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Robust H∞ control for switched nonlinear systems with application to

high-level urban traffic control

Mohammad Hajiahmadi, Bart De Schutter and Hans Hellendoorn

Abstract— This paper presents robust switching control
strategies for switched nonlinear systems with constraints on
the control inputs. First, a model transformation is proposed
in a way that the constraint on the continuous control inputs
is relaxed. Next, the effect of disturbance is taken into account
and the L2-gain analysis and H∞ control design problem
for switched nonlinear systems are formulated and proved.
Furthermore, the obtained control laws are utilized for urban
traffic networks modeled on a high-level using macroscopic
fundamental diagram representation. The flow transferred be-
tween urban regions along with the timing plans for each region
are controlled using continuous and switching controllers. The
control objective is translated into a stability and disturbance
attenuation problem for the urban network represented as a
switched nonlinear system. The uncertain trip demands are
considered as norm-bounded disturbance inputs. One major
advantage of the proposed scheme is that the parameters of
the feedback switching law are obtained offline. Hence, real-
time control is possible with this scheme. The achieved results
show great performance of the proposed approach in handling
uncertain demand profiles.

I. INTRODUCTION

Switched systems are a class of hybrid systems that consist

of a set of subsystems and a switching signal selecting the ac-

tive subsystems. Switched systems arise in cases in which sev-

eral dynamical system models are required to model a system

due to e.g. uncertainty in parameters, or specific applications

that utilize switching between a set of controllers in order to

achieve a higher performance. Stability analysis of switched

systems has attracted attention recently [1], [2]. Stabilization

and control synthesis for switched linear systems have been

widely studied using common and/or multiple Lyapunov func-

tion methods and for time and/or state dependent switching

[3], [4], while stability of switched nonlinear systems have

been investigated for particular classes of systems [5]–[7].

Moreover, the disturbance attenuation problem for switched

systems has attracted attention of researchers only in recent

years. For the particular cases of switched nonlinear systems,

the H∞ control problem is proposed based on the Hamilton-

Jacobi inequalities for nonlinear systems [8]–[10]. As an ex-

ample, in [10] a nonlinear switched system is considered that

is affine both in control input and disturbance input. The model

contains a set of nonlinear subsystems each controlled with an

unconstrained continuous control input. In this paper, we study

the stabilization problem for switched nonlinear systems that

This work is supported by the European 7th Framework Network of
Excellence “Highly-complex and networked control systems (HYCON2)”
and the European COST Action TU1102.

M. Hajiahmadi, B. De Schutter and H. Hellendoorn are with the Delft
Center for Systems and Control (DCSC), Delft University of Technology,
Delft, The Netherlands. m.hajiahmadi@tudelft.nl

are affine in the control and disturbance inputs. The aim is to

extend the current results of stabilization and H∞ control for

the constrained control case.

The motivation for this research is based on a practical

hybrid model developed for large-scale urban traffic network

control [11]. In this model two types of controllers are defined;

perimeter control for limiting the flow of vehicles traveling

between urban regions and discrete control for switching be-

tween the signal timing plans of urban areas. The model is

developed based on the existence of macroscopic fundamental

diagrams (MFD) for the urban areas [12]. The MFD provides

a relationship between the accumulation of vehicles and the

network trip completion rate. In fact, the MFD representation

makes it possible to efficiently model a large-scale urban net-

work at an aggregate high-level and to subsequently develop

control strategies that are less computationally complex.

More specifically, we aim at designing a new control scheme

for urban networks represented by the hybrid model developed

in [11] but without having exact knowledge about the traffic

demands and at the same time with less computational effort.

Basically, we consider the model in [11] as a switched non-

linear system. The main objective is to reduce the total delay.

In this paper, minimization of the total delay in the network

using perimeter and switching timing plans controllers is

treated as an stabilization and disturbance attenuation problem.

