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Abstract

The optimal trajectory planning problem for multiple trains under fixed block signaling systems

and moving block signaling systems is considered. Two approaches are proposed to solve this

optimal control problem for multiple trains: the greedy approach and the simultaneous approach.

In each solution approach, the trajectory planning problem is transformed into a mixed integer

linear programming (MILP) problem. In particular, the objective function considered is the en-

ergy consumption of trains and the nonlinear train model is approximated by a piece-wise affine

model. The varying line resistance, variable speed restrictions, and maximum traction force, etc.

are also included in the problem definition. In addition, the constraints caused by the leading train

in a fixed or moving block signaling system are first discretized and then transformed into linear

constraints using piecewise affine approximations resulting in an MILP problem. Simulation re-

sults comparing the greedy MILP approach with the simultaneous MILP approach show that the

simultaneous MILP approach yields a better control performance but requires a higher compu-

tation time. Moreover, the performance of the proposed greedy and the proposed simultaneous

MILP approach is also compared with that of the greedy and the simultaneous pseudospectral

method, where the pseudospectral method is a state-of-the-art method for solving optimal con-

trol problems. The results show that the energy consumption and the end time violations of the

greedy MILP approach are slightly larger than those of the greedy pseudospectral method, but

the computation time is one to two orders of magnitude smaller. The same trend holds for the

simultaneous MILP approach and the simultaneous pseudospectral method.

Keywords: trajectory planning, train operation, signaling system, MILP, pseudospectral

1. Introduction

Nowadays, the energy efficiency of transportation systems is becoming more and more im-

portant because of the rising energy prices and environmental concerns. Rail traffic plays a

significant role for the sustainability for transportation systems, since it can provide safe, fast,

punctual, and comfortable services (Peng, 2008). The reduction of energy consumption is one
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of the key objectives of railway systems because energy consumption is one of the major ex-

penses in operational cost, which is about 13% - 16% of the annual operation and maintenance

cost of railway systems in China (Ding et al., 2009). Therefore, even a small improvement in

energy saving is attractive to the railway operators since it can save a large amount of money.

Some driver assistance systems have been developed to assist drivers to drive the train optimally,

such as FreightMiser (Howlett & Pudney, 1995), Metromiser (Howlett & Pudney, 1995), and

driving style manager (Franke et al., 2002). With the development of modern railway systems,

an automatic train operation system plays a key role in ensuring accurate stopping, operation

punctuality, energy saving, and riding comfort (Peng, 2008). The railway control center or auto-

matic train operation systems are responsible for solving the trajectory planning problems based

on the information collected by train monitoring systems, such as line resistance, speed limits,

maximum traction and braking forces.

In the literature, the research on the optimal control of train operations began in the 1960s

and is aimed at solving the trajectory planning problem for a train running from one station to

another. Since it has significant effects for energy saving, punctuality, etc., various approaches

were proposed for the trajectory planning problem. These approaches can be grouped into two

main categories: analytical solutions and numerical optimization. For analytical solutions, the

maximum principle is applied and it results in four optimal regimes (i.e., maximum traction,

cruising, coasting, and maximum braking) (Howlett et al., 1994; Howlett, 2000; Khmelnitsky,

2000; Liu & Golovicher, 2003). It is difficult to obtain the analytical solution if more realistic

conditions are considered as these introduce more complex nonlinear terms into the model equa-

tions and the constraints (Ko et al., 2004). Numerical optimization approaches are applied more

and more to the train optimal control problem due to the increasing computing power nowadays.

A number of advanced techniques such as fuzzy and genetic algorithms have been proposed to

calculate the optimal reference trajectory for trains, see e.g. Chang & Xu (2000); Chang & Sim

(1997); Han et al. (1999); Ke et al. (2011). But in these approaches, the optimal solution is not

always guaranteed to be found. On the other hand, multi-parametric quadratic programming is

used in (Vašak et al., 2009) to calculate the optimal control law for train operations. In that ap-

proach, the nonlinear train model with quadratic resistance is approximated by a piecewise affine

function. Inspired by (Vašak et al., 2009), in Wang et al. (2011, 2013) we proposed to solve

the optimal trajectory problem as a mixed integer linear programming (MILP) problem, which

can be solved efficiently using existing commercial and free solvers (Linderoth & Ralphs, 2005;

Atamtürk & Savelsbergh, 2005) that guarantee finding the global optimum of the MILP problem.

