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Co-optimization of topology design and parameterized control in a traffic network

Submission date: February 15, 2025

Word count: 5780 words + (4 figures + 1 table + 1 algorithm)*(250 words) = 7280 words

Authors:

Z. Cong1, Delft Center for Systems and Control, Delft University of Technology, Mekelweg 2, 2628 CD

Delft, The Netherlands, phone: +31-15-278 65 24, email: z. cong@tudelft.nl

B. De Schutter, Delft Center for Systems and Control , Delft University of Technology, Mekelweg 2, 2628

CD Delft, The Netherlands, phone: +31-15-278 51 13, email: b.deschutter@tudelft.nl
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ABSTRACT

In this paper, we introduce a co-optimization approach to jointly optimize the traffic network topology and

traffic controllers in a traffic network. Since the network topology design has a long-term goal, while the

traffic control is usually based on a minute-to-minute basis traffic situation, we use a so-called parameterized

traffic control method to bring them to the same time scale. We apply the proposed co-optimization approach

in a simulation-based case study, and compare it with a pure topology design and an iterative optimization

method. The results show that our method can improve the interaction between topology design and traffic

control design, and result in a better overall performance.
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1 INTRODUCTION

In the near future the amount of traffic on the roads will keep increasing significantly. In order to match

this increase, traffic authorities and policy makers seek to improve the performance of the traffic network

at the same pace as the growing demand. Historically, this issue has been addressed in two different ways:

(re)design of the network topology or development of traffic control strategies. Network topology design

involves making decisions on changing the structure of a traffic network. The advantage of this approach is

that it can effectively solve the problem of capacity limitations of infrastructure in a direct way. On the other

hand, the goal of traffic control strategies is to make more efficient use of the available roads by various

traffic control measures, such as traffic signals, speed limits, and route guidance. In this paper, we will

consider both approaches jointly in order to improve the interaction and cooperation between them, and to

get better overall performance.

Network topology design is usually posed in two different forms: a discrete form that deals with

creating or removing links, or adding new lanes in existing links, and a continuous form that represents

the capacity enhancement of existing links. Billheimer and Gray (1) proposed one of the first discrete

methods, in which they considered the design of transportation networks with fixed construction costs and

variable user costs. Leblanc (2) considered adding or removing the links in the network to minimize the total

congestion, by using a mixed integer programming model. The continuous form was discussed in several

papers, e.g., Abdulaal and Leblanc (3) formulated the network design problem with continuous investment

variables subject to an equilibrium assignment, and Suwansirikul (4) suggested a heuristic method to find

appropriate solutions to the continuous equilibrium design problem. The network topology design problem

is often mentioned together with the well-known Braess paradox (5), which illustrates a counter-intuitive fact

that addition of new links or capacity expansion to some links may in some cases deteriorate the performance

of the traffic network. Therefore, the designer has to take such paradoxical effects into account when dealing

with network topology design.

However, changing the topology of a traffic network is an expensive and time-consuming project,

and sometimes the required free space may be not available. Therefore, due to financial and physical limita-

tions, many recent studies focus on the development of advanced traffic management and control strategies

(see e.g. (6–8)) to improve traffic flows. From the traffic management point of view, the objectives of

traffic control can vary, from avoiding traffic congestion to increasing network safety and reliability, and

to decreasing fuel consumption and pollution, etc. Therefore, an ‘appropriate’ traffic control strategy is in

general defined in terms of optimality according to (multiple) specific objectives.

Traditionally, network topology and control strategies for traffic systems are designed separately.

The designers either (1) design the network topology without considering any control strategy, only as-

suming that drivers make their own decision in a user-optimal manner, or (2) develop control strategies for

an existing traffic network topology. The problem with the first approach is that the impact of the control

strategies on the performance of the whole system is not taken into account during the optimization of the

topology design, which could easily lead to a suboptimal system design. The main problem with the sec-

ond approach is that there might be no feasible traffic control strategy if, e.g., the total demand exceeds the

capacity of the network. However, the co-optimization approach can solve the problem by optimizing the

network topology and traffic controllers as a whole so that they can work cooperatively. To the best knowl-

edge of the authors, very few systematic studies have been conducted to investigate the combined design

of topology and control strategies in traffic networks. One relevant topic is introduced by Cantarella et al.