Since there are constraints on the perimeter control inputs,

we propose a model transformation to relax them. The trip

demands in the network are considered as exogenous distur-

bance signals. The main requirement of the proposed approach

is that the disturbance is norm bounded and belongs to the

class of square integrable functions. This assumption is valid

for finite time intervals (e.g. the peak hours) in which the

trip demands inside the urban network are bounded and have

a finite average. Another major advantage of the proposed

control scheme is that the design procedure is implemented

off-line and the feedback control laws do not require on-line

computations like in [11].

The paper is organized as follows. The problem formula-

tion along with a model transformation is presented in Sec-

tion II. The stability problem in the absence of disturbance

is discussed in Section III. In Section IV the disturbance is

taken into account and the L2-gain is defined for the switched

nonlinear model. Further, H∞ control via switching between

modes is proposed. In the case study section, the aggregate

hybrid traffic model is presented. Next, the H∞ controller is

designed for a two-region urban city case, and performance of

the proposed method is evaluated. Finally, Section VI contains

the concluding remarks and ideas for further research.



II. PROBLEM STATEMENT

Consider the following switched nonlinear system:

ẋ(t) = fσ(t)

(

x(t)
)

+gσ(t)

(

x(t)
)

·u(t)+ pσ(t)

(

x(t)
)

·ω(t), (1)

where x(t) ∈ R
nx is the state, u(t) ∈ R

nu is the control input,

and ω(t) ∈ R
nω is the disturbance input. The switching signal

is denoted by σ(t) and is assumed to be piecewise constant.

The variable σ(t) takes values from a pre-defined index set

{1, · · · ,N}, and for each value that σ(t) assumes, the state

space model (1) is governed by a different set of vector

functions fi(·), gi(·), and pi(·) from the following sets:

fσ(t) ∈ { f1, · · · , fN} (2)

gσ(t) ∈ {g1, · · · ,gN} (3)

pσ(t) ∈ {p1, · · · , pN} (4)

The vector functions fi, gi, and pi are continuous functions of

states such that fi(0) = 0, gi(0) = 0, and pi(0) = 0. Moreover,

the control input u is constrained as follows:

u(t) ∈ [0,1]nu (5)

The aim is to design a state feedback control together with a

switching rule in order to stabilize the system and to reduce

the effects of disturbances. However, the constraint (5) on

the control input limits the design freedom. Therefore, in the

following we reformulate the model in order to simplify the

stabilization problem.

As mentioned before the control input u(t) is constrained

in [0,1]nu . However, for specific applications the sensitivity

to small variations of the control input is relatively low and

therefore a finite set of values is enough for controlling the

system (For instance, in the urban traffic control, the control

input is the ratio of green and red phases in traffic lights. Thus,

only a few values in the interval [0,1] could be selected and

implemented in reality). To be more precise, we can assume

that u(t) is quantized and hence it can be rewritten as:

u(t) = u0 ·
( r

∑
l=0

2l ·δl(t)
)

, (6)

with u0 ∈R a constant and δl(t)∈ {0,1}nu . The set of possible

input values is then finite and its cardinality is 2r+1, while the

difference between two consecutive values is determined by

u0.

Using (6), the system in (1) can be reformulated as:

ẋ(t) = f ′σ ′(t)
(

x(t)
)

+ pσ ′(t)
(

x(t)
)

ω(t), x(0) = x0, (7)

where f ′σ ′(t) ∈ { f ′1, · · · , f ′
N′}. By quantizing the control input u

as in (6) new modes are introduced and therefore we denote the

total number of modes by N′ with a new set of vector functions

{ f ′1, · · · , f ′
N′} that are determined using the functions fi and gi

and the values that the quantized input u can take.

The current formulation helps to have a concise design

procedure as we reflect the effects of the continuous control

input u in the switching signal σ ′ and hence, we have to deal

only with one type of control input (switching).

III. STABILIZATION IN THE ABSENCE OF

DISTURBANCE

In this section, the stability problem is formulated for the

system (7) in the absence of disturbances. The resulting model

is

ẋ(t) = f ′σ ′(t)
(

x(t)
)

, x(0) = x0, (8)

with f ′σ ′(t) ∈ { f ′1, · · · , f ′
N′} and N′ the total number of modes

including the ones introduced by the quantization of u.

