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Real-Time Scheduling for Trains in Urban Rail Transit Systems Using

Nonlinear Optimization

Yihui Wang, Bart De Schutter, Ton J.J. van den Boom, Bin Ning, and Tao Tang

Abstract— The real-time train scheduling problem for urban
rail transit systems is considered with the aim of minimizing
the total travel time of passengers and the energy consumption
of trains. Based on the passenger demand in urban rail transit
systems, the optimal departure times, running times, and
dwell times are obtained by solving the scheduling problem.
Three solution approaches are proposed to solve the real-time
scheduling problem for trains: a pattern search method, a
mixed integer nonlinear programming (MINLP) approach, and
a mixed integer linear programming (MILP) approach. The
performance of these three approaches is compared via a case
study based on the data of the Beijing Yizhuang line. The results
show that the pattern search method provides a good trade-
off between the control performance and the computational
efficiency.

I. INTRODUCTION

With the increasing passenger demand for urban rail

transit systems, such as subway systems, the frequency of

train operations is becoming very high, especially in large

cities like Beijing, Shanghai, Tokyo, New York, and Paris,

where trains arrive at a station every 3 to 5 minutes. The

planning process for the urban rail transit systems becomes

more important for reducing the operation costs of railway

operators and for guaranteeing passenger satisfaction, which

can be characterized by waiting times, on-board times, and

transfers. This paper considers the real-time train scheduling

problem for urban rail transit systems.

In contrast to interurban rail transit systems, where the

rail infrastructure is a limited resource on which several

lines compete, we consider the urban rail transit systems.

In interurban rail transit systems, trains usually overtake or

meet each other. However, the lines of the urban rail transit

systems mentioned here are separated from each other, and

each direction of the line has a separate route. Moreover,

trains do not overtake and meet each other normally in these

urban rail transit systems. For completeness, we review the

research of the train scheduling planning problem for both

interurban railway systems and urban rail transit systems.

1) Scheduling: The train schedule planning problem con-

sists in optimizing the departure and arrival times for all

trains at stations and the assignment of railway resources

(i.e., tracks and platforms) so that a set of safety con-

straints is satisfied. The research on interurban rail transit

systems has considered the noncyclic timetabling and cyclic

timetabling [1]. In the noncyclic timetabling approaches, the
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train scheduling problem is generally formulated as a mixed

integer linear programming (MILP) problem, which was

solved using branch-and-bound techniques [2] and heuris-

tic algorithms [3]. The periodic event scheduling problem

framework introduced by Serafini and Ukovich [4] is the

basis of the cyclic timetabling [5]. An advantage of cyclic

timetables is that passengers can easily remember departure

times. A drawback of cyclic timetables is the potential

inefficiency since trains may have to be operated even in

case of a lower passenger demand.

For urban rail transit systems, the timetables obtained

in [6] and [7] are cyclic timetables, where cooperative

approaches are proposed to adjust running times and dwell

times to save energy consumption. However, the passenger

satisfaction that can be characterized by passenger waiting

time is not considered in [6] and [7]. Wong et al. [8] pre-

sented a nonperiodic timetable to synchronize the schedule

of different lines in urban rail transit systems with the objec-

tive of minimizing the transfer waiting time of passengers.

Vazquez-Abad and Zubieta [9] proposed a stochastic approx-

imation approach to adjust the frequencies of different urban

transit lines according to the observed variable passenger

demand.

2) Rescheduling: The function of the timetable is often

loosely connected to its execution in practice. For interurban

rail transit systems, the principal task of rescheduling is

identifying and resolving conflicts that may arise during

actual operation. Mazarello and Ottaviani [10] proposed a

conflict detection and resolution model based on the alter-

native graph formulation to create an optimized conflict-free

timetable using a heuristic algorithm. D’Ariano et al. [11]

presented a model including updated speed profiles based on

alternative graphs and adopted a branch-and-bound algorithm

to minimize the delays.

