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Linear model predictive control based on approximate optimal control inputs

and constraint tightening

Ion Necoara, Valentin Nedelcu, Tamás Keviczky, Minh Dang Doan and Bart De Schutter

Abstract— In this paper we propose a model predictive
control scheme for discrete-time linear time-invariant systems
based on inexact numerical optimization algorithms. We assume
that the solution of the associated quadratic program produced
by some numerical algorithm is possibly neither optimal nor
feasible, but the algorithm is able to provide estimates on primal
suboptimality and primal feasibility violation. By tightening the
complicating constraints we can ensure the primal feasibility of
the approximate solutions generated by the algorithm. Finally,
we derive a control strategy that has the following properties:
the constraints on the states and inputs are satisfied, asymptotic
stability of the closed-loop system is guaranteed, and the
number of iterations needed for a desired level of suboptimality
can be determined.

I. INTRODUCTION

Model predictive control (MPC) has become a popular

advanced control technology due to its ability to handle

hard input and state constraints. MPC was first implemented

in slow systems such as industrial processes [16], but due

to the increase of computing power and data transmission

capabilities of modern digital devices it has been extensively

studied also in the context of controlling fast embedded

systems and distributed control of network systems.

Recently there has been a growing interest in developing

faster MPC schemes for embedded systems, by improving

the computational efficiency and providing worst-case com-

putational complexity certificates for the applied solution

methods, making these schemes implementable on hardware

with limited computational power [7]–[9], [12], [13], [17]. In

large network system settings many decomposition methods

have been proposed for the synthesis of distributed MPC

schemes as well [3], [10]–[12], [14], [20], [22].

Typical requirements for the practical implementation

of real-time MPC include certification of the worst-case

execution time, reduced memory usage, simple numerical

iterations that can be easily implemented on cheap and/or

certifiable hardware and software, and distributed computa-

tions. Classical approaches meeting these requirements such

as explicit MPC [1], or methods based on interior point

algorithms [17] can fail due to the large dimension of the

problems or complex iterations that involve matrix inversion.

An alternative is provided by dual first order methods [12]–

[14], [18]. Although these methods are characterized by

simple computations and offer tight worst-case bounds on
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the required number of iterations, they can ensure feasibility

only at optimality. In order to avoid this drawback, new dual

methods based on constraint tightening have been proposed

in [5], [6], [12], [19]. The authors in [6], [19] present subop-

timal stable MPC schemes able to ensure also feasibility of

the primal variables using a constraint tightening approach.

In these schemes the tightening is applied to both the state

and the input constraints, while the parameters measuring

the suboptimality and the degree of tightening are fixed

for all initial states of the MPC scheme. In [5], stability

and feasibility of an MPC scheme is also ensured using a

constraint tightening approach and suboptimality results are

based on dual subgradient analysis. In the present paper we

extend the main results from [12] on stability and feasibility

of a suboptimal MPC scheme, where we now assume that

the suboptimal control inputs are computed using a generic

inexact numerical optimization algorithm.

Contribution: The main contribution of this paper is to

propose a suboptimal MPC scheme that ensures both feasibil-

ity and stability with only a limited number of optimization

iterations. Since in many MPC schemes an approximate solu-

tion of the optimization problem that has to be solved at each

time instant might not be feasible, we solve approximately

an auxiliary problem obtained by tightening the constraints

of the original one. We show that the approximate solution of

the tightened problem is also a suboptimal feasible solution

for our original optimization problem and thus we obtain

an MPC scheme that ensures feasibility, suboptimality, and

stability for the closed loop system. Compared to the recent

papers [6], [19], in our approach the tightening is applied

only to the state constraints while the parameters measuring

the suboptimality and the tightening are chosen adaptively,

i.e., depending on the initial state of the MPC scheme. This

leads to a more flexible and potentially less conservative

approach. The proposed MPC scheme can accommodate any

QP solver in order to find an approximate solution of the

problem. Further, in order to establish a bound on the number

of iterations required to find a desired solution, we also

provide a dual fast gradient method taken from [12], which

is at least one order of magnitude faster than the one in [5].

Paper outline: The paper is organized as follows. In

Section II we formulate the linear MPC problem and we also

introduce a tightened problem that helps us to recover feasi-

bility. In Section III we prove the feasibility, suboptimality,

and stability of the proposed MPC scheme. In Section IV we

present an inexact dual fast gradient algorithm for finding the

approximate solution required by our MPC scheme. Finally,

in Section V we apply our scheme to a ball on plate system.