It is assumed that the state vector x(t) is available for

feedback for all t ≥ 0, and the aim is to determine a piece-

wise constant function r(·) : Rnx → {1, · · · ,N′}, such that the

switching law

σ ′(t) = r(x(t)) (9)

guarantees that the equilibrium x = 0 is globally asymptoti-

cally stable for (8). It should be noted that we do not assume

that any of the vector fields in the set { f ′1, · · · , f ′
N′} is either

locally or globally asymptotically stable. The candidate Lya-

punov function ϑ(·) is constructed as follows:

ϑ(x) := min
i=1,··· ,N′

Vi(x), (10)

where V1, · · · ,VN′ are differentiable, positive definite, and ra-

dially unbounded functions of x. However, this function might

not be differentiable everywhere even if the functions Vi are all

differentiable. To overcome this issue, the notion of Metzler

matrices is used [13], [14]. A Metzler matrix is a matrix in

which all the off-diagonal components are non-negative. For

our goal, we limit the attention to the class of Metzler matrices

denoted by M and containing all matrices M ∈ R
N′×N′

with

elements µi j, such that:

µi j ≥ 0 ∀i 6= j,
N′

∑
i=1

µi j = 0, ∀ j (11)

The following theorem provides the design procedure for the

stabilizing switching rule [5]:

Theorem 1: Assume there exist functions V1, · · · ,VN′ ,

which are all differentiable, positive definite, radially un-

bounded, and zero at zero. Furthermore, assume there exists

matrix M ∈ M with elements µi j that satisfies the Lyapunov-

Metzler inequalities

∂Vi(x)

∂x
f ′i (x)+

N′

∑
j=1

µ jiVj(x)< 0, i ∈ {1, · · · ,N′}, (12)

for all x 6= 0. Then the switching rule (9) with

r(x(t)) = arg min
i=1,··· ,N′

Vi(x(t)), (13)

makes the equilibrium point x = 0 of (8) globally asymptoti-

cally stable [5].

Proof: The Lyapunov function (10) is piecewise differen-

tiable, which means that it is not differentiable for all x ∈ R
nx .

Therefore, we need to define the following derivative (see [5],

[15]):

D(ϑ(x(t))) = lim
∆t→0+

sup
ϑ(x(t +∆t))−ϑ(x(t))

∆t
(14)



Assume that at an arbitrary t ≥ 0, the state switching control is

given by σ(t) = r(x(t)) = i for some i ∈ I(x(t)) = {i : ϑ(x) =
Vi(x)}. Hence, from (14) and (8), we have (using Theorem 1

in [16]):

D(ϑ(x(t))) = min
l∈I(x(t))

∂Vl

∂x
f ′i ≤

∂Vi

∂x
f ′i , (15)

Since (12) is valid for M ∈ M and Vj ≥ Vi for all j ∈
{1, · · · ,N′}\{i}, using the fact that i∈ I(x(t)) and by rewriting

the Lyapunov-Metzler inequality (12) as follows:

∂Vi

∂x
f ′i <−

N′

∑
j=1

µ jiVj, i ∈ {1, · · · ,N′}, (16)

one can obtain:

D(ϑ(x(t)))≤ ∂Vi

∂x
f ′i <−

N′

∑
j=1

µ jiVj

≤−
( N′

∑
j=1

µ ji

)

Vi = 0, for all x 6= 0 (17)

Thus, the switching law (13) makes the equilibrium point x= 0

of the switched nonlinear system (8) globally asymptotically

stable.

In order to design the switching law (13), one would need

to find appropriate positive definite functions Vi and a Metzler

matrix that satisfy the Lyapunov-Metzler inequalities (12) for

all x 6= 0. Unfortunately, this is a tedious task in general

since it includes determination of positive definite functions.