Due to the different rail infrastructure in urban rail transit

systems, the rescheduling process of urban rail transit does

not need to detect and resolve conflicts between different

routes. Several rescheduling approaches are proposed in ur-

ban rail transit systems [12]: holding, zone scheduling, short

turning, deadheading, and dynamic stop-skipping. Holding is

used to regulate the headways by holding an early-arriving

train, or a train with a relatively short leading headway. In

zone scheduling, the whole line is divided into several zones,

where the trains stop at all stations within a single zone and

then run without stopping to the terminal station. The short-

turn strategy consists of a system of two service patterns,

in which the short-turn trip is entirely overlapped by the

longer full-length trip. The deadheading strategy involves



some trains to run empty through a number of stations at

the beginning of their trips to reduce the headways at later

stations. The dynamic stop-skipping strategy allows trains

that are late and behind the schedule to skip certain low-

demand stations in order to increase the running speed.

However, these operation control strategies are based on an

existing timetable or a fixed headway between trains. So the

effect of these rescheduling strategies are limited.

3) Real-time scheduling: Therefore, we have proposed a

real-time scheduling approach for trains based on the pas-

senger demand in [13], where the capacity of the trains, the

capacity of the stations, and the safety constraints caused by

urban rail transit systems are included. In [13] the headways,

the running times, and the dwell times of trains are optimized

with respect to the travel time of passengers. In addition, the

real-time train scheduling problem is solved by the sequential

quadratic programming approach.

However, the train scheduling problem is essentially a

multi-objective optimization problem because it should con-

sider both the benefits of the railway operators and the

passengers. More and more researchers are focusing on the

multi-objective train scheduling problem, e.g. [2], [14], [15].

As different from [13], this paper considers a multi-objective

optimization for the real-time train scheduling problem,

where the energy consumption of the trains and the total

travel time of passengers are minimized. Furthermore, in

this paper we propose three approaches to solve the real-time

scheduling problem: a pattern search method, a mixed integer

nonlinear programming approach, and a mixed integer linear

programming approach.

The rest of the paper is structured as follows. Section

II formulates the dynamics of the trains’ operation, the

passenger demand characteristics, and the passenger/vehicle

interaction. Section III describes the multi-objective cost

function and the constraints of the real-time scheduling

problem. Section IV proposes three solution approaches for

the resulting nonlinear non-convex programming problem.

Section V illustrates the performance of those three methods

with a case study. Finally, Section VI concludes the paper.

II. MODEL FORMULATION

A. Assumptions

This paper considers one direction of an urban transit

line consisting of J stations, where station 1 is the origin

station and station J is the final station of each trip. When

formulating the real-time scheduling model, we make the

following assumptions:

A1. Station j for j ∈ {2,3, . . . ,J−1} can only accommodate

one train at a time and no overtaking can occur at any

point in the line.

A2. Passengers arrive uniformly at a constant rate λ j at

station j.

A3. The number of passengers alighting from trains at

station j for j ∈ {1,2, . . . ,J} is a fixed proportion ρ j of

its arrival load. At the final station J, all the passengers

will get off trains, i.e., ρJ = 1.

A4. The number of passengers waiting at station and the

number of passengers on-board immediately after a

train’s departure are approximated by real numbers

instead of integers.

Assumption A1 generally holds for most urban transit sys-

tems, which are usually operated in first-in first-out order

from station 1 to J. Assumption A2 is consistent with

observed uniformly passengers arrivals for short headway

(less than 10 minutes) services [16]. An estimate of these

passenger arrival rates at stations can be obtained by ana-

lyzing historical data of the passenger flow. Assumption A3

is made according to [17]. Similar as the passenger arrival

rate, the passenger alighting proportion can be determined

by analyzing historical data. For Assumption A4, if the

number of passengers is high, then the error made by this

assumption is small. Furthermore, this assumption simplifies

the optimization problem later on.

