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Modeling and Control of Legged Locomotion via
Switching Max-Plus Models

G.A.D. Lopes, B. Kersbergen, T.J.J. van den Boom, B. De Schutter, and R. Babuška

Abstract—We present a gait generation framework for multi-
legged robots based on max-plus algebra that is endowed with
intrinsically safe gait transitions. The time schedule of each
foot lift-off and touchdown is modeled by sets of max-plus
linear equations. The resulting discrete-event system is translated
to continuous time via piecewise constant leg phase velocities,
thus, it is compatible with traditional central pattern generator
approaches. Different gaits and gait parameters are interleaved
by utilizing different max-plus system matrices. We present var-
ious gait transition schemes, and show that optimal transitions,
in the sense of minimizing the stance time variation, allow
for constant acceleration and deceleration on legged platforms.
The framework presented in this paper relies on a compact
representation of the gait space, provides guarantees regarding
the transient and steady-state behavior, and results in simple
implementations on legged robotic platforms.

Index Terms—Max-plus algebra, legged locomotion, robotics,
gait generation, gait transition.

I. INTRODUCTION

Legged robots are becoming increasingly prominent in
the robotics field. Their advantages on unstructured terrain
combined with the challenges in mechatronics and control
have fueled a community of academics and industry alike
that aims to build truly autonomous legged robots with agility
akin to animals. The recent successes by Boston Dynamics on
quadrupeds, and the effort of the Japanese community on de-
veloping home assistance anthropomorphic robots contributes
to this growing interest in legged robots.

A fundamental element in the control of a legged robot is the
synchronization of its legs. For bipedal robots synchronization
is usually addressed implicitly, since balancing is the biggest
challenge. For robots with more than two legs, many different
synchronizations can be chosen, resulting in the number of
distinct gaits increasing with the number of legs (see Holmes
et al. [1] for an extensive review on the elements of dynamic
legged locomotion). This paper focuses on the systematic
design of gait controllers for robots with many legs where the
number of available gaits is high. From a control design point
of view, legged locomotion can be implemented via a gait
reference generator module and a dynamic tracking controller
module, as illustrated in Figure 1. The first is a component that
generates cyclic reference signals in a synchronized way, and
the second translates the typically low-dimensional reference
signals into the high-dimensional motion of the robot’s limbs
and implements other desirable dynamical properties such
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Fig. 1. The standard partitioning of a legged locomotion controller. The
gait reference generator subsystem provides reference signals to the tracking
controller. Feedback can exist from both the robot and the tracking controller
to influence the reference signals.

as balancing, see e.g., Vukobratovic and Borovac [2]. The
advantage of this partition is that the gait reference generator
can be designed without explicit knowledge of the mechanics
of the robot (other than the number of legs) while the latter is
designed specifically for each robot model. This paper focuses
on the first subsystem: we introduce a novel type of gait
reference generator.

Central pattern generators (CPGs) are currently the standard
tool for designing gait reference generators. CPGs offer a
natural bio-inspired control framework that address synchro-
nization (see Ijspeert [3] for a survey on CPGs). Although
used widespread, CPGs offer their own set of challenges due
to the nature of their foundation as sets of coupled differential
equations. As in normal systems modeled by differential
equations, the transient behavior is typically less understood
than the steady-state behavior. Transient behaviors exist during
gait transitions, a very natural occurrence in nature. Animals
change gait to accommodate for different types of terrain or
locomoting speeds. Gait transition in the CPG framework has
been addressed by Nagashino [4], Inagaki [5], [6], Zhang
[7], Li [8], Aoi [9], Daun-Gruhn [10], Santos [11], and the
references within [3]. Other work on gait transition without
using CPGs in the continuous-time domain has been done
by Haynes et al. [12], [13]. The traditional approach for gait
transition in the CPG framework exploits the bifurcations
that occur when changing parameters in the set of coupled
differential equations. This can lead to intricate analysis of
the global behavior due to the continuous-time models used.

In this paper we present an alternative to the continuous-
time approach of CPGs by considering instead discrete-event
models. Starting with circuits of timed event graphs (a sub-
class of Petri nets), each abstractly representing the phase
of a leg, we write the evolution equations that describe
the time instants of each feet touchdown and lift off, to
find a compact linear representation in the max-plus algebra
[14], [15], [16] which features maximization and addition as
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its basic operations. Max-plus linear discrete-event systems
(MPL-DES) are a subclass of timed discrete-event systems
(DES), classes of DES endowed with a time structure, that
can be framed in systems of linear equations in the max-plus
algebra. DES that enforce synchronization can be modeled in
this framework. MPL systems inherit a large set of analysis
and control synthesis tools thanks to many parallels between
the max-plus-linear systems theory and the traditional linear
systems theory. At the time of writing, the theory of max-plus
algebra has been successfully applied to railroads [17], [18],
queuing systems [19], resource allocation [20], and recently
image processing [21]. In this paper we show that by modeling
legged locomotion in the max-plus algebra one can take
advantage of its well known properties to obtain guarantees
such as kinematic stance stability1 during gait transition, or the
ability to compute gait transitions that minimize stance time
variation. Finally, we show that our framework is compatible
with current continuous-phase systems via a conversion map,
avoiding the need to compute differential equations in real-
time, as in the CPG case.

This paper presents a discrete-event based control synthesis
tool for generating gait reference signals. We compare our
method to CPGs and analyze specific properties that arise
naturally from the discrete-event modeling approach. This
paper addresses abstracted time models, while the kinematics
and dynamics of the robot are not considered. As such, our
notion of kinematic stance stability is not defined in terms of
balancing dynamics, but in terms of allowed sets of states in
a discrete-event system. Additionally, the tools presented here
are more valuable for robots with many legs (more than 2)
where many different gaits (leg synchronizations) are possible.

We start by revisiting the notion of CPGs for robotics
and introduce our novel gait modeling approach based on
discrete-event systems in Section II. In Section III we partially
review the theory of max-plus algebra and in Section IV we
demonstrate how to systematically model legged locomotion
using max-plus linear systems. In Section Section V the
control structure that implements the max-plus-linear system is
presented. In Section VI we demonstrate how to compute tran-
sient gait parameters to obtain optimal gait transitions in terms
of minimizing the leg time stance variation. Furthermore, we
introduce transition gaits that enforce a constant leg stance
time, and we present a constant acceleration/deceleration gait
generator. In Section VII we show experimental and simulation
results of the introduced legged locomotion controller and
Section Section VIII concludes the paper.

II. MODELING LEGGED LOCOMOTION

A large body of work has been dedicated to the modeling
of legged locomotion in neuroscience (see references within
[3], [1], [22], [23]). There, the focus is put on understanding
how animals control their limbs rhythmically by analyzing
the interaction between populations of neurons and, in some
instances, the effect of sensory feedback. The neural networks

1Since our framework is developed on an abstracted supervisory control
layer, we define “kinematic stance stability” in terms of requirements of leg
stance, i.e., certain combinations of multiple legs simultaneously swinging are
not allowed.

that generate limb coordination patterns (called CPGs), have
inspired the robotics community to design classes of gait
generators or controllers that bear the same name. In this
section we revisit the traditional coupled-differential equation
approach to CPGs, revisit piecewise constant velocity phase
models, and introduce an abstraction of the continuous-phase
space into a class of Petri net circuits.