(9), presenting an iterative procedure with two steps: the first step dealing with integer variables (topology

design), and the second step dealing with continuous variables (control signals). In the first step, the control

signals are fixed so that only integer variables are optimized, and in the second step, the network topology is

fixed so that only continuous variables are optimized. The algorithm keeps running the two-step loop until

a stopping criterion is satisfied. A problem with this approach is that it can get stuck in a cycle around the



Cong, De Schutter, Babuška 4

optimum, never reaching the optimum itself.

One challenge for the co-optimization method is that these two subproblems involve different time

scales. More specifically, the solutions of the network topology design could be effectively unchanged for a

decade or even longer, while the solutions of the traffic control strategy design are usually dynamic control

signals that vary on a minute to minute basis according to the time-varying traffic situations. However, de-

termining a sequence of traffic control signals over an extremely long period may induce a lack of robustness

in the system, because there might be uncertainty about the typical future traffic demands. To tackle these

problems, we will use a feedback control method, and optimize the parameters of the controllers instead

of the control signals. This approach — albeit in a different setting that only focuses on traffic manage-

ment — is also adopted in e.g., the ALINEA method (10). Through finding the optimal parameters of the

controller, the control signals are accordingly determined via the feedback control law at each control step.

This method is called parameterized traffic control (11). In such a way, the solutions of the traffic con-

trollers design can be brought to the same time scale as the network topology design, since the parameters

can be determined and applied for a long-term purpose, using forecast demands and considering different

sub-periods (see Section 3.2.)

The rest of the paper is organized as follows. In Section 2, we introduce an evolutionary algo-

rithm that will used for the co-optimization of the network topology and traffic control strategies. Section

3 includes the formulations of the network topology design, parameterized traffic control, and the over-

all objective function. In Section 4, a simulation-based case study is performed on an artificial network,

comparing the co-optimization method with the pure network topology design and the iterative algorithm

introduced in (9). Finally, we conclude our work and offer some future research directions in Section 5.

2 COVARIANCE MATRIX ADAPTATION EVOLUTION STRATEGY

2.1 Basic algorithm

In this paper we use the Covariance Matrix Adaptation Evolution Strategy (CMA-ES) (12) to solve the co-

optimization problem of the network topology and the traffic control. The CMA-ES algorithm belongs to

the class of Evolutionary Algorithms, and it is a state-of-the-art continuous optimization algorithm. We

in particular select CMA-ES since in a benchmark including 24 test problems for comparison of real-

parameter global optimizers it resulted to yield the best overall performance (13). Moreover, CMA-ES

is a non-gradient-based optimization method that is good at solving problems with high dimensionality and

complexity, such as the problem considered in this paper, and it performs a parallel search in the search

space that can effectively escape from local optima that the co-optimization problem most likely has. Due

to the reasons above, CMA-ES is chosen in this paper. We begin by recapitulating the algorithm.

Algorithm 1 Basic structure of the CMA-ES algorithm

Input: size of offspring population λ , size of parent population µ , initial parent generation x
(0)
µ , initial

parameters γ(0), maximum number of generations G

1: for g = 0,1, . . . ,G−1 do

2: generate a new generation population via the sample distribution: x
(g+1)
λ = N

(

x
(g)
µ ,γ(g)

)

3: select new parents x
(g+1)
µ from the offspring x

(g+1)
λ based on a fitness function F

4: update parameters γ(g+1) =U
(

x
(g+1)
µ ,γ(g)

)

5: end for

Output: The best offspring solution at generation G: x
(G)
λ ,best
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FIGURE 1 Mapping real number r into binary number b

A description of basic CMA-ES structure is presented in Algorithm 1. The constants λ and µ are

population sizes of each offspring and parent generation, with λ > µ . The constant γ(0) is the initial set

of all the optimization parameters in the CMA-ES algorithm, such as covariance matrix of the distribution,

search step size, and so on. At each generation, λ children are stochastically generated via the normal

multivariate distribution N, and the µ best out of the λ children are selected as the parents of the next

generation according to the fitness function F . Afterwards, the parameter γ is updated based on a so-called

cumulative step-size adaptation rule U to adapt the distribution of the candidate solutions. More details

about the CMA-ES algorithm can be found in (12).