B. The dynamics of train’s operation

The literature on train scheduling ignores the detailed

dynamics of trains and describes it by departure times, arrival

times, running times, and dwell times. The departure time di, j

of train i at station j is equal to the sum of the arrival time

ai, j and the dwell time τi, j of train i at station j, i.e.

di, j = ai, j + τi, j, (1)

where i ∈ {1,2, . . . , I}. In the literature, the dwell time is

usually considered as a constant. However, in practice, it

is influenced by the number of passengers boarding and

alighting from the train. Therefore, we consider a variable

dwell time, as will be explained in Section II-D. The arrival

time ai, j+1 of train i at station j+ 1 equals the sum of the

departure time di, j at station j and the running time ri, j on

segment j (i.e., the track between station j and station j+1)

for train i:

ai, j+1 = di, j + ri, j. (2)

The running time ri, j satisfies

ri, j ∈ [ri, j,min,ri, j,max], (3)

where ri, j,min and ri, j,max are the minimal and maximal

running time for train i traversing segment j, respectively.

The minimal running time can be calculated based on the

detailed train dynamics, the speed limits, and the grade

profiles along the line. The maximum running time should

be chosen to ensure the passenger satisfaction.

The minimum headway is the minimum time interval

between two successive trains so that they can enter and

depart from a station safely. Followed from assumption A1,

a train cannot enter a station until a minimum headway h0

after the preceding train’s departure, which can be formulated

as

ai, j −di−1, j ≥ h0. (4)

In addition, we select the order in which the trains run such

that vehicle i−1 always precedes train i for i∈ {1,2,3, . . . , I}
with I the total number of trains.



C. Passenger demand characteristic

The number of passengers still remaining at the station af-

ter the departure of train i−1 immediately after its departure

at station j is defined as wi−1, j. The number of passengers

who want to get on train i at station j can then be formulated

as wi−1, j +λ j(di, j −di−1, j), where λ j(di, j −di−1, j) is number

of the passengers that arrived during the departure of train

i−1 and the departure of train i.

By defining the number of passengers on train i im-

mediately after its departure at station j − 1 as ni, j−1, the

remaining capacity of train i at station j immediately after

the alighting process of the passengers is Ci,max −ni, j−1(1−
ρ j), where Ci,max is the maximum capacity of train i, and

ni, j−1(1−ρ j) is the number of passengers remaining on train

i immediately after all the passengers that wanted to leave

the train have gotten off.

The number of passengers boarding train i at station j

is equal to the minimum of the remaining capacity and the

number of waiting passengers, i.e. min
(

Ci,max − ni, j−1(1−
ρ j),wi−1, j +λ j(di, j −di−1, j)

)

. The number of passengers at

station j immediately after the departure of train i, i.e. the

passengers who cannot get on train i, is then given by

wi, j =wi−1, j +λ j(di, j −di−1, j)−min
(

Ci,max

−ni, j−1(1−ρ j),wi−1, j +λ j(di, j −di−1, j)
) (5)

The number of passengers on train i when it departs from

station j is equal to the sum of the passengers arriving but

not getting off at station j and the passengers boarding on

train i at station j, which can be formulated as

ni, j =ni, j−1(1−ρ j)+min
(

Ci,max −ni, j−1(1−ρ j),wi−1, j

+λ j(di, j −di−1, j)
)

.
(6)

D. Passenger/vehicle interaction

As mentioned before, the dwell time is influenced by the

number of alighting and boarding passengers. We assume

here that its minimum value can be described as a linear

function of the alighting and boarding passengers [18]:

τi, j,min =α1,d +α2,dni, j−1ρ j +α3,d min
(

Ci,max −ni, j−1(1−ρ j),

wi−1, j +λ j(di, j −di−1, j)
)