Notation: We work in the space R
n composed by column

vectors. For u, v ∈ R
n we denote the standard Euclidean

inner product 〈u, v〉 =
∑n

i=1 uivi, the Euclidean norm

‖u‖ =
√

〈u, u〉, and the projection onto non-negative orthant

R
n
+ as [u]+. We use the same notations 〈·, ·〉, ‖·‖, and [·]+

for spaces of different dimension.

II. MPC PROBLEMS FOR LINEAR SYSTEMS

We consider discrete-time systems, defined by the follow-

ing linear difference equations:

x(t+ 1) = Ax(t) +Bu(t), (1)

where x(t) ∈ R
nx and u(t) ∈ R

nu represent the state and the

input of the system at time t, respectively. We also impose

local state and input constraints:

x(t) ∈ X, u(t) ∈ U ∀t ≥ 0, (2)

where X ⊆ R
nx is a polyhedral set and U ⊆ R

nu is a simple

convex set, i.e., the projection on this set can be computed

efficiently. Moreover, we assume that both X and U contain

the origin in their interior. For the system (1) we consider a

quadratic convex stage cost:

ℓ(x(t), u(t)) =
1

2
‖x(t)‖2Q +

1

2
‖u(t)‖2R ,

where ‖x‖2Q = xTQx. The following assumption is valid

throughout the paper:

Assumption 2.1: The pair (A,B) is stabilizable, Q � 0,

R ≻ 0 and there exists a matrix C ∈ R
m×nx such that

Q = CTC and the pair (A,C) is detectable.

Based on Assumption 2.1 we denote with K ∈ R
nu×nx

the gain associated with the infinite horizon linear quadratic

regulator (LQR) defined by the matrices A,B,Q and R
and with P the solution of the algebraic Riccati equation

associated with the LQR problem. We also introduce a

terminal cost:

V f(x) =
1

2
‖x‖P ,

and a terminal polyhedral set X f which we assume to be

a µ-contractive set for the closed-loop system x(t + 1) =
(A + BK)x(t), not necessarily maximal, with µ < 1 (see

e.g., [21] for a detailed discussion), i.e.:

∀x ∈ X f ⇒ x ∈ X,Kx ∈ U and (A+BK)x ∈ µX f. (3)

For a prediction horizon of length N , the MPC problem

for (1), with a given initial state x ∈ XN , where XN denotes

a region of attraction (see e.g. [21] for more details), can be

formulated as:

V ∗(x) = min
x(t),u(t)

N−1
∑

t=0

ℓ(x(t), u(t)) + V f(x(N))

s.t: x(t+ 1) = Ax(t) +Bu(t), x(0) = x (4)

x(t) ∈ X, u(t) ∈ U, x(N) ∈ X f ∀t = 0, . . . , N − 1.

For the input trajectory of the system we use the notation:

u=
[

u(0)T· · ·u(N−1)T
]T∈ R

n.

By eliminating the states from the dynamics (1), the

MPC problem (4) can be expressed as a quadratic convex

optimization problem:

V ∗(x) =min
u∈U

VN (x,u)

(

=
1

2
uTQu+ (Wx+w)Tu

)

s.t: Gu+Ex+ g ≤ 0, (QP(x))

where Q is positive definite due to the assumption that R is

positive definite, the convex set U is the Cartesian product of

the sets U for N times and the inequalities Gu+Ex+g ≤ 0
are obtained by eliminating the states from the constraints

x(t) ∈ X and x(N) ∈ X f. Here we consider G ∈ R
p×n.

Note that if the set U is simple, then the Cartesian product

set U is also a simple set. In MPC, at each time instant,

given the initial state x, we need to solve the optimization

problem (4) or equivalently optimization problem (QP(x)).

We denote by u∗(x) the unique optimal solution of

(QP(x)). Further, we denote by uf(x) the LQR solution:

uf(x) = [(Kx(0))T · · · (Kx(N − 1))T ]T ,

where x(0) = x and x(t + 1) = (A + BK)x(t) for all

t = 0, . . . , N − 1.