A. Central pattern generators

In robotics, CPGs are usually implemented by solving sets
of coupled differential equations online. An abstract phase θi ∈
S1 is associated to each leg i representing its periodic motion,
with S1 representing the circle. The dynamical equations for
the full phase state θ = [θ1 · · · θn]T ∈ Tn can be written as:

θ̇(τ) = V + h(θ(τ)), (1)

where Tn is the n-torus (the Cartesian product of n circles),
V ∈ Rn represents the desired phase velocity vector, τ rep-
resents time, and the function h includes the desired coupling
between each phase.A common realization of (1) is presented
below:

θ̇i(τ) = v +
∑
j

wij sin(θj(τ)− θi(τ)− ϕij) (2)

where v ∈ R is a common phase velocity, the weights wij

represent the coupling strength between phases θi(τ) and
θj(τ), and ϕij is their phase difference (typically ϕij = −ϕji).
In traditional robotic applications that use CPGs, the phase θ
is utilized to generate reference trajectories for the “limbs” of
the robot via a parameterized map g:

qref(τ) = g(p, θ(τ)), (3)

where qref(τ) represents the reference trajectories of each
actuator at time τ , and p is a set of parameters that modulate
the shape of the resulting phase curves into a physical motion
in space. The desired reference trajectory qref is then fed into a
tracking controller, or a reference vector field (as a function of
θ(τ)) that can be pushed back through g (if g is differentiable
[24]). Equation (1) corresponds to the subsystem 1 in Figure
1, while equation (3) corresponds to subsystem 2.

Designing gaits in the CPG framework is accomplished
by choosing the parameters wij , ϕij , and p. Despite the
widespread use of CPGs and their straightforward implementa-
tion, there are some disadvantages to this approach that should
be considered. First, it is necessary to continuously solve the
differential equation (1) in real-time. Many approaches have
been taken, including dedicated analog CPG implementations
(see references within [3]). Second, the transient behavior
of (1) may be difficult to describe. This is more so when
the parameters of (1) are a function of time (i.e., wij(τ)
and ϕij(τ)), as in the case of gait transitions or variable
velocity, since changing parameters in dynamical systems
typically results in bifurcations. Such behavior can be difficult
to analyze.
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Fig. 2. The “Buehler clock” model for a hexapod robot: piecewise constant
phase velocity (Figure reproduced from [25]). Each trajectory corresponds to
the reference phase of a group of legs in time.

B. Buehler clock

An alternative approach to CPGs for the synchronization of
cyclic systems is called the “Buehler clock” [25], illustrated
in Figure 2 for a hexapod robot. In this framework, piecewise
constant velocity references are generated based on the set of
these parameters:

τc is the cycle time
τs is the stance time
ϕs is the “stance phase”
τd is the double stance time, with τd = τs − τc/2

The stance phase ϕs represents the section of the abstracted
phase when the legs are assumed to be in stance. For a gait
where the legs are divided into two groups the mathematical
model can be written as:

θ1(τ) =



ϕs

τs
τ̄ if −τs

2
< τ̄ <

τs

2

π − ϕs

τc − τs

(
τ̄ − τs

2

)
+
ϕs

2
if τ̄ ⩾

τs

2

π − ϕs

τc − τs

(
τ̄ +

τs

2

)
− ϕs

2
if τ̄ ⩽ −τs

2

(4)

θ2(τ) = θ1

(
τ +

τc

2

)
(5)

with τ̄ = ((τ+τc/2) modulo τc)−τc/2. The reference phases
θ1(τ) and θ2(τ) in (4) and (5), represent the right and left
tripod of a hexapod robot respectively, as in Figure 2, and τ
represents the current time instant. In [25], θ1(τ) is used as a
phase reference for legs 1, 4, and 5; and θ2(τ) is used for legs
2, 3, and 6, following the notation of the left-most image in
Figure 3. The advantage of the Buehler clock is that, since it
is constructed as a piecewise function, its computation is very
simple, as opposed to solving differential equations in the case
of CPGs. The methodology we propose next generalizes the
Buehler clock.

C. Timed event graphs

We propose a different approach to model legged locomo-
tion by considering only two physical states of a leg: stance
and swing, and also the time of their respective transition

2

1

4 6

3 5

5

4

6

2

2 3
1 1

3

4

Fig. 3. Left: Zebro and Rquad robots developed at the Delft Center for
Systems and Control, morphologically identical to RHex [25]. Right: ant-
inspired 23-dof hexapod robot in the V-Rep simulation environment [26].
The numbers indicate the leg labeling for each robot.

events: the moment the foot touches down and lifts off.
Petri nets [27] naturally capture these concepts by assigning
swing and stance to places and feet touchdown and lift off
to transitions. When additionally considering that there exists
a time structure associated with the Petri net, e.g., leg swing
and stance take a finite time to execute, then it is convenient
to utilize the notion of timed event graphs.

Definition 1. [16] A timed Petri net G is characterized by a
set of places P , a set of transitions Q, a set of arcs D from
transitions to places and vice versa, an initial marking M0,
and a holding time vector T . If each place has exactly one
upstream and one downstream transition, then the timed Petri
net is called a timed event graph.

For simplicity, consider a robot with 2 legs. For each leg one
assigns a circuit composed of 2 transitions (ti for touchdown
and li for lift off) and 2 places (fi for leg swing, or foot
in flight; and gi for leg stance, or foot on the ground), as
illustrated in Figure 4-a1. Each circuit is initialized with a
token in the stance places, representing that the robot starts
standing on two legs. A token in a place can be seen as the
fulfilment of the condition of the place, e.g., the leg is in
stance, or swing. A minimum time (holding time, see [15]
Definition 2.43) is added to each place such that each leg
must stay at least τg time units in stance and τf time units
in swing. When a transition fires the event associated to the
transition takes place and one token of each of the upstream
places of the transition are removed and tokens are added to
the downstream places of the transition. A transition can fire
if all of its upstream places have tokens and have held them
for the required holding time.

Figure 4-a2 illustrates a sample simulation where the events
of the timed event graph do not fire immediately, but randomly
with a bounded uniform distribution for illustration purposes.
In this simulation, plotted in time, the gray/blue rectangles
represent leg stance and white space represent leg swing. One
can observe that since the timed event graph in Figure 4-a1 is
composed of two concurrent circuits, no synchronization takes
place, resulting in the lift-off and touchdown events for each
leg to evolve independently. We can now define a notion of
synchronization:

Definition 2. We say that the legs of a robot are synchronized
if each leg’s lift-off event is a function of the touchdown events
of other legs.