,

where α1,d, α2,d, and α3,d are coefficients that can be

estimated based on historical data. The dwell time τi, j should

be larger than the minimal dwell time τi, j,min such that

the passengers can get on and get off the train and less

than a maximum dwell time τi, j,max to ensure passengers’

satisfaction, i.e.,

τi, j,min ≥ τi, j ≥ τi, j,max. (7)

III. THE REAL-TIME SCHEDULING PROBLEM

For the real-time train scheduling problem, we minimize

the energy consumption caused by the operation of trains and

the total travel time of all passengers using the weighted

sum strategy. The energy consumption is proportional to

the resistance [2], which includes the rolling resistance, air

resistance, and grade resistance. The energy consumption of

train i on segment j is a nonlinear function of the running

time ri, j that can be described as Ei, j =Ri, j(v̄i, j)s jξi, where s j

is the length of segment j, and ξi is the energy consumption

per unit power output, v̄i, j is the mean velocity of train

i on segment j, which can be calculated by v̄i, j = s j/ri, j,

and the resistance Ri, j(v) is a function of train speed v,

i.e., Ri, j(v) = (me,i + ni, jmp)(k1i + k2iv + gsin(θ j)) + k3iv
2,

where me,i is the mass of train i itself, mp is the mass of

one passenger, (me,i +ni, jmp) is the mass of train i and the

passengers on-board of train i at station j, k1i,k2i, and k3i

are the resistance coefficients of train i, and θ j is the grade

profile of segment j. The total energy consumption for all I

trains can then be formulated as

Etotal =
I

∑
i=1

J−1

∑
j=1

Ei, j. (8)

The total travel time is the sum of the passenger waiting

time and the passenger in-vehicle time. The passenger wait-

ing time twait,i, j at station j for train i includes the waiting

time of both passengers left by the previous train i − 1

and the newly arrived passengers, i.e. twait,i, j = wi−1, j(di, j −
di−1, j)+

1
2
λ j(di, j − di−1, j)

2, where the first term represents

the waiting time of the passengers left by train i − 1 at

station j, and the second term represents the waiting time

of uniformly arriving passengers between the departures of

train i−1 and train i. The passenger in-vehicle time for train

i running from station j to j+ 1 includes the running time

for all passengers on train i after its departure form station

j and the waiting time of the passengers who do not get

off the train at station j + 1, which can be formulated as

tin-vehicle,i, j = ni, jri, j+ni, j(1−ρ j+1)τi, j+1. The total passenger

travel time for all I trains can then be formulated as

ttotal =
I

∑
i=1

J−1

∑
j=1

(twait,i, j + tin-vehicle,i, j). (9)

We apply the weighted sum strategy to solve the multi-

objective optimization of the real-time scheduling problem,

i.e. we write the total objective function as a weighted sum

of the objectives Etotal and ttotal:

fopt =
Etotal

Etotal,nom

+λ
ttotal

ttotal,nom

, (10)

where λ is the non-negative weight, and the normalization

factors Etotal,nom and ttotal,nom are the nominal values of

the total energy consumption and the total travel time of

passengers, respectively. The nominal values are determined

by running trains using a feasible initial schedule.

The constraints of the real-time scheduling problem con-

sist of the running time constraints, dwell time constraints,

headway constraints, and capacity of trains, shown as (1)-(4),

(5)-(7) in Section II.

IV. SOLUTION APPROACHES

The resulting real-time train scheduling problem is a

non-smooth non-convex problem, where the non-smoothness

is caused by the min function in (5) and (6), and the



non-convexity is due to the nonlinear non-convex objective

function. We propose three solution approaches to solve the

real-time train scheduling problem: a pattern search method,

a mixed-integer nonlinear programming (MINLP) approach,

and a mixed-integer linear programming (MILP) approach.

A. Pattern search method

The pattern search method is a logical choice for the given

problem since it is a gradient-free method and can handle

non-smooth non-convex optimization problems. The pattern

search method was first proposed by Hooke and Jeeves [19],

and it has been proved particularly successful in locating

minima on hypersurfaces which contain “sharp valleys” in

practice. On such surfaces classical techniques behave badly

and can only be induced to approach the minimum slowly.

