
Delft University of Technology
Delft Center for Systems and Control

Technical report 13-032

Reducing the time needed to solve the
global rescheduling problem for railway

networks∗

B. Kersbergen, T. van den Boom, and B. De Schutter

If you want to cite this report, please use the following reference instead:
B. Kersbergen, T. van den Boom, and B. De Schutter, “Reducing the time needed to
solve the global rescheduling problem for railway networks,” Proceedings of the 16th
International IEEE Conference on Intelligent Transportation Systems (ITSC 2013),
The Hague, The Netherlands, pp. 791–796, Oct. 2013.

Delft Center for Systems and Control
Delft University of Technology
Mekelweg 2, 2628 CD Delft
The Netherlands
phone: +31-15-278.24.73 (secretary)
URL: https://www.dcsc.tudelft.nl

∗ This report can also be downloaded via https://pub.bartdeschutter.org/abs/13_032.html

https://www.dcsc.tudelft.nl
https://pub.bartdeschutter.org/abs/13_032.html

Reducing the time needed to solve the global rescheduling problem for
railway networks*

Bart Kersbergen1, Ton van den Boom1 and Bart De Schutter1

Abstract— In this paper a method is introduced to reduce
the computation time needed to solve the global rescheduling
problem for railway networks. The railway network is modeled
as a switching max-plus-linear model. This model is used to
determine the constraints of the rescheduling problem. The
rescheduling problem is described as a Mixed Integer Linear
Programming (MILP) problem. The dispatching actions in this
implementation are limited to changing the order of the trains
and breaking connections at stations. These dispatching actions
are most effective for smaller delays. It is therefore assumed that
the delays are less than some maximum value. The proposed
reduction method determines which (combinations of) control
inputs will never be used if the delays are below this maximum
value and removes them, as well as the constraints associated
to them, resulting in a smaller model. Using the reduced model
in the MILP problem significantly decreases the time needed to
solve the MILP problem while still yielding the optimal solution
for the original MILP problem.

I. INTRODUCTION

During the day to day operation of a railway network
many small delays may occur. If these delays are not dealt
with appropriately, they can propagate through large parts
of the network and cause even more delays. In recent
years researchers have been developing systems to support
the dispatchers in their task. Most of these systems are
limited to solving local dispatching problems [1] and [2].
The main reason why many researchers only consider a part
of the network is the complexity of the problem. Many
implementations involve the solution of a Mixed Integer
Linear Programming (MILP) problem. The (worst-case) time
needed to solve an MILP problem is generally assumed to
grow exponentially with the size of the problem. Therefore, a
MILP based on a part of the network is much easier to solve
than one based on the entire network. Several researchers
have also been working on solving the dispatching problem
for the entire network [3] and [4]. One of the biggest
challenges of solving the global dispatching problem is to
find the optimal solution quickly. In this paper we propose a
method to reduce the time needed to solve the problem, by
limiting the possible control actions.

We build on the work of [4], [5] and [6], where an explicit
Switching Max-Plus-Linear (SMPL) model of the railway
traffic is introduced. This model is used in a rescheduling
problem that determines the optimal order of trains for

*This research is supported by the Dutch Technology Foundation STW,
project 11025 “Model-Predictive Railway Traffic Management; A Frame-
work for Closed-Loop Control of Large-Scale Railway Systems”.

1B. Kersbergen, T.J.J. van den Boom and B. De Schutter are with the
Delft Center for Systems and Control, Delft University of Technology, The
Netherlands.

the entire network [5] and [6]. We continue this work by
introducing a method to reduce the computation time needed
to solve the rescheduling problem by limiting the control
freedom.

II. MODELING

The operation of the railway network can be split into
two different modes. When there are no delays all trains
run according to the predetermined routes and arrive and
depart according to the timetable. This is called the nominal
operation. If delays occur, some trains will not depart and
arrive according to the timetable and rescheduling actions
may have to be taken to limit the propagation of these delays;
this is called the perturbed operation. First the model of the
railway traffic is presented while it is running according to
the nominal operation. This will then be extended to include
rescheduling such that the perturbed operation can also be
modeled.

