future traffic states

x̂m,i(k) for each segment i of each link m of the traffic network by running the simulation based

on the current traffic state xm,i(k) for each segment i of each link m, where x̂m,i(k) is a vector of

traffic states at future simulation steps k+1,k+2, · · · ,k+MNp−1:

x̂m,i(k) = [x̂m,i(k+1|k) x̂m,i(k+2|k) · · · x̂m,i(k+MNp−1|k)]T (7)

with x̂m,i(k+1|k) the predicted state for simulation step k+1 based on knowledge at simulation

step k. The dynamic link cost ϕs,t(kc) of link m at control step kc with k = Mkc is a function of

both the current traffic states xm,i(k) and the future traffic states vector x̂m,i(k). In Section 5.2.2,

we will discuss in more detail how dynamic traffic models can be used to determine the link costs

with varying degrees of computational complexity and accuracy.

Remark: Although the models discussed above are discrete-time and discrete-space, the

proposed approach can also easily be applied to continuous-time, continuous-space, and micro-

scopic traffic models.

5. ACR Control Strategy

5.1. Network Pruning

The network pruning step aims at removing the “unnecessary” links and nodes in a traffic

network, i.e. those links and nodes only belong to routes that are relatively long and that will

therefore not be favored by drivers. This is illustrated in Figure 2, where only the routes indicated

by dashed lines will be kept, and the remaining routes are removed, because they are too long

and thus are “unnecessary”. For each OD-pair, we separately use network pruning to obtain

the K best routes to form a pruned network, with K an integer that could be different for each

OD-pair. Furthermore, the pruned networks with the same destination d are used to build up the

ant network with color γ(d), and therefore we will obtain Nd subnetworks, with Nd the number

of destinations. At last, we combine all the subnetworks to yield an overall ant network. The
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colored ants only travel and deposit the pheromone in the subnetwork with the corresponding

color, while the stench pheromone is put down in the overall ant network.

We consider three different approaches for network pruning: K-shortest routes, linear pro-

gramming, and the combination of the first two methods.

The simplest way to find the K best routes is to choose the shortest routes. Several algorithms

have been developed for finding the K shortest loopless paths in a network (Yen, 1971; Katoh

et al., 1982; Hadjiconstantinou and Christofides, 1999). We can use these algorithms to determine

the K shortest routes for each OD-pair (o,d) ∈ O ×D by considering the length of each link,

or the average travel time11 on each link. Afterwards, we remove the links not belonging to any

route. In this way, we obtain the pruned network. However, this method cannot guarantee that

the capacity of each link on the routes is never exceeded.

One way to address the capacity issue is to use linear programming to find the links with the

highest link flows to form the K best routes for each OD-pair. More specifically, we consider

a quasi-static approach, where a day is divided into several time slots (e.g., the morning rush

hour, the non-busy midday period, and the evening rush hour). For each time slot, we determine

the traffic flows on each link m in the traffic network for each destination d ∈ D such that the

total travel time is minimized. Since the quasi-static case is considered here, all segments of

link m have the same flow with destination d as the flow in the first segment qm,1,d . For each

(non-virtual12) link m ∈M the average travel time is defined as tm = Lm/vm with Lm the length

of link m and vm the average speed on link m. The linear programming problem to minimize the

total travel time is now defined as:

min
qm,1,d

∑
d∈D

∑
m∈M

T · tm ·qm,1,d (8)

subject to

qm,d = qin
o,d , ∀(o,d) ∈ O×D ,∀m ∈ O(o) (9)

∑
d∈D

∑
m∈I(n)

qm,1,d = ∑
d∈D

∑
m∈O(n)

qm,1,d , ∀n ∈N (10)

∑
d∈D

qm,1,d 6 qcap
m , ∀m ∈M (11)

qm,1,d > 0, ∀m ∈M ,∀d ∈D , (12)

with T the simulation sample time, q
cap
m the capacity of link m, O(o) the set of outgoing links

of origin o, and I(n) and O(n) respectively the sets of incoming and outgoing links of node n.