For the pattern search method, the variables of the real-time

scheduling problem are the departure times di, j, the running

times ri, j, and the dwell times τi, j. The other variables, such

as the passengers waiting at stations wi, j, the passengers on-

board the trains ni, j, the passenger waiting times twait,i, j, and

the passenger on-board times tin-vehicle,i, j, can be eliminated.

B. The MINLP approach

In the MINLP approach, we introduce binary variables

and auxiliary variables to deal with the min function in (5)

and (6). By introducing a binary variable δi, j ∈ {0,1} and

defining f̃i, j = wi−1, j +λ j(di, j −di−1, j)− [Ci,max −ni, j−1(1−
ρ j)], the following equivalence holds [20]:

[ f̃i, j ≤ 0]⇔ [δ = 1]

is true iff
{

f̃i, j ≤ M̃i, j(1−δi, j)
f̃i, j ≥ ε +(m̃i, j − ε)δi, j

,

where ε is a small positive number that is introduced to

transform a strict equality into a non-strict inequality, and

M̃i, j and m̃i, j are the maximum value and the minimum value

of f̃i, j, respectively. The min function can now be rewrit-

ten as δi, j[wi−1, j +λ j(di, j −di−1, j)]+(1−δi, j)[Ci,max −
ni, j−1(1−ρ j)]. Four auxiliary variables are introduced to re-

place these four nonlinear terms: δi, jwi−1, j, δi, jdi, j, δi, jdi−1, j,

δi, jni, j−1.

We consider the departure times di, j, the running times

ri, j, and the dwell times τi, j, the passengers waiting at

stations wi, j, and the passengers on-board the trains ni, j

as variables of the real-time scheduling problem. After

introducing binary variables and auxiliary variables, the real-

time scheduling problem becomes an MINLP problem. A bi-

level optimization method is proposed in this paper to solve

the resulting MINLP problem. This method consists of two

levels of optimization. The high-level optimization optimizes

the binary variables, where a brute force approach can be

used to find all the combinations for the binary variables in

case the size of the problem is small. Otherwise, other integer

programming approaches, such as genetic algorithms, can be

applied in the high-level optimization. For each combination

of binary variables, the nonlinear optimization problem in

the lower level is now a smooth problem, which can be

TABLE I

INFORMATION OF THE YIZHUANG SUBWAY LINE

Station Distance Passenger Passenger Minimum
number to next arrival rate alighting running

station [m] [passenger/s] proportion time [s]

1 1332 2 0 87.700
2 1286 2 0.1 85.628
3 2086 2 0.3 121.664
4 2265 4 0.5 129.727
5 2331 4 0.3 132.700
6 1354 0 1 88.691

solved using gradient-based approaches, such as interior-

point method.

C. The MILP approach

In our earlier work [21], we have shown that the MILP

approach can be very efficient for train trajectory planning

problems. Therefore, we also apply it to the real-time train

scheduling problem.

The MILP approach deals with the min function in (5) and

(6) the same as the MINLP approach. In the resulting MINLP

problem of Section IV-B, the constraints are linear, but the

objective function is nonlinear and non-convex. Therefore,

in order to solve the real-time scheduling problem as an

MILP problem, we need to approximate the nonlinear terms

as piecewise affine functions, such as wi−1, jdi, j, ni, jri, j, and

ni, jτi, j. For more information about the piecewise affine

approximation see [20]. As MILP solver, we use CPLEX,

implemented through the cplex interface function of the

Matlab Tomlab toolbox.