A. Nominal Operation

The model of [4], [5] and [6] is based on a periodic
timetable, because in many countries the passenger railways
operate according to one. The railway traffic is modeled as a
cyclic discrete-event system. The arrivals and departures of
the trains, at all stations and junctions outside the interlock-
ing areas of the stations, are the events of the system. Stations
and their interlocking areas are modeled as single points
with unlimited capacity, junctions outside the interlocking
area of a station are modeled as single points with limited
capacity (only one train can be on a junction at the same
time). Tracks between stations and junctions are modeled as
single links; no block sections are considered. Instead of a
signaling system, headway times are used to determine the
order of trains and to separate trains running over the same
track. In one cycle all arrival and departure events of one
timetable period are modeled. The current cycle is denoted
by k and it is assumed all events of past cycles have already
occurred, therefore the event times of events of past cycles
are fixed. The timetable period is denoted by T .

If the prediction horizon consists of several periods of the
timetable, then the timetable must be extended to cover the
whole prediction horizon.

The model of the railway traffic is built up from train
runs. We define a train run as the following combination of
actions: a train departs from a station or junction, it drives
over a track, and arrives at the next station or junction. Each
train run has an index i, and an associated arrival time ai
and departure time di. Each event time has a cycle counter

k, which denotes the cycle the event time is in. The relation
between the arrival time and departure time of a train run
can be described by a running time constraint, defined for
train run i as:

ai(k) ≥ di(k) + τ run
i (k), (1)

where τ run
i (k) is the time the train needs to traverse the track.

A single train moving through the network can be de-
scribed by a sequence of train runs connected to each other
through continuity constraints. Train runs i and j of the same
physical train, where train run i starts after train run j has
completed, are connected through the following continuity
constraint:

di(k) ≥ aj(k − µij) + τ dwell
ij (k) (2)

where τ dwell
ij (k) is the time the trains needs to wait at the

station for the passengers to board and alight, or at line ends
it is the time for passengers to board and alight plus the time
needed to turn the train around, and µij is zero if the arrival
and departure events are in the same cycle and one if there
is one cycle difference between them.

Since the railway network operates according to a
timetable, none of the trains are allowed to depart before
their scheduled departure times and in some cases they may
not arrive before their scheduled arrival times either. This
requirement can be modeled by adding timetable constraints.
The timetable constraints are described by:

di(k) ≥ rd
i (k) = rd

i (0) + T × k (3)
ai(k) ≥ ra

i(k) = ra
i(0) + T × k, (4)

where rd
i (0) and ra

i(0) are the scheduled departure and arrival
time of train run i for the first period that is modeled. In many
countries trains are allowed to arrive before their scheduled
arrival time; in that case the timetable constraint on the
arrival time (4) may be left out for all train runs.

The order of the trains on the tracks and the minimum
distance needed between the trains is modeled by headway
constraints. For train run i, define the set Hi as the set of
train runs that share the same track as train run i and start
before train run i and for which the trains traverse the track
in the same direction. Define Si as the set of train runs on
the same track that start before train run i and traverse the
track in opposite direction. The headway constraints for train
run i are defined as

di(k) ≥ dl(k − µil) + τ headway
il,d (k) (5)

ai(k) ≥ al(k − µil) + τ headway
il,a (k), (6)

for each l ∈ Hi, where τ headway
il,d (k) is the headway time

needed between the departures of the two trains, τ headway
il,a (k)

is the headway time needed between the arrivals of the trains,
and where µil is defined in the same way as for (2), and

di(k) ≥ am(k − µim) + τ sep
im(k), (7)

for each m ∈ Si, where τ sep
im(k) is the separation time

between the two trains, and µim is defined in the same way
as for (2).