2.2 Modification for binary form

Although CMA-ES has variants to handle integer optimization (14) and constrained optimization (15), these

variants, especially the integer optimization version, have not been developed to such a degree as the un-

constrained optimization version in a continuous search space. Since the optimization problem in this paper

has a mixed-integer form (see Section 3.1), we propose another variant of CMA-ES dealing with the binary

form in this section.

This modification is inspired by (16). The goal is to map a real number r into a binary space. The

mapping has two steps:

1. For −∞ < r < +∞, the mapping monotonously goes into the interval [0,1] via a scaling function

p(r) = 1/(1+ e−σr), with σ > 0 a weight parameter;

2. The value of p is considered as the probability of a binary variable b taking the value 1.

In this way, any real number r can be mapped to a binary number b ∈ {0,1} by (as shown in Figure 1):

{

P{b = 1}= p(r)

P{b = 0}= 1− p(r)
(1)

where P{·} is the probability of b taking the corresponding value. It is easy to verify that when r = 0,

P{b = 1}= P{b = 0}= 1/2, and moreover, the value of b is more likely to be equal to 1 when r has a larger

positive value, and equal to 0 when r has a larger negative value.

Accordingly, the steps of the basic CMA-ES algorithm are modified as follows when solving a

mixed-integer optimization problem. At each generation g,

Step 1 divide the new offspring solution x
(g)
λ into x

(g)
λ ,r and x

(g)
λ ,r′ , with x

(g)
λ ,r containing the variables to be

mapped into the binary space, and x
(g)
λ ,r′ containing the variables kept for continuous optimization;
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Step 2 map x
(g)
λ ,r to a binary variable x

(g)
λ ,b by using (1);

Step 3 evaluate x
(g)
λ ,b and x

(g)
λ ,r′ by using the fitness function F ;

Step 4 select the best µ solutions from x
(g)
λ , with x

(g)
λ ,r corresponding to x

(g)
λ ,b, as the parents for generation

g+1;

Step 5 update the parameters, and start the next generation.

The output is the best offspring solution at generation G: x
(G)
λ ,b,best

and x
(G)
λ ,r′,best

.

3 CO-OPTIMIZATION OF TOPOLOGY DESIGN AND TRAFFIC CONTROL

3.1 Network Topology Design

As the first step, we only consider the discrete form of network topology design in this paper, i.e. link

addition or removal in a traffic network, or adding new lanes in existing links. A binary vector δ is defined

as the construction decision variable. The mth element δ m corresponds to the construction decision for link

m, where δ m = 1 means that link m is constructed, or a new lane is added to link m, and δ m = 0 that no

construction. In general, improvement of the traffic network characteristics will definitely induce changes

in the traffic flow patterns, which means that the traffic state x (usually traffic flow, density, and speed)

depends on the construction decision variable δ . The network topology design is traditionally solved in a

bi-level framework (17), where the lower-level optimization aims at finding a user equilibrium flow pattern

in the traffic network, and the upper-level optimization then determines the decision variables based on the

equilibrium flow resulting from the lower level.

In this paper the traffic control strategy is optimized jointly with the topology design, which will

result in a better performance of the traffic network.