Note that (8) minimizes the total travel time, because T ·qm,1,d expresses the number of vehicles

on link m per simulation step, and thus T · tm · qm,1,d corresponds to the total travel time on link

m. Moreover, (10) states that the inflow of node n equals the outflow of node n (conservation

of vehicles). It is easy to verify that (8)–(12) is a linear programming problem, which can be

solved very efficiently using, e.g., a simplex method or an interior-point algorithm (Nesterov and

Nemirovskii, 1994; Wright, 1997). Once the solution is found, we first select only the links for

11These average values can be determined based on historical data. Such historical data is usually available to the

traffic control centers, where ACR will be actually implemented. Also note that this data is sometimes even publicly

available, see e.g. Regiolab-Delft (2013); California Department of Transportation (2013)
12The travel time tm on virtual links (see Footnote 1) is set equal to 0, so that they do not contribute to the cost

function.
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Figure 4: Closed-loop control of a traffic system with the ACR algorithm and the dynamic traffic prediction model.

which ∑d∈D qm,1,d > qthresh
m with qthresh

m a positive threshold value, and remove others. Next, we

also remove the links that do not belong to any route from an origin o to destination d, and keep

the rest as the pruned network. However, the shortcoming of this method is that possibly no route

from o to d is contained in the set of the selected links. If so, then we need to decrease the value

qthresh
m to guarantee at least one route.

A third way, which is also the solution to address the capacity problem of the K shortest

routes approach and the no-route problem of the linear programming approach is to combine

them. We first select a value K, and determine the K shortest routes to construct the reduced

network; next, we solve the linear programming problem (8)–(12) for the reduced network. If

this linear programming problem is feasible, the capacity problem does not occur; otherwise,

we augment the value K and repeat the procedure until we get a feasible linear programming

problem. Sometimes, when using a K-shortest-routes algorithm, the problem may occur that

there are too many overlapping links in the obtained routes. In that way, the pruned network may

be insufficient to build up an ant network. If that happens, besides simply increasing the value of

K to find some more candidate routes, we can use a dedicated K-shortest-routes algorithm that

avoids having too many links in common between different routes (see e.g. (Zhu et al., 2010)).

5.2. Model Predictive Control

The control scheme of Model Predictive Control (MPC) (Maciejowski, 2002; Rawlings and

Mayne, 2009; Hegyi et al., 2005) is shown in Figure 4. The traffic model predicts the evolution of

the traffic network at every simulation step k, while the ACR algorithm only runs at each control

step kc. The MPC controller consists of three parts, namely model-based prediction, computation

of link costs, and the ACR algorithm. Model-based prediction works on the traffic network, the

ACR algorithm works on the ant network, and computation of link costs involves mapping the

variables from the traffic network to costs in the ant network. Next, the operation of each part is

explained.
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5.2.1. Model-based prediction

We start the prediction of the traffic system at control step kc, for which the corresponding

simulation step is k =Mkc. The process is described by the selected dynamic traffic model during

the prediction period [kcTc,(kc +Np)Tc]. The prediction requires three inputs:

• the current traffic states xm,i(k) for each link m and each segment i at simulation time step

k = Mkc;

• a vector of the expected inflows13 of the network at each simulation step during the pre-

diction period: q̂in
o,d(k) = [qin

o,d(k) qin
o,d(k + 1) · · · qin

o,d(k + MNp − 1)]T for all OD-pairs

(o,d) ∈ O×D ;

• the currently imposed control signal — splitting rates βn,m,d(kc(k)) (see Section 5.3 for

the way they are computed) for node n, outgoing link m, and destination d, at control step

kc = floor(k/M).

The output of model-based prediction is the future traffic state vector x̂m,i(k) during a prediction

period [kcTc,(kc +Np)Tc] defined in (7), which includes the states from simulation step k+ 1 to

simulation step k+MNp−1 based on the knowledge at simulation step k. The state x̂m,i(k) can

be number of vehicles, flow, speed, density, emission, etc, according to different traffic models.

5.2.2. Computation of costs

The cost ϕs,t(kc) on each arc (s, t) in the ant network is translated from the traffic state x̂m,i(k)
in the traffic network at each control step kc. In this paper, only TTS is considered in the cost.

We present two different methods to calculate ϕs,t(kc), called quasi-static and fully-dynamic,

respectively. The main difference between the two cases is whether or not the cost ϕs,t(kc) is

being updated while we run the ACR algorithm.