At some stations passengers can transfer to other trains.
Transfers that are guaranteed by the railway operators, are
modeled by connection constraints. Define Ci as the set of
train runs to which train run i has to give a connection to.
Then the connection constraints for train run i are defined
as:

di(k) ≥ ac(k − µic) + τ connect
ic (k), (8)

for each c ∈ Ci, where τ connect
ic (k) is the time needed for

the passengers to transfer from the train of train run c to
the train of train run i. During nominal operation all process
times (running, dwell, headway, separation, and connection
times) in the model are set to the minimum times needed to
complete the processes.

Most events will have a combination of these constraints.
For every event all of these constraints can be gathered into
a single equation and described as a linear function in max-
plus algebra. The max-plus algebra is an idempotent semi-
ring, consisting of the set Rε = R ∪ {ε}, where ε = −∞,
equipped with the two operators ⊕ and ⊗, that are defined
as follows [7]:

a⊕ b = max(a, b)

a⊗ b = a+ b,

for a, b ∈ Rε.
For matrices these operators are defined as:

[A⊕B]ij = aij ⊕ bij = max(aij , bij)

[A⊗ C]ij =

n⊕
k=1

aik ⊗ ckj = max
k=1,...,n

(aik + ckj),

where A,B ∈ Rm×n
ε and C ∈ Rn×p

ε .
By assuming that trains depart and arrive as soon as all

constraints are satisfied, (1) through (8) can be written as
two max-plus-linear1 equations [6]:

di(k) = aj(k − µij)⊗ τ dwell
ij (k)⊕⊕

l∈Hi

(
dl(k − µil)⊗ τ headway

il,d (k)
)
⊕

⊕
m∈Si

(
am(k − µim)⊗ τ sep

im(k)
)
⊕

⊕
c∈Ci

(
ac(k − µic)⊗ τ connect

ic (k)
)
⊕ rd

i (k) (9)

ai(k) =
⊕
l∈Hi

(
al(k − µil)⊗ τ headway

il,a (k)
)
⊕

di(k)⊗ τ run
i (k)⊕ ra

i(k). (10)

By determining these max-plus-linear equations for all di
and ai and collecting them in a state vector x(k) the model
can be written as a max-plus-linear model defined as:

x(k) = A0(k)⊗ x(k)⊕A1(k)⊗ x(k − 1)⊕ r(k), (11)

1A max-plus-linear equation is an equation that is linear in max-plus
algebra; it has the following form: y = a⊗ x⊕ b.

where A0(k), A1(k) ∈ R2q×2q
ε and x(k) and r(k) are defined

as:

x(k) =
[
d1(k) . . . dq(k) a1(k) . . . aq(k)

]⊤
,

r(k) =
[
rd
1(k) . . . rd

q(k) ra
1(k) . . . ra

q(k)
]⊤

,

where q is the number of train runs. The elements of the
matrix A0(k) contain the process times and control inputs of
the constraints between events in the same cycle (µij = 0)
and the elements of the matrix A1(k) contain the process
times and control inputs of the constraints between events
of the current and the previous cycle (µij = 1). The entries
of the matrices that do not correspond to any constraint are
equal to ε.

B. Perturbed Operation

In [4] and [6], the model of the previous section has been
extended to include delays and control inputs that allow for
the reordering of the trains on the tracks. Delays are added
to the model by increasing the process times of the processes
that cause the delays. Since one cycle can model the events
of several timetable periods and it is assumed all events of
the previous cycle are in the past and therefore cannot be
changed, the control variables are only added between events
of the same cycle.