Figure 4-b1 illustrates a synchronized timed event graph
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Fig. 4. Two examples of timed event graphs. In Subfigures a1 and b1
the transitions are represented by the bars, the places are represented by
the circles, and the tokens by dots in the places. Subfigures a2 and b2
illustrate sample time evolutions of the associated timed event graphs, where
transitions are allowed to fire according to a bounded uniform distribution
after a minimum holding time has expired. Gray/Blue rectangles represent
the stance places gi and white represents the swing places fi. The top figure
represents the unsynchronized behavior, in the sense that for each circuit of the
Petri net the firing is independent, resulting in moments where both legs are
in swing; the bottom figure represents the synchronized behavior, according
to Definition 2, i.e., a swing can only occur when the other leg is in stance.

where each lift-off event has an incoming arc from the oppos-
ing circuit. Here, the initial marking contains tokens on the
stance places with one additional token in the synchronization
place s1 such that the net is alive. Figure 4-b2 illustrates a
simulation where synchronization is present.

A general procedure to design a timed event graph that
captures the synchronization of the legs can be summarized
as follows:

1) For each leg i define a circuit with two events: leg
touchdown ti and lift off li; and two places: stance gi
and swing fi

2) To synchronize event li with event tj add a new place
sji connecting tj to li.

3) Initialize the marking such that all stance places have a
token, i.e., the robot starts with all legs on the ground.
Add one token to the minimum number of synchroniza-
tion places sji such that all the upstream places of the
transitions associated to the lift-off events of the legs
that lift off first have one token.

By following the previous procedure it is clear that all places
have a single incoming arc and a single outgoing arc. Using
timed event graphs allows for most periodic gaits with interme-
diate ground contact to be modeled. By carefully adding syn-
chronization places and choosing appropriate holding times,
traditional gaits, such as trotting, pacing, etc. can be generated,
i.e., a time schedule for the foot touchdown and lift off can be
created. Time schedules for gaits with aerial phases can also
be modeled in this fashion, but in this situation “negative”2

holding times must be used in the synchronization places since
the some legs lift off before the other legs have touched down.
If Definition 2 is relaxed, to allow any types of synchronization

2Although negative holding times are not defined in the timed event graph
framework, they can be safely used in the max-plus algebra framework that
we adopt in Section III.

other than the lift-off time of legs being a function of the
touchdown of other legs, then other types of gaits can be
modeled. Once an event schedule S (consisting of a matrix
of real values that encode the desired time at which the feet
should touchdown and lift off) is computed for a specific gait,
it can be used to generate continuous-time reference phase
trajectories via some periodic function f in time, resulting in
the set of equations

θ(τ) = f(τ, S)

qref(τ) = g(p, θ(τ)).

In Section V we show how f can be constructed as a map,
thus not requiring to solve a differential equation as in (1).

In this paper we focus on a class of gaits following
Definition 2. As such, we write the equations that describe
the behavior of the timed event graphs as sets of nonlinear
equations. Given a timed event graph the process to obtain
the associated evolution equations is:

1) For each event Ψi of the timed event graph assign the
state variable ψi(k) ∈ R that represents the time at
which the event Ψi fires for the k-th turn, with k ∈ N.

2) Let S(Ψi) be the set of the indices of all events that
have outgoing arcs aji to places that connect to Ψi. Let
νj be the holding time of the origin place j of the arc
aji, and let κj be the number of tokens in that place.
Then write the equations:

ψi(k) = max
j∈S(Ψi)

(ψi(k − κj) + νj) (6)

Equation (6) models timed event graphs where the events
fire as soon as they are enabled, hence the use of the operator
max. Consider the timed event graph example in Figure 4-b1,
now with its events also firing as soon as they are enabled.
Associate the holding time τg to the stance places gi, the
holding time τf to the swing places fi, and the double-stance
time τ∆ to the synchronization places si. We now define the
state variables as:

• ti(k) is the time instant the foot of leg i touches down
for the kth cycle

• li(k) is the time instant the foot of leg i lifts off the
ground for the kth cycle

Following the previously described process we obtain the time
evolution equations:

t1(k) = l1(k) + τf (7)
t2(k) = l2(k) + τf (8)
l1(k) = max (t1(k − 1) + τg, t2(k − 1) + τ∆) (9)
l2(k) = max (t2(k − 1) + τg, t1(k) + τ∆) (10)

Equations (7)–(10) capture the synchronization requirements
of the legs for a traditional biped walk. Equation (7) states
that foot 1 touches down τf time units after it has lifted off the
ground. Equation (9) states that foot 1 will lift off the ground
after both feet have spent a total of τg time units in stance
and τ∆ time units after foot 2 has touched down. Equations
(8) and (10) have an analogous interpretation. Note that the
time parameters τf , τg, and τ∆ represent the minimal swing,
stance, and double-stance times, respectively, as opposed to
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their exact times. Equation (6) (and (7)–(10)) contain only
the max and + operations, motivating the use of the max-
plus algebra: first, (6) is nonlinear in the traditional algebra,
but it is linear in the max-plus algebra; second, the theory
of the max-plus algebra is well developed, and as such many
properties can be inferred from the system matrices of the
max-plus linear system. In the next section we explore these
properties.

III. MAX-PLUS ALGEBRA

A. Background

The max-plus algebra was introduced in the sixties by
Giffler [28] and Cuninghame-Green [29]. In the late seventies
the second author wrote the first book on the topic [14],
and in the eighties Cohen et al. [30] presented a system-
theoretic view. A few additional books have been published
on the topic including [15], [16]. For a historical overview see
[31]. The structure of the max-plus algebra is as follows: let
ε := −∞, e := 0, and Rmax = R∪{ε}. Define the operations
⊕,⊗ : Rmax × Rmax → Rmax by:

x⊕ y := max(x, y)

x⊗ y := x+ y

Definition 3. The set Rmax with the operations ⊕ and
⊗ is called the max-plus algebra, denoted by Rmax =
(Rmax,⊕,⊗, ε, e).
Theorem 4. [15] The max-plus algebra Rmax has the alge-
braic structure of a commutative idempotent semiring.

The max-plus algebra can be interpreted as the traditional
linear algebra with the operations ‘+’ and ‘×’ replaced by the
operators ‘max’ and ‘+’, respectively, with the supplemental
difference that the additive inverse does not exist, thus result-
ing in a semiring. Matrices can be defined by taking Cartesian
products of Rmax. Define the matrix sum ⊕, matrix product
⊗, and matrix power operations by:

[A⊕B]ij = aij ⊕ bij := max(aij , bij) (11)

[A⊗ C]ij =

m⊕
k=1

aik ⊗ ckj := max
k=1,...,m

(aik + ckj) (12)

D⊗k := D ⊗D ⊗ . . .⊗D︸ ︷︷ ︸
k times

, k ∈ N\{0} (13)

where A,B ∈ Rn×m
max , C ∈ Rm×p

max , D ∈ Rn×n
max , and the i, j

element of A is denoted by aij = [A]ij . In this context, the
max-plus zero E , and (square) identity E matrices are defined
by:

[E ]ij = ε; [E]ij =

{
e if i = j
ε otherwise.

Throughout this paper the dimensions of the matrices E and
E are omitted since they can be unambiguously derived from
the context. Finally, we define D⊗0 := E and x⊗0 := e.