Quasi-static case

The quasi-static case first uses the predicted traffic state x̂m,i(k), in particular the speed

vm,i(k) in this paper, to calculate the travel time on segment i of link m, for all simulation

steps k = Mkc,Mkc+1, . . . ,M(kc+Np)−1 in the prediction period [kcTc,(kc+Np)Tc], and

then sums up the travel time on all the segments of all the links for all the simulation steps

to calculate ϕs,t(kc), which is formulated as follows:

ϕs,t(kc) = ϕℓ−1(m)(kc) =
M(kc+Np)−1

∑
k=Mkc

Nm

∑
i=1

Lm/Nm

vm,i(k)
, (13)

As a matter of fact, the cost ϕs,t(kc) is kept fixed at each control step kc when we run the

ACR algorithm to let ants travel in the ant network. At the end of each iteration of ACR,

we update the speed vm,i(k) based on the new splitting rates (cf. (17)), resulting from

the ACR iteration, so as to obtain new cost ϕs,t(kc), and start a new iteration of the ACR

algorithm.

Fully-dynamic case
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Figure 5: Ant a tracks the travel time on link m
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Figure 6: Four possible ways in which ant a on link m can jump from point j to point j+ 1 between the time intervals

kT and (k+1)T
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In the fully-dynamic case, the cost ϕs,t(kc) varies during the ACR run. Therefore, for a

given arc (s, t), each ant a traveling on it will incur a possibly different cost ϕa
s,t(kc) =

ϕa
ℓ−1(m)

(kc). When determining the values of the fully dynamic link costs, we will — for

the sake of simplicity of the exposition — consider the ants to travel on the links of the

traffic network. Figure 5 describes how we can track the travel time predicted by ant a

according to the dynamic speed profile vm,i(k) for all link-segment pairs (m, i), and for the

simulation time steps k. Since the speed of the traffic model varies in different segments

and at different time steps, we call the point where the speed vm,i(k) changes to a new

speed vm,i(k+ 1) or vm,i+1(k) a jump point (denoted by j). Obviously, jump points can

only placed on the boundary of segments or on the simulation time steps. If a jump point j

is placed in the segment i, we denote segment i as i( j) to illustrate the relationship between

jump point j and segment i. Similarly, if a jump point j is placed at the simulation step k,

we denote the simulation step k as k( j).

At a given jump point j, an ant a predicts the travel time between jump points j and j+1,

and then jumps to j+1 to make a new prediction. Ants will keep this predict-jump-predict

mode until they reach the end of the link m, which yields the last jump point jend. The time

instant when ant a on link m is at jump point j is denoted as ta
m, j(kc). Figure 6 illustrates

the four possible transitions of ant a from jump points j to j+ 1. For each case, the time

instant ta
m, j+1(kc) is calculated as follows:

Case A. ta
m, j+1(kc) = ta

m, j(kc)+
Lm−Da

m, j(kc)

v
m,i( j)

(

k( j)
)

Case B. ta
m, j+1(kc) =

(

k( j+1)+1
)

T

Case C. ta
m, j+1(kc) = ta

m, j(kc)+
Lm

v
m,i( j)

(

k( j)
)

Case D. ta
m, j+1(kc) =

(

k( j+1)+1
)

T

where Da
m, j(kc) is the distance between the beginning of segment i( j) and jump point j as

shown in Figure 6. We denote the distance between jump points j and j+1 as da
m, j, which

is expressed by:

da
m, j(kc) = v

m,i( j)

(

k( j)
)

(

ta
m, j+1(kc)− ta

m, j(kc)
)

. (14)

Therefore, the total distance between the jump point j = 0 and current jump point j is the

sum ∑
j−1
z=0 da

m,z. Besides, the length of each segment of link m equals Lm. The distance

Da
m, j(kc) can then be obtained by:

Da
m, j(kc) = mod

(

j−1

∑
z=0

da
m,z(kc), Lm

)

, (15)

13These can be obtained from historical data or from data measured upstream.

17



where mod denotes the modulo operator. Note that in Case C, we can consider that

Da
m, j(kc)= 0, so the equation of Case A also holds for Case C. Hence, a unified formulation

of the time instant ta
m, j(kc) for all four cases is:

ta
m, j+1(kc) =min

(

ta
m, j(kc)+

Lm−Da
m, j(kc)

v
m,i( j)

(

k( j)
) ,
(

k( j+1)+1
)

T

)

. (16)

We record the time instant ta
m,0(kc) when ant a enters link m, and use (16) to calculate the

time instant ta
m, jend

(kc) of the last jump point jend. The cost ϕa
s,t(kc) = ϕa

ℓ−1(m)
(kc) on arc

(s, t) is then the travel time predicted by ant a:

ϕa
s,t(kc) = ϕa

ℓ−1(m)
(kc) = ta

m, jend
(kc)− ta

m,0(kc).