For train run i the headway constraints, for trains travers-
ing the track in the same direction in the same cycle, become

di(k) ≥ dl(k)⊗ τ headway
il,d (k)⊗ uil(k) (12)

ai(k) ≥ al(k)⊗ τ headway
il,a (k)⊗ uil(k) (13)

dl(k) ≥ di(k)⊗ τ headway
li,d (k)⊗ uil(k) (14)

al(k) ≥ ai(k)⊗ τ headway
li,a (k)⊗ uil(k), (15)

for each l ∈ Hi, where uil(k) ∈ {ε, 0} is the control variable
with uil(k) = 0 if uil(k) = ε, and uil(k) = ε if uil(k) =
0. For uil(k) = 0, (12) and (13) are the default headway
constraints and define the order of train runs: ”l before i”,
and (14) and (15) are always valid, since all event times are
larger than ε = −∞. If uil(k) = ε, (12) and (13) are always
valid, and (14) and (15) define a different order of train runs:
”i before l”.

The same principle is applied to the headway constraints
of the trains traversing the track in the opposite direction in
the same cycle:

di(k) ≥ am(k)⊗ τ
sep(k)
im ⊗ uim(k) (16)

dm(k) ≥ ai(k)⊗ τ
sep(k)
mi ⊗ uim(k) (17)

for each m ∈ Si.
By adding control variables to the headway constraints

of all train runs for which the order can be changed, we
can model the effects of reordering trains in the network at
certain points. The resulting model can be described as:

x(k) =A0(u(k), k)⊗ x(k)⊕
A1(k)⊗ x(k − 1)⊕ r(k), (18)

where u(k) is the set of control variables containing all
uil(k) and uil(k), and the elements of A0(u(k), k) are max-
plus-linear functions in the control variables. This model is
called a Switching Max-Plus-Linear (SMPL) model, since
it can switch between behaviors (train orders) and each
behavior is described by a max-plus-linear model.

C. Explicit model
The model of (18) is called an implicit model because the

state vector x(k) does not only depend on the state vector
of the previous cycle (and the timetable reference), but also
on itself. In [6] this model is rewritten into its explicit form.
In this way the dependency of x(k) on itself is removed.

The implicit max-plus-linear model in 18 can be rewritten
into its explicit form by determining A∗

0(u(k), k).
In general A∗ can be calculated for any A ∈ Rm×n

ε , see
for instance [7], by

A∗ =

∞⊕
p=0

A⊗p

, (19)

with A⊗p

= A⊗p−1

for p ≤ 1, and A⊗0

= E, where E
is the max-plus identity matrix; this is a square matrix with
diagonal entries equal to 0 and the rest of its entries ε. Matrix
A∗ only exists if there are no circuits of positive weight in
the weighted graph of A [7].

The explicit model resulting from the implicit max-plus-
linear model in (18) can be written as

x(k) =A∗
0(u(k), k)⊗A1(k)⊗ x(k − 1)⊕

A∗
0(u(k), k)⊗ r(k) (20)

This model is not an ordinary max-plus-linear model but an
SMPL model, containing infeasible train orders, resulting in
infinite event times. These infeasible train orders correspond
to circuits of positive weight in the weighted graph of
A0(u(k), k), as a result A∗

0(u(k), k) cannot be calculated. By
finding all the circuits in the weighted graph of A0(u(k), k),
the combinations of control inputs corresponding to the
infeasible train orders can be identified. By removing these
combinations of control inputs, by replacing any element of
the max-plus matrix powers of A0(u(k), k) that contains
one of these combination of control inputs by ε during
the calculation of the explicit model, A∗,feas

0 (u(k), k) can
be calculated. This matrix contains the part of A∗

0(u(k), k)
corresponding to the feasible train orders only. The exact
details on how to determine A∗,feas

0 (u(k), k) can be found in
[6]. The resulting explicit SMPL model can be written as:

x(k) =Aexp(u(k), k)⊗ x(k − 1)⊕
A∗,feas

0 (u(k), k)⊗ r(k), (21)

where Aexp = A∗,feas
0 (u(k), k)⊗A1(k).

III. REDUCING THE COMPUTATION TIME
The reduction method that we will introduce in this section

can be applied off-line during the calculation of the explicit
model. To simplify the notation of the matrices in the rest
of this paper, we will write A0(u(k), k) as A0 and A1(k) as
A1.