Fortunately, the choice of quadratic functions works for many

cases (e.g. for our case study). Nevertheless, finding the coef-

ficients of the quadratic functions Vi along with the elements

of the Metzler matrix constitutes a nonlinear feasibility opti-

mization problem. In some cases, we can recast this problem

as a Bilinear Matrix Inequalities (BMI) problem [17] and

thus, take advantage of the existing solvers for BMIs. But

the general case would be a multi-parametric optimization

problem. Nonetheless, one can use the following alternative

approach. By gridding the domain of the state x, one can

formulate the Lyapunov-Metzler inequalities for each vertex of

the grid. Depending on the characteristics of the system under

study and the objectives, one can make grids with different

levels of accuracy in a uniform or non-uniform way. Next, the

remaining task is to find solutions for the parameters of Vi and

the Metzler matrix in order to satisfy all Lyapunov-Metzler

inequalities for all grid points. This is a nonlinear optimization

problem in which the feasibility of all nonlinear inequality

constraints has to be checked. Of course, there might exist

multiple solutions for this problem but any feasible solution

would work for finding the stabilizing switching law.

IV. DISTURBANCE ATTENUATION VIA STATE

SWITCHING CONTROL

In this section, we present an approach to tackle the distur-

bance attenuation problem mentioned in Section II. The model

of the system under control is as follows:

ẋ(t) = f ′σ ′(t)
(

x(t)
)

+ pσ ′(t)
(

x(t)
)

ω(t), x(0) = x0, (18)

y(t) = hσ ′(t)
(

x(t)
)

, (19)

with y(t) ∈ R
ny the output vector and hi′(x), i′ ∈ {1, · · · ,N′},

continuous vector functions with hi′(0) = 0. Moreover, we

assume that the disturbance vector ω belongs to the space of

square integrable functions on [0,T ], ∀T ≥ 0, as follows:

‖ω‖L2[0,T ] =

(

∫ T

0
ωT (t)ω(t)dt

)1/2

< ∞, (20)

A. L2-gain

The system (18) has an L2-gain γ > 0 under some switch-

ing law σ ′ if ‖y‖L2[0,T ] ≤ γ‖ω‖L2[0,T ] for all nonzero ω ∈
L2[0,T ] (0 ≤ T < ∞) and for initial condition x(0) = 0. It

follows that:

‖y‖L2[0,T ] ≤ γ‖ω‖L2[0,T ] ⇒
∫ T

0

(

‖y(t)‖2 − γ2‖ω(t)‖2
)

dt ≤ 0

⇒
∫ T

0

(

‖hσ ′(t)
(

x(t)
)

‖2 − γ2‖ω(t)‖2
)

dt ≤ 0, (21)

for any T > 0 when x(0) = 0. The aim is to design a switching

strategy σ ′ such that system (18) has L2-gain γ or equivalently,

to have an H∞ disturbance attenuation level γ .

B. Achieving L2-gain via H∞ Control

The approach for H∞ control of switched nonlinear systems

proposed in [10] is not applicable for control of (1), as the

input u is constrained in the box [0,1]nu . Nevertheless, we

transformed the model using quantization of the input variable

and obtained the model in (7). For this model, the following

problem is defined. Assume that a constant γ > 0 is given,

the goal is to design a switching law σ ′, such that the origin

of the closed-loop system is globally asymptotically stable

when ω(t) = 0,∀t ≥ 0, and the overall L2-gain from ω to

y = hσ ′(t)(x) on any finite time interval [0,T ] is less than or

equal to γ , i.e. :
∫ T

0

(

γ2‖ω(t)‖2 −‖hσ ′(t)
(

x(t)
)

‖2
)

dt ≥ 0 (22)

The following theorem provides the design procedure for the

switching law (inspired by the linear case in [18]).