5.3. ACR run

The ACR algorithm is used as the optimization method in the MPC controller, aiming at

generating the splitting rates of the traffic flow to each destination d ∈ D at each intermediate

node n ∈N in the traffic network. The procedure of the ACR algorithm has been introduced in

Section 4, and after the ACR algorithm has terminated, the number of the ants Nant
s,t,d of color γ(d)

that have traveled on each link (s, t) is determined. These values are used to update the splitting

rates for each m ∈ O(m), each d ∈D , each n ∈N :

βn,m,d(kc(k)) =
Nant

s,t,d(kc)

∑
t ′∈Ss,d

Nant
s,t ′,d(kc)

, with m = ℓ(s, t) (17)

with Ss,c the set of the nodes in the ant network that are connected to node s for color γ(d).
Moreover, if a link m in the traffic network does not have a corresponding arc in the ant network

for destination d, we set βn,m,d(kc(k)) = 0. All of the resulting splitting rates will be applied

to the prediction model as mentioned in Section 5.2.1, and correspondingly we will obtain new

traffic states for updating the cost ϕs,t(kc), as well as new values of Nant
s,t,d(kc). We repeatedly

run the prediction-ACR updating process until one of the criteria below (or their combination) is

satisfied:

1. The maximum number of iteration steps Nfixed is reached;

2. |∆βn,m,d(kc(k))| < εβ , for all n, m, and d, where ∆βn,m,d(kc(k)) is the difference between

the new and the previous value of βn,m,d(kc(k)), and εβ > 0 is a predefined tolerance.

Then the final splitting rates are the outputs of the MPC controller, and they are used to control

the real traffic system via lower level controllers, such as dynamic matrix panels with route

information, dynamic tolling, interaction with on-board route guidance devices, and so on. In

the future, the approach can also be integrated with autonomous vehicle systems (Al-Hasan and

Vachtsevanos, 2002), where a full compliance of the routing instructions can be easily applied.

However, the exact implementation of the route guidance mechanism is outside the scope of this

paper (see, e.g., (Bishop, 2005) for more information).
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RepLink

Figure 7: Map of Walcheren area (source: google maps)

6. Case study

The ACR algorithm is now tested in a simulation of the Walcheren area in Zeeland, the

Netherlands (Huibregtse et al., 2011). First, the set-up of the case study and the routing scenario

is described in Section 6.1. In Section 6.2, we show the result of the pruning step, which consists

in finding a reduced network for each destination. To analyze the ACR algorithm, we first show

the convergence performance of the optimization method in Section 6.3, and then compare a

congested traffic situation with and without ACR control in Section 6.4. Finally, a comparison

between the ACR algorithm and two other dynamic routing methods is shown in Section 6.5.

6.1. Simulation scenario

A map of Walcheren area is shown in Figure 7. Middelburg at its center is the provincial

capital and the biggest municipality on the area. Vlissingen in the south is the main harbor

and the second biggest municipality. The third biggest municipality is Veere in the north-east.

Moreover, the whole area is connected to the mainland by three main freeways, which are the

N57 in the north, the E312 in the middle, and the N254 in the south. The entire freeway network

has 142 links and 62 nodes, including the origins and the destinations.

For the purpose of our study, we consider a scenario that drivers outside Walcheren enter the

area only through the N57, the E312, or the N254, and they are going to Middelburg, Vlissingen,

or Veere by only using the freeway network. The origins of the traffic network are put at the

entrances of the N57 (o1), the E312 (o2), and the N254 (o3), indicated by the large white dots
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Figure 8: Inflows of the freeway network from the different origins

Table 2: Fractions of traffic flows to different destinations

d1 d2 d3

o1 30% 30% 40%

o2 50% 30% 20%

o3 20% 40% 40%

in Figure 7. The destination nodes are put at the exits of the freeway network in Middelburg

(d1), Veere (d2), and Vlissingen (d3), indicated by the large red, blue and green dots respectively.

The simulation period is set to 2 hours, with an empty network as the initial state. The inflow

from each origin is shown in Figure 8, and the fractions of the inflows traveling to the different

destinations are shown in 2.