A. Delay model

The model described in the previous section allows for the
reordering of trains at certain tracks. This includes orders that
are not likely to ever happen, such as letting the last train
on a track start before all other train on a track, since this
would only happen if the last train would not have a delay
and all other trains would have large delays.

If we assume there is an upper bound to the delays then
some train orders, such as the one described above, will never
be used and the (combinations of) control inputs associated
to those train orders can be removed from the model without
affecting the optimal solution of the rescheduling problem.
To determine these (combinations of) control inputs, the
model needs to be transformed, such that the state vector
x(k) no longer shows the arrival and departure times, but the
delays. To do this the negative slack time should be defined.
We will use the negative slack time definition as given by
[8].

Definition 1: For any activity (j, i) the slack time is the
difference of the end of the activity dj(k − µij) + aij and
the start of the new activity di(k).
The negative slack times can be arranged in two matrices
based on the value of µij , which is either zero or one:

[Ad
0]ij = [A0]ij − (ri(0)− rj(0)) (22)

[Ad
1]ij = [A1]ij − (ri(0)− (rj(0)− T)), (23)

where we used

r(k) = r(0) + k × T,

which is derived from (3) and (4). Note: the negative slack
times are always less or equal to zero during nominal
operation, since a positive value indicates a delay.

Using these matrices the model of (18) can be rewritten
as

xd(k) = Ad
0 ⊗ xd(k)⊕Ad

1 ⊗ xd(k − 1)⊕ 0, (24)

where xd(k) is the state vector containing the delays of the
events of cycle k instead of the arrival and departure times
and 0 is a vector of the same length as r(k) filled with zeros.

In this model the elements of Ad
0 and Ad

1 represent the neg-
ative slack times between the events. The value of element
[Ad

0]ij shows how much event xi(k) is delayed directly by
xj(k) and the elements of any matrix power of Ad

0 show how
much events are delayed indirectly by each other. This means
that all elements of Ad

0 and Ad
1 should be negative or zero

during nominal operation, since a positive value indicates
that there will be a delay. This model transformation is based
on the concepts of slack time, realizability and structural
delays as described by [8] and [9].

Using this model description the following theorem can
be defined:

Theorem 1: The elements of the matrix powers of Ad
0 give

lower bounds to the delays caused by reordering the trains, if
and only if, the used process times are the minimal process
times.

Proof: By using the minimum process times, an ele-
ment of A0 and can be written as:

[A0]ij = tmin
ij +∆ij + vij(u(k)),

where tmin
ij is a (sum of) minimum process time(s), ∆ij

is a positive value equal to the difference between the
(sum of) actual process time(s) and the (sum of) minimum
process time(s), and vij(u(k)) is a (sum of) max-plus control
variable(s). If the element is independent of control inputs,
vij(u(k)) is zero. The negative slack times for µij = 0 can
be written as:

[Ad
0]ij = tmin

ij +∆ij + vij(u(k))− (ri(0)− rj(0)).

Since (ri(0)− rj(0)) is fixed by the timetable and tmin
ij is as

small as possible, a lower bound for the negative slack time
is given for ∆ij = 0:

[Ad
0]ij = tmin

ij + vij(u(k))− (ri(0)− rj(0)).

Since a positive value for [Ad
0]ij indicates a delay for xi, for

the u(k), for which vij(u(k)) = 0, and the minimum process
times are used, these values are minimum as well; they are
a lower bound to the delay of xi.