In many practical situations, e.g. when we have fast

dynamics and hard real-time computational requirements, or

when we need to perform distributed computations, finding

the solution u∗(x) of (QP(x)) is difficult. Thus, we assume

that we have available an algorithm that can deliver in a

computationally predictable way an approximate ǫ-solution

ū(x) = Alg((QP(x)), ǫ) such that:

ū(x) = uf(x) if x ∈ X f (5)

or

ū(x) ∈ U, ‖[Gū(x) +Ex+ g]+‖ ≤ ǫ and

|VN (ū(x))− V ∗(x)| ≤ ǫ otherwise. (6)

We note that in this setting, the approximate solution ū(x)
is indeed suboptimal for the MPC scheme but it may also be

infeasible since the constraints Gū(x) +Ex+ g ≤ 0 might

not be satisfied. In many applications, such as the MPC prob-

lem, the constraints typically represent physical limitations

of actuators, or safety limits and operating conditions of the

controlled plant. Thus, ensuring the feasibility of the primal

variables, i.e., u ∈ U and Gu + Ex + g ≤ 0, becomes a

critical requirement. We will see further how we can modify

the original problem (QP(x)) in order to find an approximate

optimal solution that is also feasible.

A. Tightening the coupling constraints

In our proposed approach, instead of solving the original

problem (QP(x)), we consider a tightened version (similarly

to [5], [6], [12], [19]). We introduce the following tightened

problem associated with the original problem (QP(x)):

V ∗
ǫc
(x) =min

u∈U

VN (x,u)

(

=
1

2
uTQu+ (Wx+w)Tu

)

s.t: Gu+Ex+ g + ǫce ≤ 0, (QPǫc
(x))



where e denotes the vector with all entries 1. We state first

the following assumption:

Assumption 2.2: There exists a strictly feasible vector ũ

for problem (QP(x)), i.e. exists ũ ∈ U and Gũ+Ex+g < 0.

Then, we choose ǫc to satisfy e.g. the following inequality:

0 < ǫc ≤
1

2
min

j=1,...,p
{− (Gũ+Ex+ g)j}, (7)

with ũ being a strictly feasible vector for (QP(x)) according

to Assumption 2.2.

Remark 2.3 Note that with this choice for ǫc, input sequence

ũ is also a strictly feasible vector for problem (QPǫc
(x)), so

that Assumption 2.2 still holds for this problem.

It is important to note that in our approach we apply the

tightening only to the state constraints. Thus, our approach is

less restrictive than the approach in [6], [19] where the tight-

ening procedure is applied to both state and input constraints.

It is straightforward to establish that both problems (QP(x))

and (QPǫc
(x)) are convex quadratic programs. Thus, without

loss of generality we assume that for finding an ǫ-solution of

(QPǫc
(x)) we can invoke the same algorithm as for finding

ū(x), i.e., ūǫc
(x) = Alg((QPǫc

(x)), ǫ).
If x ∈ X f we do not need to introduce the tightened

problem (QPǫc
(x)) since in this case we have:

ū(x) = u∗(x) = uf(x), (8)

which is feasible and optimal for problem (QP(x)). In this

case, it is also known that the value of the cost function is

equal to the value of the terminal cost, i.e.:

VN (x, ū(x)) = V ∗(x) = V f(x). (9)

We will discuss further how we can recover the feasibility,

suboptimality and stability in the case x /∈ X f.

III. FEASIBILITY, STABILITY, AND SUBOPTIMALITY OF

THE MPC SCHEME

As mentioned before, at each time step of the MPC

scheme, given the initial state x, instead of applying the algo-

rithm Alg((QP(x)), ǫ) to provide an ǫ-solution ū(x) of the

optimization problem (QP(x)) we apply Alg((QPǫc
(x)), ǫ)

for finding an ǫ-solution ūǫc
(x) of the tightened problem

(QPǫc
(x)). However, since we are interested in obtaining an

approximate primal solution that may be suboptimal for the

original problem (QP(x)) but certainly primal feasible, we

need to find first a relation between optimal values V ∗
ǫc
(x)

and V ∗(x). In order to find such a relation, let us denote

by λ∗
ǫc
(x) an optimal Lagrange multiplier associated with

the inequality constraints in problem (QPǫc
(x)). Then, the

following upper bound on ‖λ∗
ǫc
(x)‖ can be established (for

a detailed discussion see [12]):