Theorem 2: Consider the switched system (7). Assume that

there exist positive definite, differentiable, and radially un-

bounded functions Vi, i ∈ {1, · · · ,N′} and a Metzler matrix M

with elements µi j, such that the following Lyapunov-Metzler

inequalities are satisfied:

∂Vi

∂x
f ′i +

1

2γ2

∂Vi

∂x
pi p

T
i

∂ TVi

∂x
+

1

2
hT

i hi +
N′

∑
j=1

µ jiVj < 0, (23)

for i = 1, · · · ,N′. Then, the system (18) under the switching

law

σ ′(t) = r(x(t)) = arg min
i=1,··· ,N′

Vi(x(t)), (24)

has L2-gain γ . Subsequently, in case ω ≡ 0, the system is

asymptotically stable.

Before proceeding with the proof, we emphasize again that

the switching signal is assumed to be piecewise constant.

In other words, one can define a switching sequence as
{(

tk,r
(

x(tk)
))}∞

k=1
with r

(

x(tk)
)

∈ {1, · · · ,N′}, while the

switching rule remains unchanged in the interval [tk, tk+1).



Proof: Assume that the switching sequence in the interval

[0,T ] is defined as:
{

(

tk,r
(

x(tk)
))∣

∣ r
(

x(tk)
)

∈ {1, · · · ,N′}, k = 1,2, · · · , l
}

(25)

with t1 = 0 and tl ≤ T . Under the switching law (13) in each

time interval [tk, tk+1) we have:

∂Vi

∂x
f ′i +

1

2γ2

∂Vi

∂x
pi p

T
i

∂ TVi

∂x
+

1

2
hT

i hi <−
N′

∑
j=1

µ jiVj

≤
(

−
N′

∑
j=1

µ ji

)

Vi = 0 (26)

Now following a similar procedure as in [8], [18], we define

J =
∫ T

0

(1

2
‖hσ ′(t)(x(t))‖2 − γ2

2
‖ω(t)‖2 +D

(

ϑ(x(t))
)

)

dt

(27)

According to the definition of D
(

ϑ(x)
)

in (15) and taking into

account the switching sequence (25), we obtain

J ≤ (28)

l−1

∑
k=1

∫ tk+1

tk

(1

2
‖hr(x(tk))(x)‖

2 − γ2

2
‖ω‖2 +V̇r(x(tk))(x)

)

dt

+

∫ T

tl

(1

2
‖hr(x(tl))(x)‖

2 − γ2

2
‖ω‖2 +V̇r(x(tl))(x)

)

dt

The derivative V̇r(x(tk)) is:

V̇r(x(tk))

(

x(t)
)

(29)

=
∂Vr(x(tk))

(

x(t)
)

∂x
·
(

f ′r(x(tk))
(

x(t)
)

+ pr(x(tk))

(

x(t)
)

·ω(t)
)

Substitution of (29) in (28) along with adding and subtracting

the term 1
2γ2

∂Vr(x(tk))

∂ x
pr(x(tk))pT

r(x(tk))

∂ T Vr(x(tk))

∂ x
and completing

the squares yield (the arguments of the functions are dropped

for reducing the complexity):

l−1

∑
k=1

∫ tk+1

tk

(

∂Vr(x(tk))

∂x
f ′r(x(tk))+

1

2
‖hr(x(tk))‖

2

+
1

2γ2

∂Vr(x(tk))

∂x
pr(x(tk))

pT
r(x(tk))

∂ TVr(x(tk))

∂x

−
∥

∥

∥

γ√
2

ω − 1√
2γ

∂Vr(x(tk))

∂x
pr(x(tk))

∥

∥

∥

2
)

dt

+
∫ T

tl

(

∂Vr(x(tl))

∂x
f ′r(x(tl))+

1

2
‖hr(x(tl))‖

2

+
1

2γ2

∂Vr(x(tl))

∂x
pr(x(tl))

pT
r(x(tl))

∂ TVr(x(tl))

∂x

−
∥

∥

∥

γ√
2

ω − 1√
2γ

∂Vr(x(tl))

∂x
pr(x(tl))

∥

∥

∥

2
)

dt

(30)

Referring to (26), we can conclude that (30) is smaller or equal

to zero. Hence,

J =

∫ T

0

(1

2
‖hσ ′(t)‖2 − γ2

2
‖ω‖2 +D

(

ϑ
)

)

dt ≤ 0 (31)
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Fig. 1. A well-defined macroscopic fundamental diagram.