However, the approaches mentioned above ignore the impact caused by the signaling sys-

tems, e.g., a fixed block signaling (FBS) system or a moving block signaling (MBS) system. An

FBS system is a block system using fixed block sections, which are protected by trackside traffic

signals. A train cannot enter a block section until a signal indicates the train may proceed. In

an MBS system, the blocks are defined as safe zones around each train in real time. Regular

communication between trains and zone controllers is needed for knowing the exact locations

and speeds of all trains in that zone at any given time. An MBS system allows trains to run closer

together compared with an FBS system, thus increasing the line capacity. Lu & Feng (2011)

consider the operation of two trains on a same line and optimize the trajectory of the following

train with constraints caused by the leading train in an FBS system. More specifically, a parallel

genetic algorithm is used to optimize the trajectories for the leading train and the following train,

resulting in a lower energy consumption (Lu & Feng, 2011). Gu et al. (2011) apply nonlinear

programming to optimize the trajectory for the following train. Two situations of the leading

train, i.e. running and stopped, are studied and the corresponding strategies are proposed for the
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following train. In addition, Ding et al. (2009) take the constraints caused by the MBS system

into account and develop an energy-efficient multi-train control algorithm to calculate the opti-

mal trajectories. Three optimal control regimes, i.e. maximum traction, coasting, and maximum

braking, are adopted in the algorithm and the sequences of these three regimes are determined

by a predefined logic.

In this paper, the constraints caused by the leading train in an FBS system and an MBS

system are formulated. These constraints are discretized and then recast as linear constraints

by piecewise affine approximations. Thus, they can be easily included into the MILP problem,

which can be solved efficiently compared to the existing approaches. Furthermore, the greedy

approach and the simultaneous approach are proposed to solve the trajectory planning problem

for multiple trains. We also compare the MILP approach with the state-of-art optimization ap-

proach: pseudospectral methods. Over the last decade, pseudospectral methods have risen to

prominence in the numerical optimal control area (Elnagar et al., 1995), which were applied to

solving optimal control problems (Gong et al., 2007), such as orbit transfers, lunar guidance,

magnetic control. Therefore, we have selected the pseudospectral method for the comparison of

the case study.

The remainder of this paper is structured as follows. In Section 2, the train model and the

MILP approach for a single train are summarized based on Wang et al. (2013). Section 3 in-

troduces the principle of railway signaling systems, i.e. the FBS system and the MBS system.

Section 4 formulates the constraints for the following train caused by the leading train under an

FBS system and shows how to include these constraints into the MILP formulation. The con-

straints caused by the MBS system are considered and included in the MILP problem in Section

5. Section 6 illustrates the calculation of the optimal trajectories using the data from Beijing

Yizhuang subway line. We conclude with a short discussion of some topics for future work in

Section 7.

2. Train model and the MILP approach

In this section, the formulation of the optimal control problem and the MILP approach we

proposed in Wang et al. (2013) are summarized.

2.1. Optimal control problem

A continuous-space mass-point model is often used in the literature on train optimal con-

trol (Franke et al., 2003), which can be described as follows (Liu & Golovicher, 2003):

mρ
dẼ

ds
= u(s)−Rb(v)−Rl(s,v),

dt̃

ds
=

1√
2Ẽ

,

(1)

where m is the mass of the train, ρ is a factor to consider the rotating mass (Hansen & Pachl,

2008), Ẽ is the kinetic energy per mass unit, which is equal to 0.5v2, v is the velocity of the

train, s is the position of the train, u is the control variable, i.e. the traction or braking force,

which is bounded by the maximum traction force umax and the maximum braking force umin,

soumin ≤ u(s) ≤ umax, Rb(v) is the basic resistance including roll resistance and air resistance,

and Rl(s,v) is the line resistance caused by track grade, curves, and tunnels. See Wang et al.

(2013) for more details.
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The kinetic energy per mass unit Ẽ = 0.5v2 and time t are chosen as the states and the position

s is taken as the independent variable for the train model as in (Franke et al., 2003). The trajectory

planning problem for trains can then be formulated as (Wang et al., 2011):

J =
∫ send

sstart

max
(

0,u(s)
)

ds (2)

subject to

umin ≤ u(s)≤ umax,

0 < Ẽ(s)≤ Ẽmax(s),

Ẽ(sstart) = Ẽstart, Ẽ(send) = Ẽend,

t(sstart) = 0, t(send) = T,

(3)

and the train model (1), where the objective function J is the energy consumption without regen-

erative braking; Ẽmax(s) is equal to 0.5V 2
max(s) where Vmax(s) is the maximum allowable velocity,

which depends on the train characteristics and line conditions, and as such it is usually a piece-

wise constant function of the coordinate s (Khmelnitsky, 2000; Liu & Golovicher, 2003); sstart,

Ẽ(sstart), and t(sstart) are the position, the kinetic energy per mass, and the departure time at the

beginning of the route; send, Ẽ(send), and t(send) are the position, the kinetic energy per mass,

and the arrival time at the end of the route, where the scheduled running time T is given by the

timetable or the rescheduling process. It is assumed that the unit kinetic energy Ẽ(s)> 0, which

means the train’s speed is always strictly larger than zero, i.e. the train travels nonstop (Khmelnit-

sky, 2000). This assumption is nonrestrictive in practice because the initial start and terminal stop

can be modeled by small nonzero velocities. Furthermore, in principle the traffic management

system does not plan stops intentionally at an intermediate point of the trip.