3.2 Parameterized Traffic Control

In general, traffic evolution can be described by a difference equation:

x(k+1) = f (x(k),u(k),d(k),δ) , (2)

where f is the traffic update function, x(k)∈R
nx denotes the dynamic traffic state vector at simulation step k,

u(k)∈R
nu denotes the control input vector at simulation step k, and d(k)∈R

nd denotes the disturbance (typ-

ically, the traffic demand) at simulation step k. Usually, the control interval Tc is larger than the simulation

interval T : Tc > T , because traffic evolution is a comparatively fast process, while the control actions are not

necessarily updated as fast as the traffic evolution. However, for the sake of simplicity, we assume that the

control time interval Tc is equal to the simulation time interval T in this paper. Therefore, a parameterized

traffic control law is generally formulated as:

u(k) = h(x(k),d(k),θ) , (3)

where h denotes a control law, and θ ∈ R
nθ contains all the parameters of the traffic controllers. In the

conventional optimization approach the control signal u(k) is optimized directly, e.g. in Model Predictive

Control, this results in a sequence of future control signals u(k|k),u(k + 1|k), . . . ,u(k +Np − 1|k) over a

prediction period [kT,(k+Np)T ], with u(l|k) the control signal for simulation step l based on information

at simulation step k, and Np a prediction horizon. However, in the parameterized optimization approach the

control signal u(k) is indirectly optimized according to the control law h.
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FIGURE 2 quasi-dynamic parameterized traffic control

Although one can design a parameterized traffic controller for any traffic model, or for any type of

control measure, in this paper we first consider the dynamic speed limit control for macroscopic traffic flow

models, where a link m is divided into segments with a length Lm. The control law for dynamic speed limit

vlim
m,i(k+1) of segment i on link m at simulation step k+1 is defined as (11):

vlim
m,i(k+1) = θm,0vlim

m,i(k)+θm,1
vm,i+1(k)− vm,i(k)

vm,i+1(k)+κm,v
+θm,2

ρm,i+1(k)−ρm,i(k)

ρm,i+1(k)+κm,ρ
(4)

where vlim
m,i(k) denotes the maximum allowed speed, vm,i(k) and ρm,i(k) denote the mean speed and density

on segment i of link m at the simulation step k respectively, θm,0, θm,1, and θm,2 denote speed-limit-control

parameters, and κm,v and κm,ρ are parameters preventing denominators from becoming zero. The speed limit

controller (4) can be considered as the state feedback functions based on the relative speed difference and

relative density difference of a segment w.r.t. the speed and density in the downstream segment respectively.

In this parameterized traffic control setting, θm,0, θm,1, and θm,2 are target parameters to be optimized.

Remark 1 The parameter θ should be in principle constant for a relatively long time, i.e., at the same time

scale as the topology design. However, simple static traffic control using the same parameters over a long

period may be inadequate for modern traffic systems. In order to improve the performance of the traffic

controllers, we consider a so-called quasi-dynamic parameterized traffic control approach. As shown in

Figure 2, a period is first divided into several sub-periods, and each sub-period is then divided into several

time slots. For the same sub-period, the parameters in different time slots have different values, while for

the same time slot, the parameters in different sub-period have the same value. For instance, a month can

be divided into days, and a day can be divided into different time slots, e.g., morning rush hours, midday

non-rush hours, and afternoon rush hours. In this way, we only need to optimize the parameters for one day,

but can apply them for a month. Similarly, a sub-period can be divided into sub-sub-periods or even further

if necessary, e.g., in reality a year can be divided into seasons, a season can be divided into months, and so

on. In such a way, for complicated traffic situations, the parameters can be defined much more accurate than

the static traffic control.

3.3 Objective Function

The objective of the co-optimization method is to minimize the total construction and maintenance cost, as

well as the total travel cost. The total construction and maintenance cost is formulated as :

J1 = ∑
m∈M

cc
m, (5)
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where cc
m is the average yearly construction and maintenance cost ($/year) of link m, which is based on the

construction decision variable δ . The cost cc
m includes two parts: constructing and maintaining the links,

and installing the controllers on the links. It is formulated linearly as cc
m = (α1NmLm+α2Nc

m)δ m with α1 the

unit construction and maintenance cost of the link, α2 the installation cost of each controller, Nm the number

of segments on link m, Lm the length of segments on link m, and Nc
m the number of controllers on link m.

