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Abstract.

To reduce the operation cost and then improve the operational efficiency, people are paying more and more
attention to the energy-efficient operation of subway systems. In this paper, we present and compare to two
algorithms to optimize the energy-efficient speed profile for trains of subway systems, which can reduce the
energy consumption of train operations. Firstly, we formulate a mixed integer linear programming (MILP)
model to get the optimal trajectory for trains. Secondly, we present an integrated algorithm for optimizing
the timetable for the entire route together with the speed profiles between successive stations, which is called
as integrated timetable. Finally, we give some numerical examples to illustrate the validity of the algorithms
based on the data from the Beijing YiZhuang subway line in China.

Keywords: Energy-efficient operation; Optimal train control; Timetable;
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FIGURE 1 A two level approach to energy-efficient operation (18)

1 INTRODUCTION

Train energy-efficient operation aims to optimize the timetable and driving strategy such that the energy
consumption for towing the train is minimized. Considering the process of the train operation, a two-level
model was presented by Albrecht et al. (/8) (see Figure 1). The first level of the energy-efficient operation
is to distribute the total trip time over the various sections of the route, i.e., the trip time between stations
and dwell time in stations, because the distribution of the running time among different sections of a line
strongly influence the train’s traction energy consumption during its journey. The second level is to choose
the way among different driving strategies to drive a train with a given running time such that the energy
consumption is minimized. During the optimizing process, the safety demands from the control system
should be satisfied.

Within a period of time, the trains servicing stations in the subway system will follow each other
with a fixed cycle time, which is called as the cyclic railway timetable. A Periodic Event Scheduling Problem
(PESP) model, introduced by Serafini and Ukovich (/7), lays the foundation for solving the cyclic railway
timetable problem, which considers the problem of scheduling a set of periodically recurring events under
periodic time window constraints. Odijk (/3) used a cycle periodicity formulation model to formulate
the cyclic behavior of the railway timetables. In the following years, the cycle periodicity formulation
model was extended to consider different periods (/2), variable travel times (9), and safety and frequency
constraints (/4). Other recent developments in this field mainly concentrated on the design of robust cyclic
timetables to cope with stochastic delays (8, 10).

In literature, there are many papers focusing on how to obtain the energy-efficient speed profile be-
tween successive stations. An optimal control model was first formulated in the 1960s (4), which assumed
that the train runs on a flat track with constant gradient and traction efficiency. By using the Pontryagin
maximum principle, the optimal driving strategy was proved to consist of maximum acceleration, cruising,
coasting, and maximum braking. As extension of the optimal model, variable gradients, variable speed
limits, and traction efficiency were gradually considered (2, 6, 15). To reduce the computation time, Khmel-
nitsky (6), Howlett et al. (3), Liu and Golovitcher (/5) presented more detailed and faster approaches to the
train energy-efficient operation problem, in which variable gradients, variable traction efficiency, and arbi-
trary speed limits were all considered, and they gave an analytical iterative method to calculate the driving
trajectory for each small part of the route. Besides, some evolutionary algorithms, such as generic algo-
rithms (/) and ant colony optimization algorithms (5) were applied to the train control problem to generate
an optimal speed profile.

In this paper, we distribute the route into small sections in which the gradient is constant, then use
a mixed integer linear programming (MILP) method to generate the speed profile in between consecutive
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stations. Scheduling the timetable and optimizing the speed profile are studied separately, and we present
an integrated algorithm to achieve a better performance on energy saving by optimizing the speed profile
between successive stations as well as the timetable for an entire route.

The rest of this paper is organized as follows. In Section 2, we formulate a mixed integer linear
programming (MILP) model and an integrated timetable model to solve the optimal train control problem.
In Section 3, we present the numerical example based on the infrastructure data and the operation data from
Beijing YiZhuang subway line in China, which illustrates that the proposed algorithms can yield a good
performance for energy saving. A short discussion and future work are included in Section 4.

2 METHOD 1: THE MILP APPROACH

In this section, the train operation model is described as a nonlinear optimal model, and transformed into a
mixed logical dynamic model by using piecewise affine approximations. Then the MILP method is proposed
to solve the problem.