Theorem 5 (see [15], Th 3.17). Consider the following system
of linear equations in the max-plus algebra:

x = A⊗ x⊕ b (14)

with A ∈ Rn×n
max and b, x ∈ Rn×1

max . Now let

A∗ :=

∞⊕
p=0

A⊗p .

If A∗ exists in Rn×n
max then

x = A∗ ⊗ b (15)

solves the system of max-plus linear equations (14).

Definition 6. The matrix A ∈ Rn×n
max is called nilpotent if

there exists a finite positive integer p0 such that for all integers
p ⩾ p0 we have A⊗p = E .

Max-plus eigenvectors λ and eigenvalues v are defined in
the same way as in the traditional algebra, where v ̸= E :

A⊗ v = λ⊗ v

For max-plus linear systems the max-plus eigenvalue of the
system matrix represents the total cycle time, whereas the max-
plus eigenvector represents the steady-state behavior. As an
example, consider the following max-plus linear system where
the initial condition is an eigenvector of A:

x(k) = A⊗ x(k − 1); x(0) = v

The solution of the previous system can then be written as a
function of the initial condition:

x(k) = A⊗ · · · ⊗A︸ ︷︷ ︸
k times

⊗x(0) = λ⊗k ⊗ v

So then the behavior of the state vector x(k), i.e., the time
instances at which each event fire, is a max-plus scaled version
of the eigenvector v. Written in the traditional algebra we have
that x(k) = kλ1+v, where 1 is a column vector of 1’s. So if
the initial state is an eigenvalue, then at each cycle all events
fire exactly λ time units after the last time they have fired. We
now present conditions for the steady-state (eigenvector) to be
reached given an arbitrary initial condition.

Definition 7. A permutation matrix in max-plus algebra is a
square matrix with a single 0 in every row and column and ε
everywhere else.

Definition 8. The (square) matrix A is called irreducible if no
permutation matrix B exists such that the matrix Ā, defined
by Ā = BT ⊗A⊗B, has an upper triangular block structure
(an alternative definition states that a matrix A is irreducible
if its communication graph is strongly connected [16]).

Theorem 9. [15] If A is irreducible, there exists one and only
one eigenvalue (but possibly several eigenvectors).

Theorem 10. [30], [15] Let A be an irreducible matrix. Then
there exists c ∈ N (the cyclicity of A), λ ∈ R (the unique
max-plus eigenvalue of A), and k0 ∈ N (the coupling time of
A) such that

∀p⩾k0 : A⊗p+c = λ⊗c⊗A⊗p

For a matrix with cyclicity one the coupling time states that
given any initial condition x(0) the system x(k) = A⊗x(k−1)
reaches steady-state in at most k0 steps, i.e.

A⊗k0 ⊗ x(0) = α⊗ v
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where v is the eigenvector of A and α > 0 is a scalar.
In this section we have presented two important elements

of the theory of max-plus linear systems. First, Theorem 5
states that under proper assumptions implicit max-plus linear
equations can be made explicit. The models we present next
are first written in an implicit form (such as in (7)–(10)) and
then translated to an explicit set of equations that are simple
to solve. Second, Theorem 10 introduces the notion of the
coupling time k0. If k0 can be computed, then in practice this
means that a robot modeled as a max-plus-linear system can
reach a steady-state walking pattern in at most k0 steps given
any initial state of the legs and any finite disturbance3. E.g.,
gait transitions stabilize in at most k0 steps, all disturbances
are rejected in k0 steps, etc. This is similar to having stable
limit cycles for CPGs.

IV. GAIT SCHEDULER

At the end of Section II-C we have introduced a set of
nonlinear equations that model the time at which events
occur during legged locomotion of a simple biped robot.
Here, we take advantage of the max-plus algebra theory to
systematically construct gait generators for robots with an
arbitrary (larger than 1) number of legs.

A. Model

We start by rewriting (7)–(10) into a max-plus linear state-
space representation:

t1(k)
t2(k)
l1(k)
l2(k)

 =


ε ε τf ε
ε ε ε τf
ε ε ε ε
τ∆ ε ε ε

⊗


t1(k)
t2(k)
l1(k)
l2(k)

 (16)

⊕


ε ε ε ε
ε ε ε ε
τg τ∆ ε ε
ε τg ε ε

⊗


t1(k − 1)
t2(k − 1)
l1(k − 1)
l2(k − 1)


System (16) exhibits a clear structure that we now explore.

By grouping together all the touchdown or lift-off events
the system matrices in (16) are max-plus zero in the block
diagonals, with all the parameters lying in the off-diagonal
blocks. System (16) can be generalized in the following way:
consider an n-legged robot, with the full discrete-event state
vector defined by:

x(k) = [t1(k) · · · tn(k)︸ ︷︷ ︸
t(k)

l1(k) · · · ln(k)︸ ︷︷ ︸
l(k)

]T .

The 2n-dimensional system equations exemplified by (16) can
be written in the general form:[

t(k)
l(k)

]
=

[
E τf ⊗ E
P E

]
⊗
[
t(k)
l(k)

]
(17)

⊕
[

E E
τg ⊗ E ⊕Q E

]
⊗
[
t(k − 1)
l(k − 1)

]
When the system in (17) reaches steady state all legs follow the
same rhythm, i.e., all legs cycle with the same period of at least

3Any event that causes a delay in the touch down or lift off of a leg is
considered a disturbance

τf+τg seconds (this is due to the terms τf⊗E and τg⊗E in the
off-diagonal blocks). Following Definition 2, it is assumed that
all leg synchronizations are achieved by enforcing a relation
between the next lift-off time of a leg with the touchdown time
of other legs. This assumption is expressed by the additional
matrices P and Q, that we address later in this section. If one
introduces identity matrices in system (17) that implement the
extra trivial constraints t(k + 1) ⩾ t(k) and l(k + 1) ⩾ l(k),
then the resulting system matrix is irreducible [32], facilitating
the analysis of the system properties. We obtain the resulting
model:[

t(k)
l(k)

]
=

[
E τf ⊗ E
P E

]
⊗
[
t(k)
l(k)

]
(18)

⊕
[

E E
τg ⊗ E ⊕Q E

]
⊗
[
t(k − 1)
l(k − 1)

]
By defining the matrices

A0 =

[
E τf ⊗ E
P E

]
and A1 =

[
E E

τg ⊗ E ⊕Q E

]
system (18) can be written in simplified notation:

x(k) = A0 ⊗ x(k)⊕A1 ⊗ x(k − 1). (19)

System (18), written in an implicit form, models a class of
n two-state circuits as illustrated in Figure 4, where the term
τg⊗E represents the gi places; τf⊗E represents the fi places;
and the matrices P and Q encode the sji places.