The total travel cost is formulated as :

J2 = D ∑
k∈K

(

∑
m∈M

∑
i∈Im

ct
mρm,i(k)Lmλm + ∑

o∈O

cw
o wo(k)

)

, (6)

where ct
m ($/day) denotes the travel cost on link m, cw

o ($/day) denotes the waiting cost on origin o, ρm,i(k)
(veh/h) denotes the density on segment i of link m at simulation step k, λm denotes the number of lanes on

link m, wo(k) (veh) denotes the number of vehicles waiting on origin o at simulation step k, Im denotes the

set of segments on link m, O denotes the set of origins, K denotes the set of simulation steps in a day, and

D denotes the total number of days in a year so that the costs ct
m, cw

o , and cc
m are taken into the same period.

Both travel time and travel distance can be evaluated monetarily. In particular, according to (18), the travel

cost ct
m can be expressed as:

ct
m = (α3T +α4vmT )δ m, (7)

where vm (km/h) is the average speed on link m during a day, T (h) denotes simulation time step length, α3

is the value of unit travel time, and α4 is the monetary cost per unit distance. For the waiting cost cw
o , since

there is no travel distance for vehicles waiting at an origin, only the travel time cost is considered, cw
o = α3.

From the system optimum point of view, the resulting overall optimization problem can be formu-

lated as:

min
θ ,δ

J = ξ1J1 +ξ2J2

subject to y(θ ,δ ) = 0,

z(θ ,δ )6 0 (8)

where ξ1,ξ2 > 0 are weight parameters, y(·) includes all the equality constraints, and z(·) captures all the

inequality constraints. We solve (8) using a simulation-based optimization approach. The simulation-based
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optimization means that we embed the traffic simulation into the CMA-ES algorithm, as shown in Figure

3. The advantage of this approach is that all equality constraints y, e.g., conservation law of traffic flow, are

included in the traffic simulation model, and thus eliminated. The inequality constraints are added into the

objective function via a penalty term, i.e., J = ξ1J1 + ξ2J2 + ξ3Jpen, with ξ3 > 0 and ξ3 ≪ ξ1,ξ2, and Jpen

given by, e.g., ∑
nz

i=1[max(zi(θ ,δ ),0)]
2, with nz the number of inequality constraints.

4 CASE STUDY

4.1 Set-up

We illustrate the effects of the co-optimization approach in a benchmark network taken from (19) where the

Braess paradox may occur, depending on the level of the traffic demand. As shown in Figure 4, the network

consists of one origin, one destination, and five links, with each link having only one lane. The lengths of

the links are ℓ1 = ℓ4 = 20 km, ℓ2 = ℓ3 = 40 km, and ℓ5 = 10 km, and the length of each segment is Lm = 0.5
km. The construction decision is to determine whether link 5 (as indicated by the dashed line) should be

constructed or not, and whether a new lane should be added to links 2 and 3 (we only consider adding one

lane because it is sufficient for the case study network, and adding more lanes will not significantly improve

the performance). Moreover, we assume that links 1 and 4 cannot be expanded due to physical limitations.

The variable speed limits are considered to be applied on the segments of second half of links 2 and 4 by

using control law (4).

4.2 Optimization and model parameters

The cost of construction of highway projects could be affected by several factors, such as terrain type

(mountainous or flat), material type (concrete or asphalt), development type (rural or urban), and so on.

According to a report by the U.S. General Accounting Office (20), the unit cost of building a stretch of

highway ranged from about $2.5 million per kilometer to $16 million per kilometer in 25 U.S. states in

2002. In this case study, we set the total highway construction and maintenance cost as $10 million per

kilometer, and we assume that the traffic network is constructed to be used for twenty years. Therefore, the

average yearly construction and maintenance cost is α1 = $0.5 million per kilometer per year. For other

parameters, the installation cost of each controller is $1 million, so α2 = $0.05 million per year. The travel

time cost is set as α3 = $10 per hour per vehicle, and the monetary cost of driving a car is set as α4 = $1 per
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TABLE 1 Simulation results
total cost J

construction decision δ control parameters θ
(dollars)