The mass-point model of train is widely used in the literature on optimal control of trains (/5). The
continuous-time model of train operation is described as:

{ mp% = u(t) — Ry(v) — Ri(s,v)
(1

ds

ar =V

where m is the mass of the train, p is a factor to consider the rotating mass, v is the velocity of the train,
s is the position of the train, u is the control variable, i.e. the traction or braking force, which is bounded
by the maximum traction force umax and the maximum braking force umin: Umin < # < Umax, Rp(v) is the
basic resistance including roll resistance and air resistance, and R)(s,v) is the line resistance caused by track
grade, curves, and tunnels. In practice, according to the Strahl formula (/6) the basic resistance Ry(v) can
be described as

Ry(v) = m(a; +an?), ()

where the coefficients a; and a; depend on the train characteristics and the wind speed, which can be
calculated from the data known about the train. The line resistance R)(s,v) caused by track slope, curves,
and tunnels can be described by (/1)

Ri(s,v) = mgsina(s) + fe(r(s)) + fill(s),v), 3)

where g is the gravitational acceleration, a(s), r(s), and /;(s) are the slope, the radius of the curve, and the
length of the tunnel along the track, respectively. The curve resistance f(-) and the tunnel resistance f;(-)
are given by empirical formulas, see (22, 23) for more information.
Based on the literature (6), we choose the kinetic energy per mass unit £ = 0.5v? and the time ¢ as
states, and formulate the optimal train operation problem as:
J = [P max(0,u(s))ds

Sstart
Umin < M(S) < Mmax(E)y 0< E(S) < Emax(s)
E(Sstart) = Estam E(Send) = Eend
t(sstart) = 07 t(send) =T.

“

where the objective function J is the energy consumption of the train operation, Sy and senq are the posi-
tions at the beginning and the end of the route, respectively; and the scheduled running time 7 is given by
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the timetable or the rescheduling process. It is assumed that £(s) > 0, which means that the train’s speed is
always strictly larger than zero, i.e. the train travels nonstop (6).

We first split the position interval [Sert, Send] into N intervals and assume that the track and train
parameters as well as traction or breaking force can be considered as constant in each interval [s, s¢.1] with
length Asy = 531 — sg, for k=1,2,...,N. Note that s; = Sgart and sy41 = Send- The continuous problem is
formulated into a discrete problem. Moreover, the nonlinear terms in the state equation and the nonlinear
function of the maximum traction force are approximated using piecewise affine functions (20). Then, the
dynamics of the train operation can be transformed into a so-called mixed logical dynamic model of the
following form:

x(k+ 1) = Akx(k) —|—Bku(k) +C17k5(k) +C27k5(k+ 1)
+ Dy xz(k) +Dorz(k+1) + e, 5

Ry 18(k) +Ro 6 (k+1) + R pz(k) + Rayz(k+1)
< Rs xu(k) + Ro xx(k) + Ry (6)

where x(k) = [E (k) t(k)]T and (k) and z(k) are a binary variables vector and a real-valued auxiliary
variables vector respectively. For the sake of simplicity, we use E(k) as a short-hand notation for E(sy) in
the rest of the paper.

A new variable @(k) is introduced to deal with the function max(0,u) in the objective function,
therefore the following linear inequalities are added:

o(k) = u(k), (k) = 0. (M

The optimal control problem can be transformed into a mixed integer linear programming (MILP) prob-
lem (20) at the following form:

min I, ®)
4
subject to
RV < Bx(1)+f; )
RV = Fsx(1)+ fs (10)
where ¢y = [ 0 -+ 0 As; -+ Asy ]T,
v=[a' & #F ]T’
u(1) 5(1) (1)
u2) | . 5(2) o(2)
= : 6= : 0 = : ’
u(N) S(V+1) o(N)

and Z is defined in a similar way as 5. This MILP problem can be solved by several existing commercial
and free solvers, such as CPLEX, Xpress-MP, GLPK.
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FIGURE 2 Optimal strategy in between stations
3 METHOD 2: THE INTEGRATED TIMETABLE APPROACH