Lemma 3.1: Let λ∗
ǫc
(x) denote an optimal Lagrange mul-

tiplier associated with the inequality constraints Gu+Ex+
g+ ǫce ≤ 0 in (QPǫc

(x)). Then, the following upper bound

on ‖λ∗
ǫc
(x)‖ can be established:

‖λ∗
ǫc
(x)‖ ≤ 2Rd,

with

Rd =
VN (x, ũ)− d(λ̃)

min
j=1,...,p

{− (Gũ+Ex+ g)j}
,

where ũ denotes a strictly feasible vector for problem

(QP(x)) (see Assumption 2.2), d(·) denotes the dual function

of (QP(x)) with respect to the inequality constraints Gũ +
Ex+ g ≤ 0 and λ̃ ∈ R

p
+.

Proof: First, let us denote by L(x,u, λ) and

Lǫc
(x,u, λ) the partial Lagrangian with respect to the in-

equality constraints in problem (QP(x)) and (QPǫc
(x)), re-

spectively. Using Lemma 1 in [15] we can write:

‖λ∗
ǫc
(x)‖ ≤ VN (x, ũ)−minu∈U Lǫc

(x,u, λ̃)

min
j=1,...,p

{− (Gũ+Ex+ g + ǫc)j}

=

[

VN (x, ũ)−minu∈U L(x,u, λ̃)
]

−
〈

λ̃, ǫce
〉

min
j=1,...,p

{− (Gũ+Ex+ g)j} − ǫc

≤ 2Rd ∀x ∈ XN , (10)

where in the last inequality we used (7) and the fact that

both λ̃ and ǫc are nonnegative.

Note that for computing the bound Rd we have the freedom

of choosing λ̃ ∈ R
p. Thus, we can obtain a small enough

bound on the norm of Lagrange multipliers λ∗
ǫc
(x).

Taking now into account that

{u : Gu+Ex+ g + ǫce ≤ 0} ⊆ {u : Gu+Ex+ g ≤ 0},
we have on the one hand:

V ∗
ǫc
(x) ≥ V ∗(x). (11)

On the other hand, from the the dual formulation of the

tightened problem (QPǫc
(x)) we have:

V ∗
ǫc
(x) = min

u∈U

VN (x,u) +
〈

λ∗
ǫc
(x),Gu+Ex+ g + ǫce

〉

≤ max
λ≥0

min
u∈U

VN (x,u)+〈λ,Gu+Ex+ g〉+√pǫc‖λ∗
ǫc
(x)‖

≤ V ∗(x) + 2
√
pRdǫc. (12)

We will see further how we can use relations (11) and (12)

to recover the primal suboptimality for the original problem

(QP(x)) from the suboptimality of the tightened problem

(QPǫc
(x)). We assume now that ūǫc

(x) = Alg((QPǫc
(x)), ǫ)

with the accuracy ǫ satisfying:

ǫ ≤ 1

4
min

j=1,...,p
{− (Gũ+Ex+ g)j}, (13)

and the tightening parameter is chosen e.g. as:

ǫc = 2ǫ, (14)

which satisfies (7). Thus, from (6) we have:

ūǫc
(x) ∈ U, ‖[Gūǫc

(x) +Ex+ g + ǫce]+‖ ≤ ǫ and

|VN (x, ūǫc
(x))− V ∗

ǫc
(x)| ≤ ǫ.

Further, using (14) we can write:

∥

∥[Gūǫc
(x)+Ex+g +ǫce]+

∥

∥ ≤ ǫ =
ǫc

2
< ǫc,



which implies that for all j = 1, . . . , p we have:

[Gjūǫc
(x) +Ejx+ gj + ǫc]+ < ǫc. Since Gjūǫc

(x) +
Ejx + gj + ǫc ≤ [Gjūǫc

(x) +Ejx+ gj + ǫc]+ we can

conclude that Gūǫc
(x) + Ex + g < 0 and therefore the

feasibility of ūǫc
(x) for problem (QP(x)) is guaranteed.

Further, since ūǫc
(x) is feasible we have on the one hand

that 0 ≤ VN (x, ūǫc
(x)) − V ∗(x). On the other hand, using

(12) we can write:

0 ≤ VN (x, ūǫc
(x))− V ∗(x) ≤ (1 + 4

√
pRd)ǫ, (15)

and thus ūǫc
(x) is a feasible approximate solution of the

original problem (QP(x)).