Pure topology design 1.096×109 δ 2 = 1, δ 3 = 1, δ 5 = 0 Not apply

Co-optimization 9.139×107 δ 2 = 1, δ 3 = 0, δ 5 = 0

θ2,0 = 7963.4, θ2,1 =−4922.2,

θ2,2 =−999.0, θ4,0 = 6633.6,

θ4,1 = 22666.8, θ4,2 = 2830.7

Iterative optimization 9.423×107 δ 2 = 1, δ 3 = 0, δ 5 = 0

θ2,0 = 0.9986, θ2,1 = 1.2157,

θ2,2 = 0.4330, θ4,0 = 1.0033,

θ4,1 = 10.0816, θ4,2 = 0.0214

kilometer per vehicle. The weight parameters in (8) are set as ξ1 = 1 and ξ2 = 0.1. Since we do not have

inequality constraints in this case study, z(·) is void.

The METANET model (21) is used to simulate the traffic flow evolution. The model parameters

are defined as follows: simulation period tsim = 24 h, simulation time step length T = 10 s, free flow speed

vfree = 102 km/h, minimum speed vmin = 7.4 km/h, lower bound of speed limit vlim
min = 50 km/h, critical

density ρcrit = 33.5 veh/km/lane, maximum density ρmax = 180 veh/km/lane, flow capacity qcap = 2000

veh/h/lane. Other parameters can be found in (22).

4.3 Scenario

We consider a traffic demand profile during a two-hour representative design period in the simulation: the

demand starts with a flow of 4000 veh/h at 6.30 a.m., decreases to 2000 veh/h at 8.15 a.m., and maintains

this level until 8.30 a.m.. Moreover, we add a large pulse with a value of 60 veh/km/lane to the downstream

density at the virtual downstream link of the network so that a back-propagating wave appears in the network.

In this way, the network becomes more dense in the peak hours, which results in a longer travel time.

We compare the co-optimization approach with the pure network topology design and the iterative

optimization approach (9). In the pure network topology design, no control strategy is introduced, but

only construction/extension decisions for links 2, 3, and 5 are considered. CMA-ES is used for the binary

optimization of the pure network topology design. The iterative optimization approach keeps optimizing the

construction decision variables and the controller parameters in a loop until the following stopping criterion

is satisfied: the binary variables between two consecutive iteration steps are the same, and the difference

of the continuous variables between two consecutive iteration steps is smaller than a tolerance 10−3. For

the real-valued optimization, we use a quasi-Newton method implemented by fminunc from the Matlab

Optimization Toolbox, and for the binary optimization, we use a genetic algorithm implemented by ga from

the Matlab Global Optimization Toolbox.

4.4 Simulation results

The results of the simulations of the three approaches are displayed in Table 1. We can see that the co-

optimization approach achieves the best performance among these three methods. The construction decision

determined by the co-optimization approach is the same as that of the iterative approach, but the resulting

control parameters lead to a lower total cost. In the pure topology design, the total cost is much higher than

both the co-optimization approach and the iterative approach.
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5 CONCLUSIONS AND FUTURE WORK

We have introduced a co-optimization method to jointly optimize the network topology and the traffic con-

trollers. The advantage of co-optimization is that it can improve the interaction and coordination between

these two design components, and yield a better overall performance than optimizing them separately. In a

simulation-based case study, we showed that the co-optimization resulted in a lower total cost than the pure

topology design and the iterative approach.

In the future, we will consider a more general case: for the topology design, we will not only con-

sider binary construction variables, but also integer variables (e.g., the number of lanes), and continuous

variables (e.g., the capacity of the link), and for the traffic control measures, we will include multiple con-

trol strategies in the network, such as ramp metering and dynamic route guidance. Moreover, we will also

consider more extensive case studies involving large-scale networks, implement the quasi-dynamic param-

eterized control as introduced in this paper, as well as perform sensitivity analysis.
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