Note that Vi are positive definite functions with zero value at

zero. Thus,
∫ T

0

(

‖hσ ′(t)‖2 − γ2‖ω‖2dt ≤−2Vi(x(T ))≤ 0, ∀i (32)

Hence, the system has L2-gain γ . Moreover, it is easy to

show (by utilizing Lemma 3.2.6 in [8]) that the system is

asymptotically stable when ω ≡ 0.

Similar to the procedure explained in Section III, a feasibil-

ity problem has to be solved in order to find the parameters of

the functions Vi along with µi j. Moreover, the L2-gain γ can be

set either as an unknown parameter to be determined or a given

constant. Basically, one can set a preliminary value for γ and

solve the feasibility problem for the given γ . The procedure can

be repeated with decreasing the value of γ until the problem

becomes infeasible and no solution can be obtained for the

parameters. By doing this a lower bound for the L2-gain can

be achieved.

In the next section, the obtained control design rules are

implemented and evaluated for an urban network case study.

As mentioned before, the network is represented by a high-

level switched nonlinear model with perimeter control and

switching between timing plans as control inputs.

V. CASE STUDY

For urban network regions with homogeneously distributed

congestion, the macroscopic fundamental diagram (MFD) (as

depicted in Fig. 1) provides a unimodal, low-scatter rela-

tionship between network vehicle accumulation and network

space-mean flow [19]. For an urban network divided into two

regions; region 1, the periphery and region 2, the city center

(as in Fig. 2), the hybrid MFD-based model is formulated as

follows (based on the two-state model presented in [20]):

ṅ1(t) =−G1, j(n1(t)) ·u(t)+ω12(t), (33)

ṅ2(t) =−G2, j(n2(t))+G1, j(n1(t)) ·u(t)+ω22(t), (34)

where ni(t), i = 1,2, is the accumulation in region i at time

t. The trip completion flow Gi, j(ni(t)) (veh/s) is defined as

the rate of vehicles reaching their destinations [21]. The tim-

ing plans for intersections inside each region can be altered.

Consequently, instead of one MFD, a set of MFDs (each

corresponds to a different timing plan) is defined. Therefore,

Gi, j(ni(t)), with j = 1, · · · ,Ni, constitute the MFDs for region

i.

The perimeter control u(t) may restrict vehicles to transfer

between regions (in our case, the flow of vehicles is restricted
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Fig. 2. Schematic two-region urban network.

from region 1, the periphery, to region 2, the city center).

The perimeter control can be realized by e.g. coordinating

green and red durations of signalized intersections placed on

the border between two regions. We assume that the city

center has two timing plans and therefore two MFDs (N1 = 2).

Each MFD is modeled by a 3rd-order polynomial G2, j(n2) =
1/3600 · (a2, jn

3
2 + b2, jn

2
2 + c2, jn2) with coefficients a2,1 =

1.4877 ·10−7, b2,1 =−2.98 ·10−3, c2,1 = 15.091, a2,2 = 2.57 ·
10−7, b2,2 = −4.47 · 10−3, c2,2 = 18.98. For the periphery,

we assume that there exists only one timing plan and thus one

MFD (N2 = 1). The MFD of periphery is denoted by G1 =G1,1

and has a1,1 = a2,1, b1,1 = b2,1, c1,1 = c2,1 as its parameters.

As discussed before, the perimeter control input is limited

in [0,1] and therefore we use the quantization technique pre-

sented in Section II in order to achieve a complete switching

system as follows:

ṅ1(t) =−G′
1, j′(n1(t))+ω12(t), (35)

ṅ2(t) =−G′
2, j′(n2(t))+G′

1, j′(n1(t))+ω22(t), (36)

where the perimeter control input can take values from the

set {0.1,0.4,0.7,1}. The number of modes is 2 · 4 = 8 and

therefore j′ ∈ {1, · · · ,8}.