We are interested now in proving stability of the proposed

MPC scheme. For this purpose, we introduce first the fol-

lowing notation for the feasible suboptimal solution ūǫc
(x):

ūǫc
(x) =

[

(ū0
ǫc
(x))T · · · (ūN−1

ǫc
(x))T

]T
.

Using this notation, the next state in our MPC scheme is

then given by:

x+ = Ax+Bū0
ǫc
(x). (16)

For the tightened problem with initial state x+, we will also

use the notations ǫ+c and R+
d for the tightening parameter

and the upper bound given in Lemma 3.1, respectively. The

following result helps us to construct a strictly feasible vector

ũ+ for the tightened problem (QPǫ
+
c
(x+)).

Lemma 3.2: Let x+ be computed according to (16) and

ūǫc
(x) be an ǫ-solution of problem (QPǫc

(x)). Then, a strictly

feasible vector of problem (QP(x+)) is given by:

ũ+ =
[

(ū1
ǫc
(x))T · · · (ūN−1

ǫc
(x))T (Kx(N))T

]T
(17)

Proof: First, let us note that ūǫc
(x) ∈ U, which together

with (3) leads to ũ+ ∈ U. Further, let us recall that the first

N − 1 block inequalities Gu + Ex + g ≤ 0 are obtained

from the state constraints x(t) ∈ X for all t = 1, . . . , N −
1 while the last block is deduced from x(N) ∈ X f. It is

straightforward to observe that the first N − 1 blocks of

Gũ+ + Ex+ + g coincide with the last N − 1 blocks of

Gūǫc
(x)+Ex+g and thus the first N−1 block inequalities

are strictly satisfied. Also from the µ-contractive property of

the set X f (see (3)) we can also deduce that the last block

inequality, obtained from x(N) ∈ X f is also strictly satisfied.

Thus, we can conclude that ũ+ is a strictly feasible vector

of problem (QP(x+)).
Therefore, in the MPC problem for the next state x+ we

update the strictly feasible vector as explained above, and

thus, if ǫ+c satisfies (7), according to Remark 2.3 we have

that ũ+ is also strictly feasible for the tightened problem

(QPǫ
+
c
(x+)). It is well-known in the MPC framework (see

e.g. [12], [21]) that if Assumption 2.1 is satisfied and K and

P are computed according to Section II, then the following

relation holds:

VN (x+, ũ+) ≤ VN (x, ūǫc
(x))− ‖x‖2Q ∀x ∈ XN . (18)

In order to prove the asymptotic stability of the MPC scheme

for all x ∈ XN we use similar arguments as in [12], [21] by

showing that VN (x, ūǫc
(x)) is a Lyapunov function for the

closed-loop system:

VN (x+,ūǫ
+
c
(x+))

(15)

≤ V ∗(x+) + (1 + 4
√
pR+

d )ǫ
+

≤ V ∗
ǫc
(x+) + (1 + 4

√
pR+

d )ǫ
+

≤ VN (x+, ũ+) + (1 + 4
√
pR+

d )ǫ
+

(18)

≤ VN (x, ūǫc
(x))− ‖x‖2Q + (1 + 4

√
pR+

d )ǫ
+,

From (13) and previous discussion we have that by choos-

ing e.g.

ǫ+ ≤min

{

1

2(1 + 4
√
pR+

d )
‖x‖2Q,

1

4
min

j=1,...,p
{−

(

Gũ++Ex++g
)

j
}
}

, (19)

we get asymptotic stability of the closed-loop system.

We can conclude that choosing the accuracy ǫ and the

tightening parameter ǫc according to (19) and (14), respec-

tively, the proposed MPC scheme generates a sequence of

inputs that ensures feasibility, suboptimality, and stability.

Also, we can observe from (19) and (14) that both ǫ and

ǫc are chosen adaptively, i.e. depending on the initial state

of each step of the MPC scheme. More specifically, if for

instance the norm of the initial state is big enough, i.e. the

system is far from the origin, then the accuracy required

for an approximate solution can be less stringent. Thus, our

approach is less restrictive than the approach in [6], [19]

where the accuracy is fixed for all initial states. Conversely,

if we are sufficiently close to the origin, i.e., x ∈ X f, we

do not have to apply the algorithm for finding the ǫ-solution

since the optimal solution is given by uf(x).
We present further an algorithmic framework for the

proposed MPC scheme:

ALGORITHM (MPC scheme with feasibility, suboptimality,

and stability guarantees).
Input: A,B,Q,R,X,U,X f, N, x.