B. Gait parameterization

Towards constructing the matrices P and Q systematically,
we consider the following notation: for a robot with n legs let
ℓ1, . . . , ℓm be sets of integers such that

m⋃
p=1

ℓp = {1, . . . , n},

∀i ̸= j, ℓi ∩ ℓj = ∅, and
∀p, ℓp ̸= ∅

i.e., each set ℓp is not empty, takes elements of {1, . . . , n}
with no overlap between sets, and the union of all sets equals
{1, . . . , n}. We consider that each ℓp contains the indices of a
set of legs that swing simultaneously. As such, m represents
the number of groups of legs that are synchronized in phase.
A gait G is defined as an ordering relation of ordered sets of
leg indexes4:

G = ℓ1 ≺ ℓ2 ≺ · · · ≺ ℓm (20)

This ordering relation is interpreted in the following manner:
each leg in the set ℓi+1 swings τ∆ time units after all the legs
in the set ℓi have reached stance. For example, a trotting gait
on a quadruped robot where the legs are sorted as in Figure
3, is represented by:

Gtrot = {1, 4} ≺ {2, 3}
4This definition does not capture gaits where there are a multiplicity of

cycles between legs, e.g., one leg cycles twice in the time another leg cycles
once.
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0 1 2 3 4 5 time [s]

1
2
3
4

leg

t1(k)t1(k − 1)l1(k − 1) l1(k) τf τ∆

Fig. 5. A trot gait on a quadruped robot, using Hildebrand’s diagram notation
[34]. Gray/Blue rectangles represent stance and white swing.

Describing a swing leg ordering using the notation of Gtrot,
as an ordered set of sets, is equivalent to specifying legs phase
offsets in the CPG method via the parameters ϕij in (2). Given
this notation, the matrices P and Q in (18) can be generated
by:

[P ]pq =

{
τ∆ ∀j ∈ {1, . . . ,m−1};∀p ∈ ℓj+1;∀q ∈ ℓj
ε otherwise (21)

[Q]pq =

{
τ∆ ∀p ∈ ℓ1;∀q ∈ ℓm
ε otherwise (22)

For the trotting gait Gtrot we obtain:

P =


ε ε ε ε
τ∆ ε ε τ∆
τ∆ ε ε τ∆
ε ε ε ε

 and Q =


ε τ∆ τ∆ ε
ε ε ε ε
ε ε ε ε
ε τ∆ τ∆ ε

 (23)

In [32] we have shown that P is always max-plus nilpotent
for gaits generated by expressions (21) and (22).

Lemma 11. [33] A sufficient condition for A∗
0 to exist in Rn×n

max

is that the matrix P is nilpotent in the max-plus sense.

We now have all the ingredients in place to write system
(19) explicitly. Using Theorem 5 we define the system matrix
A to be:

A := A∗
0 ⊗A1 (24)

Equation (19) can be rewritten as:

x(k) = A0 ⊗ x(k)⊕A1 ⊗ x(k − 1)

= A∗
0 ⊗A1 ⊗ x(k − 1)

= A⊗ x(k − 1). (25)

If the gait parameters are chosen5 to be τf = 0.5s, τg = 0.7s,
and τ∆ = 0.1s, equation (25) generates the following event
schedule (that we previously denoted by S) for the first 4
steps:

k t1(k) t2(k) t3(k) t4(k) l1(k) l2(k) l3(k) l4(k)
1 0.5 1.1 1.1 0.5 0.0 0.6 0.6 0.0
2 1.7 2.3 2.3 1.7 1.2 1.8 1.8 1.2
3 2.9 3.5 3.5 2.9 2.4 3.0 3.0 2.4
4 4.1 4.7 4.7 4.1 3.6 4.2 4.2 3.6

This table is interpreted as follows: legs 1 and 4 lift off

5The parameters τf , τg, and τ∆ are design parameters that can be freely
chosen by the user, as long as the assumptions A1, A2 presented in Section
V.C below are verified.

the ground when time equals zero and touch down after 0.5
seconds. When the time counter equals 0.6 seconds, legs 2 and
3 lift off the ground, and so forth, as illustrated in Figure 5.
The previous table stores at what time instants certain events
should occur.

C. Properties

The system matrix A, defined by (24), has a number of
mathematical properties that shed light on the resulting gait
behavior. The max-plus eigenvalue of A is the total cycle time,
its max-plus eigenvector represents the steady-state behavior,
and the coupling time of A describes the transient behavior
[15].

In order for us to determine the eigenvalue and eigenvector
some assumptions have to be made:

Assumption A1: τf > 0, and τg > 0

This assumption is always true in practice since the
swing and stance times are always positive numbers.

Lemma 12. [35] If assumption A1 is satisfied then

λ := (τf ⊗ τ∆)
⊗m ⊕ τf ⊗ τg (26)

is a max-plus eigenvalue of the system matrix A defined by
equations (25), and v ∈ R2n

max defined by

∀j ∈ {1, . . . ,m},∀q ∈ ℓj : [v]q := τf ⊗ (τf ⊗ τ∆)
⊗j−1 (27)

[v]q+n := (τf ⊗ τ∆)
⊗j−1 (28)

is a max-plus eigenvector of A.

The relevance of the previous lemma is that (27) and (28)
provide a closed-form expression of a max-plus eigenvector
of the system matrix A.

Assumption A2: (τf ⊗ τ∆)
⊗m ⩾ τf ⊗ τg

This assumption can be interpreted as a restriction on the
choice of the parameters τf , τg, and τ∆.

Lemma 13. [35] Given assumptions A1, A2, the coupling time
for the max-plus-linear system defined by (25) is k0 = 2 with
cyclicity c = 1.

The significance of this lemma is in stating that the steady-
state of system (25) is reached in at most 2 steps. This result
is important in robotics since it shows that it is possible for
a robot to transition between arbitrary gaits without stopping,
and it will return to its steady-state behavior after a distur-
bance, in at most 2 steps. Note that by a single step we mean
a single cycle of the discrete-event system, i.e., all the n legs
of the robot go through a swing/stance cycle.

V. CONTROL STRUCTURE

In this section we present a modular control structure that
implements the presented max-plus framework both in simula-
tion and in reality on the legged robots illustrated in Figure 3.
This structure, illustrated in Figure 6, consists of four control
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µref

v

µ, µ̇

Supervisory
controller

Gait reference generator

Max-plus gait 
scheduler

Tracking
controller

Robot +
environment

Continuous time 
scheduler

Fig. 6. Block diagram of the control structure using the max-plus algebra
framework for legged locomotion presented in this paper.

blocks: the supervisory controller, tasked with choosing a
gait; the max-plus gait generator, which generates an event
schedule; the continuous time scheduler, which transforms the
event schedule into a continuous time reference trajectory;
and finally the tracking controller, which enforces the desired
reference trajectory. Note that both the supervisory controller
and the max-plus gait generator blocks use feedback on the
phase state to update the internal scheduling.

The choice of the supervisory controller can be a function
of the terrain, desired speed, or other considerations. Section
VI is dedicated to gait transitions, further elaborating on the
operation of the supervisory control block.

The event schedule S ∈ R2n×(2p+1)
max for p ⩾ 1 (in the case

of the robots utilized in this paper we use p = 1) is defined
to be the matrix

S =
[
x(k − p) · · · x(k) · · · x(k + p)

]
.