Any element of any power of A0 can be written as

[A0]
⊗p

ij = max
l

(tmin
ij,l +∆ij,l + vij,l(u(k))),

where tmin
ij,l is a (sum of) minimum process time(s) of element

l of the maximization, ∆ij,l is a positive value equal to the
difference between the (sum of) actual process time(s) and
the (sum of) minimum process time(s) of element l of the
maximization and vij,l(u(k)) is a (sum of) max-plus control
variable(s) of element l of the maximization. If the element
is independent of control inputs, vij,l(u(k)) is zero. The
negative slack times for µij = 0 can be written as:

[Ad
0]

⊗p

ij = max
l

(tmin
ij,l +∆ij,l + vij,l(u(k))− ri(0) + rj(0)).

For each element of the maximization the lower bound can
be found by setting ∆ij,l = 0. Each of these lower bounds
is also a lower bound to the delay for xi, for the u(k), for
which vij,l(u(k)) = 0.

Clearly the advantage of rewriting the model using (22)
and (23) is that the value of the elements of the matrices,
and their max-plus matrix powers, can be used to determine
a lower bound to the delay of the associated events for the
relevant (combinations of) control inputs.

B. Reduction method

If we assume that there is a maximum value for the
delays, then we can remove those (combinations of) control
inputs that would cause delays that are larger than the set
maximum delay. These (combinations of) control inputs
would have no effect on the solution of the rescheduling
problem, so by removing them we can reduce the complexity
of the rescheduling problem, which in turn will reduce the
computation time needed to solve the rescheduling problem.
These (combinations of) control inputs can be identified and

removed by setting ∆ij = 0 for all elements of Ad
0 and

determining the control inputs that cause one or more of
the elements of the max-plus powers of Ad

0 to have a value
larger than the maximum delay. In Theorem 1 it was proven
that the values of these elements correspond to a lower
bound of the delay when the minimum process times were
used and ∆ij = 0, therefore the (combinations of) control
inputs associated to these elements can be removed without
having an effect on the optimal solution of the rescheduling
problem. All elements of (the max-plus matrix powers of)
Ad

0 containing these (combinations of) control inputs are set
to ε, effectively removing those (combinations of) control
inputs from the model. Because we need to determine the
max-plus matrix powers during the calculation of A∗,d

0 , as
was shown in (19), we can apply the reduction method while
we calculate the explicit model, resulting in a reduced version
A∗,d,red

0 and a reduced explicit model:

xd(k) = Aexp,d,red ⊗ xd(k − 1)⊕A∗,d,red
0 ⊗ 0, (25)

where Aexp,d,red = A∗,d,red
0 ⊗Ad

1.
Since combinations of control inputs are not explicitly

modeled in the implicit model, but implied by the implicit
model structure, combinations of control inputs cannot be
removed from the implicit model. As a result the reduction
method is far less effective for the implicit model than for
the explicit model. Another way of looking at it, is that the
reduction method not only removes elements from A∗,d

0 , but
also from all of its max-plus matrix powers, and therefore
the reduction will be larger in the explicit model.

The resulting reduced explicit model can be used in the
rescheduling problem. The rescheduling problem can be
recast as a MILP problem as was shown for the implicit
and explicit model in [6],

The calculation of the explicit model and applying the
reduction method takes about a minute for small problems
and up to a few hours for more realistic networks. Because
of this it cannot be applied during the on-line optimization,
but has to be done before hand. Beforehand the maximum
delay is not known, so the reduced explicit model should
be determined for several different values of the maximum
delay and then during the on-line optimization the model
best suited to the current situation should be chosen.

IV. CASE STUDIES

In this section we will consider two case studies; the
first will be a case study of 50 delay scenarios, in which
the maximum delay is small enough such that the optimal
solutions of the rescheduling problem using the full implicit
model and the rescheduling problem using the reduced
explicit model are the same. The rescheduling problem using
the full implicit model will be called rescheduling problem
Imp from now on and the rescheduling problem using the
reduced explicit model will be called rescheduling problem
Exp.

In the second case study 20 scenarios are evaluated for
which the solutions to rescheduling problem Imp differs from

the optimal solutions for rescheduling problem Exp because
the maximum delay in these scenarios is larger than the
assumed maximum delay we used while determining the
reduced explicit model.