Step 0: Set t = 0 and compute offline K,P,Q,
W,w,G,E,g, an initial strictly feasible vector ũ for

(QP(x)), accuracy ǫ according to (13) and tightening

parameter ǫc from (14).

Repeat:

Step 1: Measure current state x.

If x ∈ X f:

Step 1.1: Compute u = Kx.

Step 1.2: Implement control input u.

Step 1.3: t← t+ 1, go to Step 1.

Else

Step 1.4: Compute the ǫ-solution

ūǫc
(x) = Alg((QPǫc

(x)), ǫ).

Step 1.5: Compute u = ū0
ǫc
(x).

Step 1.6: Update the strictly feasible vector ũ ← ũ+

according to (17), accuracy ǫ ← ǫ+ according to (19)

and the tightening parameter ǫc using (14).



Step 1.7: Implement control input u.

Step 1.8: t← t+ 1, go to Step 1.

Note that in Step 0 of the proposed scheme we can

compute the initial strictly feasible vector ũ for (QPǫc
(x))

by solving the following linear program offline:

max
γ≥0,u∈U

γ

s.t.: Gu+Ex+ g + γ ≤ 0.

IV. DUAL FAST GRADIENT ALGORITHM FOR SOLVING

CONVEX PROBLEMS

In this section we present briefly an inexact dual fast

gradient method that can be applied for finding an ǫ-solution

of the optimization problem (QP(x)) or (QPǫc
(x)). A full

analysis of this algorithm can be found in [12]. Since the

algorithm can be applied to a wider class of problems we

introduce first the following convex optimization problem:

F ∗ = min
u∈U

{F (u) : Gu+ g ≤ 0} , (20)

where F : R
n → R is a σF-strongly convex function,

U ⊆ R
n is a simple convex set, as assumed in Section II,

G ∈ R
p×n, and g ∈ R

p. We can notice that since Gu +
g ≤ 0 (also called complicating constraints) is a general

polyhedron, the projection on this set is hard to compute,

but the set U is simple (e.g. hyperbox, Euclidean ball, Rn,

etc.), i.e. the projection on this set can be computed very

efficiently. We note that problems (QP(x)) and (QPǫc
(x))

are particular cases of problem (20) with F being a convex

quadratic function, and in this case σF = λmin(Q).
By moving the complicating constraints into the cost via

Lagrange multipliers we define the dual function:

d(λ) = min
u∈U

L(u, λ), (21)

where L(u, λ) = F (u) + 〈λ,Gu + g〉 denotes the partial

Lagrangian w.r.t. the complicating constraints Gu+ g ≤ 0.

We also denote by u(λ) the optimal solution of the inner

problem:

u(λ) = arg min
u∈U

L(u, λ). (22)

Since F is strongly convex, it can be proven that the gradient

of the dual function d(λ) is given by:

∇d(λ) = Gu(λ) + g

and it is Lipschitz continuous with constant Ld = ‖G‖2

σF
(see

[12] for more general settings). If we assume that strong

duality holds, we have for the outer problem:

F ∗ = max
λ≥0

d(λ), (23)

for which we denote an optimal solution by λ∗. Since

we cannot usually solve the inner optimization problem

(22) exactly, but with some inner accuracy ǫin obtaining an

approximate optimal solution ū(λ), we have to use inexact

gradients and approximate values of the dual function d.

Thus, we introduce the following two notions:

d̄(λ) = L(ū(λ), λ) and ∇̄d(λ) = Gū(λ) + g.

If we assume that ū(λ) is computed such that the following

inner ǫin-optimality holds:

ū(λ) ∈ U, L(ū(λ), λ)− L(u(λ), λ) ≤ ǫin

2
, (24)

then the next lemma provides bounds for function d(λ) in

terms of a linear and a quadratic model that use approximate

information of the dual function and of its gradient.

Lemma 4.1: [4], [12] Let F be strongly convex and for

a given λ let ū(λ) be computed such that (24) is satisfied.

Then, the following inequalities are valid:

0 ≥d(µ)− [d̄(λ) + 〈∇̄d(λ), µ− λ〉] (25)

≥ −Ld‖µ− λ‖2 − ǫin ∀µ ∈ R
p
+.