For this scenario, the routing instructions are optimized by the ACR approach proposed in

this paper. Although we discussed two different ways to compute the link cost in the network, and

the fully-dynamic case is much more accurate than the quasi-static case, we only implement the

quasi-static case in the case study. This is because the fully dynamic case accumulates the travel

time on each link by every jump point for the link cost, which results in a very high computational

burden. On contrary, in the quasi-static case we only need to calculate the average travel time on

each link, and in that way we can achieve a balanced trade-off between computation speed and

accuracy.

The parameter settings of the ACR algorithm are given in Table 3. These settings were

determined by using manual tuning and they were found to perform well in the case study.
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Table 3: Values of the parameters in the ACR algorithm

Symbol Explanation Value

N
ant,total
d Total number of ants for each color 3000

Q Weight parameter of regular pheromone 70

P1 Slope of stench function in non-sensitive zones 1

P2 Slope of stench function in sensitive zones 2

ρevap Evaporation rate of pheromone 0.1

6.2. Network pruning

We first use Yen’s K-shortest-loopless routes algorithm (Yen, 1971) to find the K shortest

routes for each OD pair. To guarantee a suitable-sized reduced network, the initial value of K

is set to 3 in the case study. We solve linear programming problem (8)–(12) to check whether

the flow on any link of these routes exceed the link capacity. As a result, the link capacity is not

exceeded, and thus we do not need to augment the value of K in this case. Because colored ants

in the ACR algorithm are only distinguished by destinations, we combine all the routes with the

same destination together as one pruned network as the preparation step for the ACR algorithm.

As a result, we find three different pruned networks for different destinations as shown in Figure

11. The first pruned network has 26 links and 21 nodes, the second pruned network has 21 links

and 9 nodes, and the third pruned network has 30 links and 26 nodes.

6.3. Performance of the optimization method

The performance of the ACR algorithm is evaluated using the convergence speed of the

pheromone levels. Figure 10 shows an example of the evolution of three different colored

pheromone levels on a representative link, indicated by “RepLink” in Figure 7. The represen-

tative link has been chosen because it belongs to all three subnetworks. Moreover, this link has

different statuses in different subnetworks:

1. It belongs to the shortest route from origin o1 to destination d3 in the green subnetwork,

and it is shared by all the routes from o1 to d3;

2. It belongs to the shortest route from origin o1 to destination d1 in the red subnetwork, but

there is an alternative route that does not include the representative link;

3. It does not belong to the shortest route from origin o1 to destination d2 in the blue subnet-

work.

From Figure 10, we can observe that only the values of green pheromone are positive, while the

values of both red and blue pheromone are negative, which means the representative link mainly

attracts the green ants.

In every optimization cycle, ants get a maximum of 1000 iteration steps, but all pheromone

trajectories level off after iteration step 60, with a slight fluctuation in the following iteration

steps. The reason that the pheromone levels still fluctuate slightly around their steady state

values is that the ACR algorithm involves a stochastic mechanism, in which a small portion of

ants try to explore new routes at each iteration. In our experiment, convergence occurred on the

average after about 850 iteration steps, due to reaching the threshold on the error. The maximum

number of iterations was only reached in 19 out of 240 runs.

The ACR algorithm is programmed in Matlab by using a desktop computer with an Intel(R)

Core(TM) 2 Duo CPU with 3.00 GHz and 4GB RAM. Currently the optimization method is
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Figure 9: Pruned networks for different destinations
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Figure 10: Convergence of pheromone levels on the representative link

programmed serially, so the most computationally intensive part is using ants one after another

to randomly search routes.

6.4. Routing results for ACR

In this paper, we assume that the resulting routing instructions will be perfectly followed

by the drivers. The reason for this is that the primary objective of this paper is to discuss the

functioning of the ACR algorithm. By assuming full compliance, the functioning can be more

easily compared with other methods. In practice, in order to convince drivers to follow the

suggested route guidance instructions, a financial compensation or penalty can be applied for

the system sake. For instance, drivers have to pay if they travel in so-called congestion charge

zones, while they need not pay if they travel outside of these areas Small and Gómez-Ibanez

(1998), (see e.g. congestion charge schemes in London, Stockholm and Singapore), while in

the Netherlands, the government is testing a reward system called Spitsmijden Bliemer and van

Amelsfort (2010) that tracks commuters and pays a range of rewards (AC3, AC5, and AC7 per day)

to those who avoided traveling during the morning peak (7:30 am to 9:30 am).