The model of the railway network that will be used is a
large part of the Dutch railway network; the timetable of the
year 2006 is used and only intercity and interregional trains
are considered. We have chosen 15 minutes as the maximum
delay used in the reduction method. The full explicit model
will not be considered since it has already been shown in
[6] that it is slower than the implicit model. The model has
a period of one hour, and there are 163 trains running over
the network in one hour, resulting in 381 train runs, 762
continuous variables, and 644 control inputs. The prediction
horizon of the rescheduling problem is set to one hour.
Problem Imp has 6150 constraints and 644 control inputs and
problem Exp has 17204 constraints and 644 control inputs.

A. Case study 1

The computational performance of the rescheduling prob-
lem is evaluated for a set of 50 randomly generated scenarios.
In these scenarios 10% of the train runs are delayed by a
randomly chosen value, that is based on a truncated Weibull
distribution with scale parameter 5 and shape parameter 0.8.
The Weibull distribution is cut off at 9 minutes, otherwise
there would be a chance that one or more of the delays is
much larger than the assumed maximum of 15 minutes. In
these 50 scenarios the optimal solution for both rescheduling
problems is the same. The sum of delays in the uncontrolled
network and optimally controlled network are shown in
Figure 1. The average sum of delays for the uncontrolled
model is 813 minutes. The average sum of delays of the
optimal solutions is 712 minutes. The average reduction of
the sum of delays is thus 101 minutes, which is an average
reduction of the sum of delays of 12.5%. The computation
times needed to solve the rescheduling problems for these
scenarios are shown, on a logarithmic scale, in Figure 2.
The average computation time to solve rescheduling problem
Imp is 5.91 seconds. The average computation time needed
to solve rescheduling problem Exp is 0.11 seconds, which is
51 times faster.

0 5 10 15 20 25 30 35 40 45 50

400

600

800

1000

1200

1400

Scenario (#)

Su
m

 o
f d

el
ay

s (
m

in
)

Uncontrolled
Controlled

Fig. 1. Case study 1: Sum of delays for the 50 scenarios for the uncontrolled
(black bars) and optimally controlled (white bars) case.

0 5 10 15 20 25 30 35 40 45 50
10−1

100

101

Scenario (#)

C
om

pu
ta

tio
n

tim
e

(s
)

Implicit
Explicit (Red.)

Fig. 2. Case study 1: Computation time of the solver for the 50 scenarios
for the implicit (o) and reduced explicit (+) models.

B. Case study 2

In this case study the solution of rescheduling problem 1
compared to the solution of rescheduling problem 2. This is
done for a set of 20 scenarios in which 10% of the trains
are delayed by a randomly chosen value, that is determined
on a truncated Weibull distribution with scale parameter 8
and shape parameter 0.8. The Weibull distribution is cut off
at 10 minutes and the maximum delay in the uncontrolled
network is more than 15 minutes. The maximum delays for
these scenarios are between 18 and 31 minutes.

The sums of delays for the uncontrolled network and
for the solutions found for both rescheduling problems are
shown in Figure 3. The average sum of delays for the
uncontrolled model is 1218 minutes, the average sum of
delays of the optimal solution of rescheduling problem 1 is
1036 minutes and the average sum of delays of the optimal
solution of rescheduling problem 2 is 1049 minutes. The
reduction of the sum of delays for solution of rescheduling
problem 1 is 182 minutes, while for the solution of reschedul-
ing problem 2 is 169 minutes, which is 6, 9% worse. In the
worst case (scenario 1, with maximum delay 18 minutes), the
reduction of the sum of delays for rescheduling problem 2 is
25% less than for rescheduling problem 1. For scenario 18,
with the largest maximum delay of 31 minutes, the solutions
found by solving both rescheduling problems result in nearly
the same reduction of delays.

For 8 scenarios (scenarios 2, 10, 11, 12, 14, 15, 19 and
20) the solution found for rescheduling problem 2 matches
that of rescheduling problem 1.