The parameters p and k are chosen such that at the time instant
τ for each row of S we get that

min([S]i,·) < τ < max([S]i,·),

i.e., for each leg S contains both events that have happened in
the past and events that are scheduled to occur in the future (in
a practical implementation the matrix S is updated at discrete
time instants that are a function of the total cycle time, thus
S is actually a function of time). If we consider that foot i
always touches down when its phase is at a fixed value θt
and always lifts off the ground at the fixed phase θl then it is
possible to generate a reference phase via the function

θref(τ, S(τ)) : R× R2n×(2p+1)
max → Tn

that takes as inputs time τ ∈ R and the event schedule and
outputs a piecewise affine trajectory for each of the leg’s
phases:

[θref ]i :=



θl (ti(kti)− τ) + (θt+2π) (τ − li(kli))

ti(kti)− li(kli)

if τ ∈ [li(kli), ti(kti))

θt (li(kli+1)− τ) + θl (τ − ti(kti))

li(kli+1)− ti(kti)

if τ ∈ [ti(kti), li(kli + 1))

(29)

The indices in the event counter variables kti and kli are used
here to distinguish that for each leg i a different event counter

0 1 2 3 4 [s]

1

leg

disturbance

2

3

4

Fig. 7. Experimental run on a quadruped: the dashed lines represent the
reference phase, ranging from (−π, π] (vertical lines represent the phase
wrapping around), the solid lines represent the actual phase of each leg. In
this experiment, leg 1 is prevented from touching down, resulting in the phase
of all other legs to be delayed.

is in use for interpolation. The interpretation of expression
(29) is as follows: the function θref interpolates the phase
parameters θt and θl linearly in time τ . For a specific leg i, if
it is in stance, then the interval [ti(kti), li(kli + 1)) is used for
interpolation of the phase, such that at time τ = ti(kti) the
reference phase is θt and at time τ = li(kli+1) the reference
phase for leg i is θl. If the leg is in swing, then the interpolation
interval [li(kli), ti(kti)) is used instead. Figure 7 illustrates a
sample simulation where the reference phase is represented by
the dashed lines. For each leg, each graph ranges from −π to π
and the phase “wraps around” when crossing π, as illustrated
by the vertical lines.

Note that function θref(τ, S(τ)) is general, and can be used
in place of a CPG type generator, as in (1), resulting in a
new discrete-event type of reference trajectory generator for
the actuators of the robot:

qref(τ) = g(p, θref(τ, S(τ))) (30)

For a tripod gait {1, 4, 5} ≺ {2, 3, 6} with the parameters ϕs =
θt + θl, (29) results in the Buehler Clock equations (4)-(5).
Thus, the switching max-plus method is a generalization of the
Buehler Clock. We can now establish a comparison between
the standard CPG versus the switching max-plus methodology,
illustrated in Table I.

VI. GAIT SWITCHING

We now address the problem of choosing gaits and their
transition parameters when changing rhythms. In Section VI-A
we discuss how to choose gaits to obtain the best possible
transitions given the models presented earlier. In Section VI-B
we introduce a new scheme that results in an equal stance time
for all legs during transitions. This result is used in Section
VI-C to enable constant acceleration/deceleration in legged
robots while switching gaits.

A. Compatible gaits for switching

Let Gn, called the gait space, be the set of all gaits defined
according to expression (20) for an n-legged robot. Also, let
An be the set of all system matrices for gaits generated from
(20) with equation (25):

An = {A(1), . . . , A(n)}
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TABLE I
COMPARISON BETWEEN STANDARD CPG AND SWITCHING MAX-PLUS

METHODS.

Property CPG Switching max-plus

Dynamics continuous discrete
System
representation

differential equation (1) max-plus linear system
(18)

Control param-
eterization

set of phase offset pa-
rameters and gains: wij ,
ϕij

ordered set of numbers
ℓ1 ≺ ℓ2 ≺ · · · ≺
ℓm and time parameters
τf , τg, τ∆

Steady state limit cycle max-plus eigenvector
Cycle time depending on the gain max-plus eigenvalue
Convergence depending on the gain maximum 2 cycles
Transitions
with constraint
guarantees

obstacles encoded in
vector fields

switch state matrices

Implementation numerical differential
equation solver

additions, maximizations,
linear interpolation

Output smooth-
ness

C∞ Cn with n finite

One can write the switching max-plus linear system

x(k + 1) = A(µ(k))⊗ x(k)

where µ(k) is a “switching” integer function whose value is
determined by the supervisory controller based on the desired
gait. By construction, gait switching is kinematic stance stable,
in the sense that for two different gaits that swing at most qi
and qj legs simultaneously, we will have at most max(qi, qj)
legs swinging during the transition between both. For example
during the transition between a walk and a trot on a quadruped
robot, no more than two legs can swing simultaneously (note
that since we are not taking into consideration the dynam-
ics of the robot this measure of “stability” applies only to
the discrete-event supervisory controller). By looking at the
definition of a gait in expression (20) it is clear that the
size of the gait space Gn is combinatorial in n (in fact
#Gn = n!×(2(n−1)−1), i.e., the number of permutations of n
elements times the number of possible set partitions, excluding
the partition consisting of a set with n elements). However,
different representations for a gait as an ordered set of ordered
sets can lead to the same exact robot physical motion behavior,
as in the following example:

G1 = {1, 2} ≺ {3, 4} ≺ {5, 6}
G2 = {2, 1} ≺ {3, 4} ≺ {5, 6}
G3 = {5, 6} ≺ {1, 2} ≺ {3, 4}
G4 = {4, 3} ≺ {6, 5} ≺ {2, 1}

. . .

The difference lies in the fact that the transition between
the above defined gaits and a new different gait, say G5 =
{3, 4, 6} ≺ {1, 2, 5}, will result in a different transient be-
havior, as illustrated in the examples of Figures 10a) and
10b). This poses the question of how to optimally switch
gaits, in the sense of minimizing the variation of the leg stance
time during gait switching. For applications of climbing robots

[36] it is fundamental that all legs exert the same force on
the attaching wall at all times, thus motivating constant foot
velocity (viewed from a frame attached to the robot). The
same is valid for walking robots, as different leg velocities can
result in turning moments that can make the legged platform
unstable. For the n-legged robot with gaits represented by (20)
suppose the gait switching mechanism consists in moving a
single leg from one group of legs ℓi to a different group of legs
ℓj with 0 < i, j ⩽ m. By inspecting the max-plus eigenvector
(thus assuming steady-state behavior), one can observe that the
moment that a leg in the set ℓi lifts off the ground happens at
the time instant

(τf ⊗ τ∆)
⊗i,

assuming the cycle starts at zero time. Analogously, for a leg
in the set ℓj we get the lift-off time to be:

(τf ⊗ τ∆)
⊗j ,

Moving a leg from the set ℓi to the set ℓj results in a change
of lift-off time of

(τf ⊗ τ∆)
⊗(j−i)

If j > i, then the switching leg will stay in stance for an extra
(τf⊗τ∆)⊗(j−i) time units during the transition to synchronize
with the new leg group. This is always the case since the
time of flight τf is fixed. If j < i then all the legs in the
original group of the switching leg will have their lift-off times
postponed by (τf ⊗ τ∆)