Energy-optimal train control between consecutive stations has been studied for many years and there are
different considerations in many papers. In (3, 6, 15) analytical solutions were presented to this problem.
By applying the Pontryagin maximum principle, it was proved that the optimal driving strategy essentially
consists of maximum acceleration with traction, cruising, coasting and maximum deceleration with the
brake (See Figure 2). Considering the characteristics of a subway system, we simplify the acceleration,
the braking deceleration and the running resistance as constants (7) and get the optimal control strategy in
between two stations as follows (21):

_  [2FE Fv 2B(E—rS) B
r= Ffr+(FfOr)2/r_\/ r2(B+r) +[(B-|‘Z)r]2
_ v _ r

F—r B+r

u= \/2E(F—r)/F+v%

W= \/2(B+r)(E—r><S+o.5vg—o.5v%)/3+v%
s1=Fu*—v3)/2(F —r)

sy =s1+E/r—F(u*—v})/2r(F —r)

s3=8—(E —Sr+0.5v3 —0.5v2) /B,

where v, vy, u and w are respectively the initial, end, cruising and braking speed; F, B, and r are corre-
sponding traction force, braking force and the running resistance; 7', E, and S denote the running time, the
energy consumption, and the trip distance; s, s, and s3 are the switch points in Figure 2.

For dealing with different speed limits, we design an algorithm to distribute the total running time
to different sections which has the constant speed limit. First, the minimum trip time is calculated with the
characteristic of the train’ traction and braking. Then based on the total trip time, we can get the reserve
time 7, which is the difference between the minimum trip time 7,,;, and the scheduled trip time 7; according
to the equation as follows,

T, =T; — Thin- (11)

For obtaining the running time for each section, we should distribute the reserve time to different sections,
during which we keep the principle that the increase of trip time AT must be added to the section which has
the largest ratio between energy saving AE and increase in trip time AT. Taking the Figure 3 for example,
we can get more energy reduction in section 2 and distribute the recovery time to this section, since the
ratio AE, /AT, is larger than AE;/AT;. Thus, we can get the trip time for each section of the route after
distributing the reserve time. In addition, the function between the energy consumption and the trip time is
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FIGURE 3 Distribution of reserve time
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FIGURE 4 Flow chart of the final algorithm of the integrated approach

concave (19, 21), so the distribution of the reserve time is globally optimal.

The algorithm formulated above can be used to generate the timetable and the optimal speed profile
together, and therefor it is called as integrated timetable algorithm. Firstly, we calculate the minimum trip
time as well as the reserve time for the train traveling between the successive stations. Secondly, according
to the principle of distribution of the reserve time, we obtain the trip time for each section with speed
limits so that we can obtain the energy-efficient speed profile for each section. Finally, we can obtain the
energy-efficient speed profile for each section according to the optimal trip time. The flow chart of the final
algorithm is shown in Figure 4.

4 COMPARISON USING A CASE STUDY

In order to compare the performance of the two approaches for the optimal train control problem, a case
study based on the data from the Beijing Yizhuang subway line in China is studied. The layout of the
Beijing Yizhuang Line is illustrated in Figure 5. Furthermore, the nonlinear function of the maximum
traction force is based on the data from (7). In addition, the speed limits for each section along the entire
route and their length, as well as the average mass of the train in each section are listed in Table 1. The
units of viay, Section, and M are m/s, m and ron respectively. Some assumptions of the parameters for
the integrated approach are made as follows: the maximum acceleration per unit mass F is 0.8 m/s?, the
maximum braking per unit mass B is 0.8 m/s? (7), and the running resistance per unit mass r is simplified
as 0.02 m/s>.