To be able to guarantee the quality of the found solution
it is important that the maximum delay used in the reduction
method is large enough. Determining reduced explicit models
for different values of the maximum delays is necessary
such that there are reduced models for delay scenarios with
different maximum delays. As long as the maximum delay
in the scenario is not larger than the assumed maximum
delay, and small enough for the reduction method to be
effective, the rescheduling problem based on the reduced
explicit model can be solved quicker than the rescheduling
problem based on the implicit model, while the solution will
be the same.

0 2 4 6 8 10 12 14 16 18 20
050

1000

1500

Scenario (#)

Su
m

 o
f d

el
ay

s (
m

in
)

Uncontrolled
Full implicit
Red. explicit

Fig. 3. Case study 2: Sum of delays for the 20 scenarios for the uncontrolled
(black bars) network, implicit model (white bars) and the reduced explicit
model (gray bars).

V. CONCLUSIONS
We have proposed a method to reduce the computation

time needed to solve the rescheduling problem by limiting
the possible control actions for the explicit switching max-
plus-linear model introduced in [6]. The control actions that
have no effect on the solution of the rescheduling problem
are removed. As a result a model with reduced, but sufficient,
rescheduling capabilities is derived.

In a case study we have compared the computation time
needed to solve the rescheduling problem for the implicit
model and the limited explicit model. From this case study
it can be concluded that the optimal solution to the reschedul-
ing problem using the limited explicit model is found much
quicker, than for the rescheduling problem using the implicit
model.

REFERENCES

[1] A. D’Ariano and M. Pranzo, “An advanced real-time train dispatching
system for minimizing the propagation of delays in a dispatching area
under severe disturbances,” Networks and Spatial Economics, vol. 9,
no. 1, pp. 63–84, 2009.

[2] J. T. Krasemann, “Design of an effective algorithm for fast response to
the re-scheduling of railway traffic during disturbances,” Transportation
Research Part C: Emerging Technologies, vol. 20, no. 1, pp. 62–78,
2012.

[3] P. Kecman, F. Corman, A. D’Ariano, and R. M. P. Goverde, “Reschedul-
ing models for network-wide railway traffic management,” in Proceed-
ings of the 12th Conference on Advanced Systems for Public Transport
(CASPT 12), Santiago, Chile, July 2012, pp. 1–30.

[4] T. J. J. van den Boom, B. Kersbergen, and B. De Schutter, “Structured
modeling, analysis, and control of complex railway operations,” in
Proceedings of the 51st IEEE Conference on Decision and Control,
Maui, Hawaii, Dec. 2012, pp. 7366–7371.

[5] T. J. J. van den Boom, N. Weiss, W. Leune, R. M. P. Goverde, and B. De
Schutter, “A permutation-based algorithm to optimally reschedule trains
in a railway traffic network,” in Proceedings of the 18th IFAC World
Congress, Milan, Italy, Aug.–Sept. 2011, pp. 9537–9542.

[6] B. Kersbergen, T. J. J. van den Boom, and B. De Schutter, “On
implicit versus explicit max-plus modeling for the rescheduling of
trains,” in Proceedings of the 5th International Seminar on Railway
Operations Modelling and Analysis (RailCopenhagen), Copenhagen,
Denmark, May 2013.

[7] F. Baccelli, G. Cohen, G. Olsder, and J. Quadrat, Synchronization and
Linearity: An Algebra for Discrete Event Systems. Wiley, 1992.

[8] R. M. P. Goverde, “Railway timetable stability analysis using max-
plus system theory,” Transportation Research Part B: Methodological,
vol. 41, no. 2, pp. 179 – 201, 2007.

[9] ——, “A delay propagation algorithm for large-scale railway traffic
networks,” Transportation Research Part C: Emerging Technologies,
vol. 18, no. 3, pp. 269 – 287, 2010.