⊗(i−j) time units. Thus, the larger the
magnitude of j − i the larger the stance time variation during
the transition will be. For instance, the gait transition of

{1,2} ≺ {3, 4} ≺ {5} ≺ {6} → {1} ≺ {2, 3, 4} ≺ {5} ≺ {6}
has less stance time variation than the transition

{1,2} ≺ {3, 4} ≺ {5} ≺ {6} → {1} ≺ {3, 4} ≺ {2, 5} ≺ {6}
The same is true when changing the number of leg groups,
e.g., the gait transition of

{1, 2, 3} ≺ {4, 5, 6} → {1, 2} ≺ {3, 4} ≺ {5, 6}
has less stance time variation then the transition

{1, 2, 3} ≺ {4, 5, 6} → {5, 6} ≺ {1, 2} ≺ {3, 4}
This provides a simple mechanism for choosing gaits without
requiring to search the gait space for all structurally equivalent
gaits. Figure 10 illustrates the comparison of a non-optimal
gait switch a) with an optimal one b). To quantify the quality
of a gait transition, we introduce the following measure:

σ̄ =
1

τg

√√√√ 1

n

n∑
i=1

(τ̄gi − ¯̄τg)2 (31)

where τ̄gi is the true stance time of leg i, and ¯̄τg is the
average stance time for all legs, both during the transition.
In formula (31) we divide the unbiased standard deviation of
τ̄gi by the desired stance time τg to obtain a non-dimensional
measure. If σ̄ = 0 then the transition maintains a constant
stance time for all legs. Note that minimizing σ̄ results in
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minimizing the variation of the foot velocities during stance
(assuming a constant foot velocity for the stance phase range),
as exemplified in Figure 10 .

B. Variable swing time, constant stance model

As shown before, by selecting the leg indices in the proper
way when switching a gait, one can achieve a better switching
behavior. However, by construction, since the synchronization
happens at the lift-off time, during gait transitions some legs
will inevitably stay longer on the ground, which can cause
instabilities to the robotic platform. We now show that by
manipulating the flight time of each leg independently one can
achieve a unique stance time for all legs under well defined
assumptions. Consider the new model:[

t(k)
l(k)

]
=

[
E R
P E

]
⊗
[
t(k)
l(k)

]
⊕
[

E E
τg ⊗ E ⊕Q E

]
⊗
[
t(k − 1)
l(k − 1)

]
(32)

where the diagonal matrix R represents different swing times:

R =


τf1 ε · · · ε
ε τf2
...

. . .
ε τfn


Following the definition (24) let

Ā(G, R, τg, τ∆) :=

[
E R

PG,τ∆ E

]∗
⊗
[

E E
τg ⊗ E ⊕QG,τ∆ E

]
where the matrices PG,τ∆ and QG,τ∆ are constructed accord-
ing expressions (21) and (22), respectively, for a gait G. Then,
the system matrix of (25) is parameterized as:

Ā(G, τf ⊗ E, τg, τ∆)

and the resulting system matrix of (32) is parameterized by:

Ā(G, R, τg, τ∆)

Let maxv : Rn → R and minv : Rn → R be operators on
vectors that return the maximum or the minimum element of
a vector, respectively. Now consider two different gaits G1

and G2 with respective eigenvectors vG1
= [tTG1

lTG1
]T and

vG2
= [tTG2

lTG2
]T . During a transition from gait G1 to the

gait G2 the extra time each leg will stay in stance can be
computed by:

Γ = (lG2 − tG1)−minv(lG2 − tG1) (33)

A transition system matrix Ā(G1, R1, τg, τ∆) can be con-
structed such that for each leg an element of the “extra time”
vector Γ ∈ Rn

max is subtracted from the flight time τf so that
in the next cycle, now using gait G2, will make the real stance
time τ̄g the same for each leg. Note that this is only possible
if

τfG1 ⩾ maxv(Γ),

where τfG1
is the swing time parameter for gait G1. If that is

not the case, then an additional transition matrix, now using

gait G2, can be constructed as Ā(G2, R2, τg, τ∆) such that
the time that cannot be subtracted from the transition matrix
R1 is subtracted from the matrix R2. The resulting transition
algorithm is summarized as follows:

1) Given two gaits G1 and G2 compute Γ via (33).
2) If τfG1

⩾ maxv(Γ) then compute the vector:

Γt1 = [(τfG1
− [Γ]1) · · · (τfG1

− [Γ]n)]
T

and the system matrix

Ā(G1,diag(Γt1), τgG1 , τ∆G1)

where diag : Rn → Rn×n returns a matrix with the
elements of a vector on the leading diagonal. The tran-
sition sequence is obtained by the following sequence
of system matrices:

A(µ(k − p)) = Ā(G1, τfG1 ⊗ E, τgG1 , τ∆G1)

...
A(µ(k − 1)) = Ā(G1, τfG1 ⊗ E, τgG1 , τ∆G1)

A(µ(k)) = Ā(G1,diag(Γt1), τgG1 , τ∆G1)

A(µ(k + 1)) = Ā(G2, τfG2 ⊗ E, τgG2 , τ∆G2)

...
A(µ(k + p)) = Ā(G2, τfG2 ⊗ E, τgG2 , τ∆G2)

3) If τfG1
< maxv(Γ) then create two transition matrices

Ā(G1,diag(Γt1), τgG1
, τ∆G1

)

and

Ā(G2,diag(Γt2), τgG2 , τ∆G2)

where

[Γt1]i = max(min([Γ]i, τfG1
), τfmin)

with τfmin > 0 the minimum leg swing time, and

[Γt2]i = τfG2 − ([Γt1]i − [Γ]i)−minv(Γt1 − Γ)

The transition sequence is obtained by the following
sequence of system matrices:

A(µ(k − p)) = Ā(G1, τfG1
⊗ E, τgG1

, τ∆G1
)

...
A(µ(k − 1)) = Ā(G1, τfG1

⊗ E, τgG1
, τ∆G1

)

A(µ(k)) = Ā(G1,diag(Γt1), τgG1
, τ∆G1

)

A(µ(k + 1)) = Ā(G2,diag(Γt2), τgG2
, τ∆G2

)

A(µ(k + 2)) = Ā(G2, τfG2
⊗ E, τgG2

, τ∆G2
)

...
A(µ(k + p)) = Ā(G2, τfG2

⊗ E, τgG2
, τ∆G2

)

Figure 8.c) illustrates an example transition with constant
stance times τg and different τf for each leg during the
transitions, highlighted by the green shades of color.
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a) non-optimal gait switching

b) optimal gait switching

c) gait switching with constant stance time

d) gait switching with constant acceleration

Fig. 8. Various real walking experiments executed using the Zebro robot.
The color/gray bars represent legs in stance and the transparent areas
represent leg swing. Transition steps are indicated by the green shades of
color/solid outlines. Subfigure a) non-optimal gait switch for the transi-
tions {1} ≺ {4} ≺ {5} ≺ {2} ≺ {3} ≺ {6} → {5, 2} ≺ {3, 6} ≺ {1, 4}
→ {2, 3, 6} ≺ {1, 4, 5}. Non-dimensional standard deviation for transition
1 is (σ̄)1 = 0.57, for transition 2 is (σ̄)2 = 0.45, and for transition 3
is (σ̄)3 = 0.80. Subfigure b) optimal gait transitions with fixed τf for the
gaits {1} ≺ {4} ≺ {5} ≺ {2} ≺ {3} ≺ {6} → {1, 4} ≺ {5, 2} ≺ {3, 6}
→ {1, 4, 5} ≺ {2, 3, 6}. (σ̄)1 = 0.14, (σ̄)2 = 0.33, and (σ̄)1 = 0.19.
Subfigure c) optimal gait switch with transitions with variable τf . (σ̄)1 =
(σ̄)2 = (σ̄)3 = 0. Subfigure d) gait transitions with constant acceleration.