Here, we assume that the scenario simulates a morning peak

in which a high trip demand ω12 from the periphery (region

1) to the city center (region 2) exists while there is also a

demand ω22 for trips inside the center. To take into account

the uncertainty around the demands, we add a zero mean white

Gaussian noise with variance 0.1 (veh/s) to the base profiles as

shown in Figure. 3 (a)-(b).

In order to determine the switching law σ , we use quadratic

functions Vi(ni) = 1/2(αin
2
1 + βin

2
2). Thus the switching rule

is defined as:

σ(t) = r(ni(t)) = arg min
i∈{1,··· ,8}

1/2(αin
2
1 +βin

2
2) (37)

The parameters αi and βi along with a feasible attenuation

level γ are determined using (23) and the gridding technique

described in Section III (the nonlinear feasibility problem is

solved using the fmincon function inside the Tomlab toolbox

of MATLAB). The obtained parameters are as follows:

(αi,βi) ∈
{

(3.8014,2.9193),(6.5982,4.3430),

(9.9993,5.7571),(5.4335,6.2613),(7.2388,3.2234),

(4.5741,0.2113),(8.4626,0.2899),(4.8048,1.0877)
}

with γ = 0.8 · 3600. The initial accumulations are n1(0) =
6200 (veh), n2(0) = 5200 (veh). The states are measured and

plugged into the switching law (37) in order to find the active

subsystem (corresponding to a specific MFD and perimeter

value). The closed-looped system is simulated for one hour and

results are depicted in Fig. 3. In order to show the effectiveness

of the proposed control strategy, results of the some simple

control strategies are presented in Fig. 4. It can be observed

that the switching H∞ control is able to stabilize the system

and also significantly reduce the effects of the trip demands

(disturbances), while in almost all the simple control strategies

either one or both regions end up in the gridlock situation (as

the states grow unboundedly in the figures). Only in one case,

when timing plan 2 is chosen for the center, the accumulations

eventually decrease by the end of simulation time (Fig. 4-(f)).

It should be noted that the proposed control strategy is

computationally efficient and can be implemented in real-time

since the switching law (37) is computed in a very short time

(with 16 multiplication, 8 addition and a minimum operation).

This is a great advantage over other existing approaches like

MPC which usually require online optimization. Furthermore,

the L2-gain of the controlled system is determined by setting

the initial conditions to zero and by using (20) (the output

of the system is defined as y = (n1 n2)
T. The achieved gain

‖y‖L2
/‖ω‖L2

for the assumed demand profile is 0.1691 ·3600.

VI. CONCLUSIONS AND FUTURE WORK

Stabilization and H∞ control of switched nonlinear systems

with constrained input was presented in this paper. The L2-

gain analysis for the switched nonlinear systems was formu-

lated and the H∞ control design procedure was presented in

order to achieve a desirable level of disturbance attenuation.

Furthermore, a model transformation was proposed in order

to overcome the constraint on the control inputs. The pro-

posed switching control schemes were theoretically proved.

Furthermore, the results were utilized for high-level control of

urban networks modeled by hybrid MFD representation and

the obtained results showed significant performance of our

approach in case of having uncertain demand profiles. More-

over, as mentioned before the Lyapunov functions required for

the feedback switching law are determined off-line and thus

the proposed method has a major advantage over the existing

MPC schemes both for the real-time implementation and for

handling the uncertain demand profiles.

Nevertheless, the current approach is based on the deter-

mination of positive definite functions satisfying nonlinear

inequality constraints. Finding the appropriate function for the

general case of switched nonlinear systems is hard while in

the linear case the constraints can be recast as linear matrix in-

equalities. Therefore, we aim at simplifying our model in order

to establish a switched affine model for the urban network.
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