As shown in Figure 11, we compare the traffic situations in a representative link, indicated

by “RepLink” in Figure 7, with and without the ACR control. When there is no control, we

assume that all the drivers always choose the shortest distance route. When they converge to the

same links, the maximum of the density on the link is reached, and the speed is quite low. The

oscillation of solid lines is caused by traffic congestion. However, by using the ACR algorithm,

no traffic congestion will occur.
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Figure 11: Congested traffic situation with and without ACR control on the representative link
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6.5. Results of the comparison with other methods

To evaluate the performance and the computational efficiency of the ACR algorithm, we com-

pare our approach with two other dynamic traffic routing methods, namely non-linear optimal

control (Kotsialos et al., 2002) and the time-dependent shortest routes method (Tong and Wong,

2000).

The non-linear optimal control method uses a similar control framework as our approach, as

well as the same traffic model. The major difference is that Kotsialos et al. (2002) consider the

problem as a discrete-time optimal control problem, and use a numerical non-linear optimization

algorithm to solve it. For non-linear optimal control method, the problem is formulated as:

min J =JTTS + Jpen

=T ·
Ksim

∑
k=1

∑
m∈M

∑
i∈Im

ρm,i(k)
Lmλm

Nm

+P ·
Ksim

∑
k=1

∑
m∈M

∑
i∈Im

(

ρm,i(k)−ρ thresh
m

) Lmλm

Nm

(18)

where T is the length of the simulation time step, P is a penalty factor, ρm,i(k) is the density on

segment i of link m at time step k, ρ thresh
m is the threshold density on link m, Lm is the length of

link m, λm is the number of lanes of link m, Ksim is the simulation horizon, M is the set of all

the links in the network, and Im is the set of the segments in the link m . The objective function

(18) is not exactly the same as the one that Kotsialos et al. (2002) formulated, because we have

a different goal from theirs. They only aim at the minimal the TTS, while we want to find a

balance between minimizing TTS and penalizing a large numbers of vehicles on the links. The

first term of J is denoted by JTTS, which corresponds to the total time spent by all the vehicles in

the network. The second term, denoted by Jpen, represents a soft constraint and works similarly

as the stench function in the ACR algorithm, for penalizing the number of vehicles exceeding

a threshold number on each link. The value of ρ thresh
m is set to either the critical density (in

non-sensitive zones) or to a pre-defined value (in sensitive zones). The objective function J is

minimized subject to the following constraints:

x(k+1) = f (x(k),β (kc(k)),d(k)),

0 6 β (kc(k))6 1,

for k = 1,2, . . . ,Ksim,

where function f represents the traffic model, x(k) is the traffic state at simulation step k, d(k)
is the demand, β (kc(k)) is the splitting rate used as the control variable at the control step kc(k),
with kc(k) the value of the control step counter kc corresponding to simulation step k, and Ksim

and is the simulation horizon. Moreover, the optimality conditions are expressed in terms of

the discrete-time Hamilton function, fulfilled by the Karush-Kuhn-Tucker conditions, and a nu-

merical gradient-based algorithm is used to solve the discrete-time optimal control problem (see

(Kotsialos et al., 2002) for more details).

To solve the dynamic user equilibrium problem, the time-dependent shortest routes approach

uses an iterative algorithm, in which the total traffic demand is incrementally distributed over

more and more routes. Each iteration consists of three steps. In step 1, all links get assigned

the free-flow travel time in the first iteration, while in subsequent iterations, a simple traffic

model based on the speed-density fundamental diagram is used to determine the travel times on

links that carry traffic (other links still get assigned the free-flow travel time). In step 2, Dijkstra’s

shortest path algorithm is applied to search the shortest route from each origin to each destination,
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Table 4: Comparison of the results obtained with different algorithms for one MPC step

Methods JTTS [veh· s] Jpen [veh] Computation time [s]

ACR algorithm 3.8316×104 0 5.11×104

non-linear optimal control 3.8318×104 7.903 2.31×105

time-dependent shortest paths algorithm 4.7116×104 6.303×102 2.86×102

in which the average travel time is used as link cost instead of the length of each link. Step 3

assigns all traffic to the new shortest route in the first iteration, while in subsequent iterations,

traffic from previously selected routes is partly redistributed to the new shortest route. Next, a

new iteration starts (see (Tong and Wong, 2000) for more details of the algorithm). In this way,

the newly generated route always has a shorter travel time than the previously generated ones in

current iteration.