V. CASE STUDY

In order to demonstrate the performance of the three

solution approaches proposed in Section IV for the multi-

objective real-time train scheduling problem, the train char-

acteristics and a part of the line data of the Yizhuang subway

line in Beijing are used as a test case study. There are 14

stations in the Yizhuang line, but we only consider the first

6 stations for the sake of compactness. The speed limit for

the line is 80 km/h (i.e., 22.2 m/s). The detailed information

about the 6 stations we consider is listed in Table I. The

minimum running time in Table I is calculated by taking

a fixed acceleration of 0.8 m/s2 and a fixed deceleration

of −0.8 m/s2. Furthermore, the train is assumed to run at

the maximum speed 22.2 m/s at the holding phase. The

maximum running time is assumed as ri, j,max = ζ ri, j,min,

where ζ is larger than 1. We have chosen ζ as 1.5 to ensure

that the passengers do not complain that the train is too slow.

The train mass is 1.99 × 105 kg and the mass of one

passenger is 60 kg. The maximal dwell time is chosen

as 150 s. Based on the dwell time research about Beijing

subway stations [22], the values of the minimum dwell

time coefficients α1,d , α2,d , and α3,d are chosen as 4.002,

0.047, and 0.051, respectively. For the calculation of energy

consumption, the coefficients of the resistance k1i, k2i and k3i

are chosen as 1.210× 10−2, 5.049× 10−4, and 8.521. The

capacity of each train is 1468 passengers according to the



TABLE II

THE NOMINAL VALUES OF THE ENERGY CONSUMPTION AND THE

PASSENGER TRAVEL TIME

I & J Nominal passenger Nominal energy
travel time [s] consumption [J]

I = 2,J = 3 3.721 ·105 1.795 ·108

I = 3,J = 3 5.270 ·105 2.674 ·108

I = 3,J = 4 1.146 ·106 5.331 ·108

I = 3,J = 5 2.134 ·106 8.648 ·108

I = 4,J = 5 2.723 ·106 1.136 ·109

I = 4,J = 6 4.485 ·106 1.620 ·109

Fig. 1. The layout of the Yizhuang subway line

train characteristics of the Yizhuang line, and the minimum

headway h0 between two successive trains is 90 s.

This paper proposes three approaches to solve the real-

time train scheduling problem: pattern search, a MINLP

approach, and a MILP approach. For the pattern search

method, we use the patternsearch function in the global

optimization toolbox of Matlab. The high level of the bi-level

optimization for the MINLP approach applies the brute force

approach, and the low-level optimization uses the fmincon

function implementing sequential quadratic programming

method of the Matlab Tomlab toolbox as a nonlinear op-

timization solver. We use CPLEX, implemented through the

cplex interface function of the Matlab Tomlab toolbox as

the MILP solver. In order to compare the performance of

these three approaches, we consider 6 cases with different

problem sizes as shown in Table II, where the values of I

and J are the number of trains and stations involved. For the

cases with J less than 6, the passenger arrival rate and the

passenger alighting rate at station J are changed to 0 and

1, respectively. The weight λ in the multi-objective function

(10) is chosen as 1. In addition, the nominal values of the

passenger travel time and the energy consumption for these

6 cases are shown in Table II.

Table III shows the computation time, the control perfor-

mance (i.e., the weighted sum of the energy consumption and

the passenger travel time in (10)), the level of suboptimality1,

the passenger travel time, and the energy consumption for

the three solution approaches. The computation time of

the pattern search method is an average value of 10 runs,

where each run has 10 feasible random initial points. The

computation time of the MINLP approach is an average

value of 10 runs, where the fmincon function in the low-

1The level of optimality is the relative difference of the control perfor-
mance of the current approach fopt,cur with that of the best case fopt,best,

and it is calculated by frelative =
fopt,cur− fopt,best

fopt,best
.

level optimization is executed for 10 feasible random initial

points. For the MILP approach, only 1 feasible random

initial point is needed to obtain the global minimum of the

MILP problem. The passenger travel time and the energy

consumption of the MILP approach are calculated using the

original nonlinear objective function.