We give the following inexact dual fast gradient scheme:

Algorithm (IDFG)(λ0)

Given λ0 ∈ R
p
+, for k ≥ 0 compute:

1) ūk ≈ arg min
u∈U

L(u, λk) such that (24) holds

2) λ̂k =
[

λk + 1
2Ld
∇̄d(λk)

]

+

3) λk+1 = k+1
k+3λ̂

k+ 2
k+3

[

λ0+ 1
2Ld

∑k
s=0

s+1
2 ∇̄d(λs)

]

+
,

where we recall that ∇̄d(λk) = Gūk + g. If we define now

the following average sequence for the primal variables:

ûk =

k
∑

s=0

2(s+ 1)

(k + 1)(k + 2)
ūs, (26)

the next result gives an estimate on primal feasibility viola-

tion and primal suboptimality of the proposed algorithm.

Theorem 4.2: [12, Section II.C] Let F be strongly con-

vex, the sequences
(

ūk, λ̂k, λk
)

k≥0
be generated by algo-

rithm (IDFG) and ûk be given by (26). Then, an estimate

on primal feasibility violation for the original problem (20)

is given by:

‖[Gûk + g]+‖ ≤ v(k, ǫin),

where v(k, ǫin) = 16Ld‖λ
∗‖

(k+1)2 + 8Ld‖λ
0‖

(k+1)2 + 4
√

Ld
ǫin

k+1 . More-

over, an estimate on primal suboptimality is given by:

−
(

‖λ∗‖+‖λ0‖
)

v(k, ǫin)≤F (ûk)−F ∗≤4Ld‖λ0‖2
(k+1)2

+(k+1)ǫin.

Proof: The proof can be found in [12].

Since usually λ∗ is unknown, we can use an upper bound

Rd for ‖λ∗‖, e.g. computed according to Lemma 3.1. For

simplicity, we assume now that λ0 = 0 and ǫin = 0 (for the

general case ǫin 6= 0 see [12]). Then, after k =

⌊

4
√

LdRd

ǫ

⌋

iterations, we obtain the following estimates on feasibility

violation and primal suboptimality:

‖[Gûk + g]+‖ ≤ ǫ

−Rdǫ ≤ F (ûk)−F ∗ ≤ 0.

Thus, if we redefine ǫ = max {ǫ,Rdǫ} we can conclude

that ûk is an ǫ-solution for problem (20) satisfying (6). We

can conclude that Algorithm (IDFG) can be used for finding

an ǫ-solution of problem (QPǫc
(x)).



V. NUMERICAL SIMULATIONS

In order to demonstrate the applicability of our proposed

algorithm we implemented the MPC scheme on a ball on

plate system [18]. We consider box constraints on the states

and the inputs as in [18], while for the stage costs we use

the matrices Q = q1q
T
1 , where q1 = [2 1]T , R = 1, and we

compute the terminal matrix P as the solution of the LQR

problem.

In Figure 1, we plot the evolution of the states and inputs

over a simulation horizon Nsim = 400 using a prediction

horizon N = 5. For each initial state x of the MPC scheme

we consider two scenarios. In the first one (continuous line)

we apply our Algorithm (IDFG) for finding an ǫ-solution of

problem (QPǫc
(x)) with ǫ equal to the right-hand side term

of (13) for the first step of the MPC scheme and equal to the

right-hand side term of (19) for the rest of the steps. We also

considered ǫc = 2ǫ. In the second scenario (dashed line) we

solve exactly the optimization problem (QP(x)). From Figure

1 we can observe that the states and inputs have very similar

trajectories in both scenarios and the system is driven to the

equilibrium point.
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Fig. 1. The trajectories of the states and inputs for a simulation horizon
Nsim = 400 and prediction horizon N = 5: Algorithm (IDFG) - continuous
line, exact solver - dashed line.

VI. CONCLUSIONS

In this paper we have proposed a model predictive control

scheme for discrete-time linear time-invariant systems based

on the general framework of inexact numerical optimization

algorithms. In the present paper we have developed our

main results on stability and feasibility of a suboptimal MPC

scheme using [12], and computed suboptimal control inputs

using inexact dual gradient algorithms. We have derived

a control strategy that has the following properties: the

constraints on the states and inputs are satisfied, asymptotic

stability of the closed-loop system is guaranteed and the

number of iterations needed for a certain level of subop-

timality can be determined.
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