We apply the two methods to optimize the speed profile for the Beijing YiZhuang subway line. The
calculation results are shown in Table 2, which illustrates the good energy-efficient performance of the two
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FIGURE 5 The layout of the Beijing Yizhuang Line

TABLE 1 Infrastructure data of the YiZhuang subway line

Station | vpax/Section | vpax/Section | vmax/Section M
1 10/0-128 20/128-1147 | 14/1147-1332 | 331
2 13/0-130 20/130-1085 | 13/1085-1286 | 278
3 13/0-129 20/129-1897 | 11/1897-2086 | 406
4 13/0-128 20/128-2073 | 13/2073-2265 | 380
5 13/0-120 20/120-2143 | 12/2143-2331 | 355
6 14/0-130 20/130-1168 | 13/1168-1354 | 187
7 14/0-130 20/130-1087 | 13/1087-1280 | 218
8 14/0-130 20/130-1350 | 13/1350-1544 | 169
9 13/0-130 20/130-796 13/796-992 248
10 14/0-123 20/123-1781 | 13/1781-1975 | 302
11 14/0-128 20/128-2165 | 13/2165-2369 | 327
12 14/0-130 20/130-1151 | 13/1151-1349 | 357
13 13/0-133 20/133-2300 | 10/2300-2610 | 188

TABLE 2 Energy-efficient performance by using the MILP and integrated method

Practical data | MILP Integrated
Destination Tp Ep Evip Tit Err
Xiaocun 102 14.52 | 10.05 | 107 8.89
Xiaohongm | 99 21.58 | 1526 | 106 11.52
Jiugong 137  48.67 | 3799 | 146  34.93
Yizhuangq | 146  27.63 | 2323 | 147 2342
Wenhua 158 16.76 | 10.84 | 150 14.30
Wanyuan 102 15.02 | 1095 | 102 10.31
Rongjing 99 10.80 7.81 98 7.70
Rongchang | 112 19.03 | 12.64 | 112  14.53
Tongjinan 84 17.53 | 10.77 90 8.12
Jinghai 132 2456 | 19.17 | 133  19.37
Ciqunan 153 22.02 | 1698 | 151 19.80
Ciqu 102 15.61 | 1040 | 102 11.78
Yizhuang 194 4180 | 19.10 | 176  32.05
Total 1620 295.53 | 205.19 | 1620 216.67
Energy - - 30.57 - 26.68
saving(%)
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approaches; E;, and T}, are the actual energy consumption and trip time in Yizhuang line, which are recorded
by the on-board equipment; Epyp is the energy consumption optimized by the MILP approach; Ejt and 7t
denote the energy consumption and the optimal trip time obtained by the integrated timetable method.

The optimal speed profiles obtained by these two approaches are showed in Figure 6, in which the
red dashed line represents the speed limits of the subway line, the black doted line and the blue dash-doted
line are the optimal speed profiles calculated by the MILP and integrated timetable method, respectively. It

25

7

L L L L
0 0.5 1 1.5 2
Position (m) x10°

FIGURE 6 Optimal speed profiles for YiZhuang subway line of the two methods

can be seen from the Table 2 that the total energy savings of the integrated timetable method and the MILP
approach are 26.68% and 30.57%, respectively. The MILP approach has a better performance because it
formulates a more realistic model, which includes the variable gradient, variable maximum traction force
and running resistance. However, the computation time of the MILP method is longer than the integrated
timetable method. The computation time of the MILP approach is 5.54 s for the entire route and around
0.43 s for a section and the calculation time of the integrated timetable approach is 0.15 s for entire route
and about 0.01 s for each section. Therefore, there exists a trade-off between the control performance and
the computation time.

S CONCLUSIONS AND FUTURE RESEARCH

The mixed integer linear programming (MILP) approach and the integrated timetable approach for solving
the train optimal control problem are compared in this paper. In the MILP approach, the nonlinear terms of
the train model are approximated using piecewise affine functions and the optimal control problem is then
recast as an MILP problem, which can be solved using existing solvers. The integrated timetable approach
is an analytical method, which optimizes the timetable of the entire route and the speed profiles together.

Based on the simulation results from Beijing’s YiZhuang subway line, the integrated timetable
method gets a good energy-efficient performance with about 27% energy saving. The MILP method gets a
better performance with about 31% energy saving at the cost of an longer computation time. As the future
work, the combination of these two methods will be explored and be applied on automatic train operation
system in the subway systems.
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