C. Variable velocity

Variable velocity can be achieved by scaling the time τ . As
presented earlier, the actuator reference trajectories qref are
generated by the following equation:

qref(τ) = g(p, θref(τ, S(τ))) (34)

By introducing a “time modulating” function α : R → R we
obtain a new reference phase generator:

qref(τ) = g(p, θref(α(τ), S(α(τ)))) (35)

A constant accelerating robot can be obtained by choosing
α(τ) = aτ where a is the desired acceleration. Taking into
account the minimum time required for a leg to swing, gait
switching can be automatically inferred for each resulting
forward velocity. Figure 8.d) illustrates a hexapod robot
that is constantly accelerating and doing gait transitions for
a hexapod robot.

θ = 0r

z

z

x

x
y

θ = π

Fig. 9. A parameterized trajectory for the foot end-effector of the 3 degree
of freedom per leg hexapod robot available in V-Rep.

VII. SIMULATION AND EXPERIMENTAL RESULTS

In this paper we utilize the robots Zebro and RQuad, which
are morphologically identical to RHex [25], for experimental
validation and the V-Rep software [26] for physics simulation,
illustrated in Figure 3. The physical robots have a single motor
per leg, and as such the dimensions of the vectors qref and
θ match. For simulation we utilized a 23 degree-of-freedom
hexapod robot in the V-Rep simulation environment, resulting
in qref ∈ R18 and θ ∈ T6.

A. Simulation on a 3 DOF per leg hexapod robot

We have applied the work presented in this paper to a 3
degree of freedom per leg hexapod robot present in the V-Rep
simulation environment. The map g that translates the abstract
phase θ into reference trajectories of the end effector, using
the parameters p = {r}, is written as (see Figure 9):

g(θ)=

 xrefyref
zref

=



 r cos(θ)
0

r sin(θ)

 if 0 ⩽ θ mod 2π < π


2r

π
((θ − π) mod 2π)− r

0
0

 otherwise

The abstract phase θ is obtained using (29) with θt = 0 and
θl = π. The simulation results from V-Rep are illustrated on
the left side of Figure 10 . The simulated controller imple-
ments an inverse kinematics module to track the reference
trajectories of the feet end-effectors in the local reference
frame of the body, resulting in forward motion. In Figure
10 the gait transitions are highlighted by the solid blue
bars. A constant acceleration “trend” is seen although the
average velocity is not exactly linear. This is due to the
complex ground interactions and possible slip happening in
the simulation. It is also noticeable that different gaits result in
difference oscillating patterns in the pitch-yaw-roll directions.
For example, the tripod gait results in less yaw drift than the
quadruped gait, due to its symmetry.

B. Experiments on a hexapod robot

The morphology of RHex/Zebro is such that each leg is
directly mounted onto a motor. Therefore, one can match
the abstract leg phase directly to the leg shaft angle. In
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this situation, the function gzebro, defined in (30), is simply
gzebro(p, θ) := θ for straight-line motion6.

For the Zebro and RQuad robots the reference trajectory
tracker block from Figure 6 is a simple PID phase tracker:

u(τ) = KP (θref(τ)− θ(τ)) +KD(θ̇ref(τ)− θ̇(τ))

+KI

∫ τ

τ0

(θref(s)− θ(s))ds,

where θ(τ) represents the leg shaft angles. Since these robots
do not have leg touch sensors, we consider that the touchdown
and lift-off events fire as a function of the leg angle. In practice
this works well, allowing the robot to locomote without the
need of touch sensors. In Figure 6 the phases θ(τ) and θ̇(τ) are
fed back to the controller in three locations: in the reference
trajectory tracker, to update the input signals; in the max-
plus gait scheduler, to keep track of when the leg touchdown
and lift off actually occur; and in the supervisory controller,
to trigger gait switching when necessary. Figure 7 illustrates
an experiment executed in the RQuad robot where leg 1 was
prevented from touching down. Since the touchdown t1 event
for leg 1 does not occur, all other events depending on t1
are automatically postponed in time, resulting in the reference
phases illustrated by the dashed lines. Once leg 1 is released
and its touchdown event occurs, the motion of the other legs
continues as normal. In practice, the max-plus gait generator
prevents the robot from tripping due to lack of support if
one or more legs are held back during their swing. As such
it guarantees that a desired number of legs are in stance at
all times. If one of the legs never touches down, then this
information can be fed to the supervisory controller, which
can switch gaits or take other recovery actions.

Figure 10 on the right illustrates a constant acceleration
experiment on the Zebro robot. As in the simulation results in
V-Rep, a similar velocity trend is found for the Zebro robot,
here “less linear” as in the case of simulation. Once more we
attribute these results to the complex interactions of the robot
with the terrain.

VIII. CONCLUSIONS

This paper presents a discrete-event modeling approach for
leg phases in walking robots. We have shown that modeling
each foot’s interaction with the ground via switching max-plus
linear systems presents a feasible alternative to the traditional
CPG approach for motion control in legged locomotion. In
our approach it is not necessary to solve a differential equation
online, as in the general case of CPGs, resulting in a very sim-
ple implementation. By translating the resulting discrete-event
time schedules into piecewise constant phase velocities, our
methodology can be directly applied to any phase-controlled
legged system. This has been demonstrated in two types of
platforms with different morphologies and different number
of degrees of freedom per leg. The compact representation of
the class of walking gaits presented in this paper simplifies

6For turning we use the parameter p to introduce offsets in the reference
phases of the legs that either increase or decrease the sweep angles of the
right or left leg groups during stance, creating a differential in the ground
distance traversed that results in turning.

the synthesis of supervisory controllers for legged locomotion
and provides guarantees about safe transitions. Furthermore
by introducing “time modulation” functions in the continuous
time scheduler constant acceleration/deceleration on multi-
legged robots is achieved.

Max-plus linear systems for modeling discrete-event ground
interactions present in legged locomotion opens a new door
of opportunities for further research. We are currently inves-
tigating instant gait transitions (without waiting for a cycle to
finish), and the modeling of more general gaits.
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Fig. 10. Simulation and experiment results for a constant acceleration gait switching. Illustrated on the left are the simulations results obtained using the
V-Rep physics simulators. On the right the experimental results obtained with the Zebro robot are illustrated.
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