As shown in Table III, the computation time of the MILP

approach is the shortest among these three approaches. For

the MILP approach, the computation time increases slowly

in the beginning, but the computation time for the case with

I = 4 and J = 6 is about 8 times more than that with I = 4 and

J = 5. The computation time of the pattern search method

increases almost linearly with the size of the problem. The

computation time of the MINLP approach for smaller sized

problem is short, but it grows exponentially. For the problem

with I = 4 and J = 6, the MINLP problem cannot be

solved in 5 hours using the exhaustive bi-level optimization

method. However, the control performance of the MINLP

approach is the best among these three approaches for the

other combinations of I and J. The control performance of

the pattern search method is around 7% higher than the

MINLP approach. For the small-sized problems, the control

performance of the MILP approach is about 30% higher

than the best control performance, but the relative difference

becomes smaller when the size of the problem increases. For

the cases with I = 3, J = 5 and I = 4, J = 5, the passenger

travel time obtained by the MILP approach is even less than

that of the MINLP approach, but the energy consumption

of the MILP approach is much higher. This may caused by

the approximation errors of the nonlinear terms in the MILP

approach.

For the problem with smaller size, the MINLP approach

using the exhaustive bi-level optimization is recommended.

For larger sized problem, the pattern search method is most

suitable since it has an acceptable control performance in a

reasonable computation time.

VI. CONCLUSIONS

We have considered the real-time train scheduling problem

for urban rail transit systems. The total travel time of pas-

senger and the energy consumption of the operation of trains

are minimized in the real-time train scheduling problem. We

have proposed three solution approaches to solve the real-

time scheduling problem: a pattern search method, a mixed-

integer nonlinear programming (MINLP) approach, a mixed

integer linear programming (MILP) approach. A comparison

of these three approaches is illustrated via a case study. The

simulation results show that the MINLP approach has the

best control performance, but its computation time grows ex-

ponentially. The MILP has the best computational efficiency,

but the control performance is much worse comparing to

the MINLP approach and the pattern search method. The

pattern search approach provides a good trade-off between

the control performance and the computational efficiency for

real-time applications.



TABLE III

THE PERFORMANCE COMPARISON OF THE PATTERN SEARCH METHOD, THE MINLP APPROACH, AND THE MILP APPROACH

I & J Solution Computation Control Level of Passenger Energy con-
method time [s] performance suboptimality travel time [s] sumption [J]

Pattern search 28.850 2.167 7.3% 4.332 ·105 1.801 ·108

I = 2 MINLP 7.628 2.019 0% 3.840 ·105 1.771 ·108

J = 3 MILP 0.804 2.563 26.9% 4.237 ·105 2.556 ·108

Pattern search 44.724 2.170 5.14% 6.128 ·105 2.692 ·108

I = 3 MINLP 25.722 2.064 0% 5.648 ·105 2.654 ·108

J = 3 MILP 0.871 2.736 32.6% 6.944 ·105 3.793 ·108

Pattern search 115.424 2.144 6.6% 1.307 ·106 5.344 ·108

I = 3 MINLP 248.231 2.012 0 1.175 ·106 5.262 ·108

J = 4 MILP 1.206 2.443 21.4% 1.183 ·106 7.522 ·108

Pattern search 204.979 2.126 8.8% 2.414 ·106 8.599 ·108

I = 3 MINLP 1.207 ·103 1.954 0% 2.105 ·106 8.370 ·108

J = 5 MILP 2.320 2.262 15.8% 2.096 ·106 1.107 ·109

Pattern search 268.815 2.145 7.3% 3.099 ·106 1.143 ·109

I = 4 MINLP 1.706 ·104 2.000 0% 2.765 ·106 1.118 ·109

J = 5 MILP 7.526 2.366 18.3% 2.745 ·106 1.543 ·109

Pattern search 410.030 2.118 0% 5.373 ·106 1.634 ·109

I = 4 MINLP > 5 h - - - -

J = 6 MILP 56.270 2.252 6.3% 4.543 ·105 2.008 ·109
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