Similarly to our approach, the second approach does not have an explicit objective function

like J in (18). In order to compare the three approaches, we define an assessment function Jeval

in the same manner, Jeval = JTTS + Jpen. The comparison of results is shown in Table 4.

We show the results in one MPC step with 10 iteration steps of optimization. Compared

with the non-linear optimal control, we can see in Table 4 that the ACR approach can achieve

an even slightly better performance, 3.8316× 104 veh·s versus 3.8318× 104 veh·s in JTTS, and

0 veh versus 7.903 veh in Jpen, while it requires one order of magnitude less computation time:

5.11×104 seconds versus 2.31×105 seconds. The fact that the values for JTTS between ACR and

non-linear optimal control are almost exactly the same is probably a coincidence, but it shows

that ACR can yield almost the same performance as the established optimal control approach of

Kotsialos et al. (2002), which requires much more computation time. Moreover, according to

the nature of the ACO algorithm, ants can independently search the network at the same time,

so we can run the ACR algorithm in parallel if we have enough processors. In that case, the

computation time can be reduced even more dramatically. For instance, in our case study, we use

a single core computer for simulation, in which 3000 ants search the network, and consequently

5.11×104 seconds is spent. If we use 3000 processors with each processor representing one ant,

then theoretically we only need about 17 seconds to finish the optimization.

Compared with the time-dependent shortest routes algorithm, although our approach is slower,

5.11×104 seconds versus 2.86×102 seconds, we have a better performance, 3.8316×104 ver-

sus 4.7116×104 in JTTS, and 0 versus 6.303×102 in Jpen. Therefore, compared with those two

other approaches, the ACR algorithm can achieve a balanced trade-off between accuracy and

computational efficiency, which is needed for on-line model-based traffic control. When solv-

ing the dynamic routing problem, one should consider a balance between required computation

time and performance among these three methods. More specifically, if the computation time is

more important than the performance, then the time-dependent shortest paths algorithm is rec-

ommended. Otherwise, ACR should be used since it requires less computation time than the

non-linear optimal control.

7. Conclusions and Future Work

We have proposed a novel Ant Colony Routing algorithm for solving the dynamic traffic

routing problem. The ACR algorithm uses artificial ants to search in the ant network, and the

resulting assignment of ants is used to determine the splitting rates in the traffic network. We
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apply the ACR algorithm in a two-step control approach: network pruning and Model Predictive

Control. Through removing some “unnecessary” links and routes, the network pruning part can

reduce the size of the objective network such that ants can more efficiently search in the network.

The MPC control part uses the novel ACR algorithm with the stench pheromone and colored ants

to efficiently guide the vehicles from multiple origins and to multiple destinations. A simulation-

based case study has been tested in the Walcheren area in the Netherlands. The results show that

the ACR algorithm is suitable for on-line optimization, and can achieve a well-balanced trade-off

between control performance and computational speed.

Future work will include more detailed case studies for an extensive assessment of the perfor-

mance and efficiency of the ACR algorithm, including different origin-destination flow scenarios.

Moreover, further improvement of the control strategy will be considered, e.g., the network prun-

ing algorithm can be executed after each ACR run as a refinement step, instead of just applying

it once at the beginning as a preparation step of the ACR algorithm. On the theoretical side, we

will analyze the convergence properties and scalability of the ACR algorithm. We will also de-

rive general rules of thumb to select appropriate values for the tuning parameters and guidelines

to transform traffic policy preferences into appropriate values for the thresholds of the stench

pheromone function.
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Cong, Z., De Schutter, B., Babuška, R., 2011. A new ant colony routing approach with a trade-off between system

and user optimum, in: Proceedings of the 14th International IEEE Conference on Intelligent Transportation Systems

(ITSC 2011), Washington, DC. pp. 1369–1374.

Daganzo, C.F., 1997. Fundamentals of Transportation and Traffic Operations. Pergamon.

Dorigo, M., Maniezzo, V., Colorni, A., 1996. The Ant System: Optimization by a colony of cooperating agents. IEEE

Transactions on Systems, Man and Cybernetics, Part B: Cybernetics 26, 1–13.
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