2.2. Transformation properties

The transformation properties given by Williams (1999) (see (4)-(7) below) will be used to

reformulate the nonlinear optimal control problem as an MILP problem. More specifically, first,

the nonlinear train model (1) is transformed into a mixed logical dynamic model. Next, the

nonlinear constraints in the optimal control problem for the mixed logical dynamic model are

approximated using piecewise functions and written as mixed integer linear constraints. This

results in an MILP problem.

Consider the statement f̃ (x̃)≤ 0, where f̃ : Rn → R is affine, x̃ ∈ χ with χ ⊂ R
n and let

M̃ = max
x̃∈χ

f̃ (x̃), m̃ = min
x̃∈χ

f̃ (x̃). (4)

If we introduce the logical variable δ ∈ {0,1}, then the following equivalence holds:

[ f̃ (x̃)≤ 0]⇔ [δ = 1] is true iff

{

f̃ (x̃)≤ M̃(1−δ )
f̃ (x̃)≥ ε +(m̃− ε)δ

(5)

where ε is a small positive number (typically the machine precision) that is introduced to trans-

form a strict equality into a non-strict inequality, which fits the MILP framework (Bemporad &

Morari, 1999).
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The product of two logical variables δ1δ2 can be replaced by an auxiliary logical variable

δ3 = δ1δ2, i.e. [δ3 = 1]↔ [δ1 = 1]∧ [δ2 = 1], which is equivalent to







−δ1 +δ3 ≤ 0,
−δ2 +δ3 ≤ 0,
δ1 +δ2 −δ3 ≤ 1.

(6)

Moreover, the product δ f̃ (x̃) can be replaced by the auxiliary real variable z = δ f̃ (x̃), which

satisfies [δ = 0]⇒ [z = 0] and [δ = 1]⇒ [z = f̃ (x̃)]. Then z = δ f̃ (x̃) is equivalent to















z ≤ M̃δ ,
z ≥ m̃δ ,
z ≤ f̃ (x̃)− m̃(1−δ ),
z ≥ f̃ (x̃)− M̃(1−δ ).

(7)

It is noted that (5), (6), and (7) yield linear inequalities since f̃ is affine.

2.3. The mixed integer linear programming (MILP) approach

In Wang et al. (2011), the continuous-space model (1) of train operations has been discretized

in space: the position horizon between two stations without intermediate station [sstart,send] is

split into N intervals and it is assumed that the track and train parameters as well as the traction

or the breaking force can be considered as constant in each interval [sk,sk+1] with length ∆sk =
sk+1− sk, for k = 1,2, . . . ,N. The discrete-space model is then transcribed into a piecewise affine

(PWA) model by approximating the nonlinear terms through PWA functions. Furthermore, by

applying the transformation properties described in Section 2.2, the PWA model is formulated as

the following mixed logical dynamic model (see Wang et al. (2011)):

x(k+1) = Akx(k)+Bku(k)+C1,kδ (k)+C2,kδ (k+1)+D1,kz(k)+D2,kz(k+1)+ ek, (8)

R1,kδ (k)+R2,kδ (k+1)+R3,kz(k)+R4,kz(k+1)≤ R5,ku(k)+R6,kx(k)+R7,k, (9)

where x(k) =
[

E(k) t(k)
]T

, δ (·) and z(·) contain the binary variables and auxiliary variables

introduced by the transformation properties, and (9) also includes the upper bound and lower

bound constraints for E(k), t(k), and u(k). For the sake of simplicity, we use E(k) and t(k) as a

short-hand notation for Ẽ(sk) and t̃(sk), respectively. The coefficient matrices in the mixed log-

ical dynamic model are determined by the train model, the PWA approximations, upper bounds

and lower bound constraints, etc.

The objective of the trajectory planning problem is considered as the energy consumption of

the train operation without regenerative braking, which can be described as

J =
N

∑
k=1

max(0,u(k))∆sk. (10)

As shown in Wang et al. (2011), the optimal control problem can be recast as the following mixed

integer linear programming (MILP) problem by introducing a new auxiliary variable ω(k) to deal

with the function max(0,u(k)) in the objective function (10):

min
Ṽ

CT
J Ṽ , (11)
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subject to
F1Ṽ ≤ F2x(1)+ f3

F4Ṽ = F5x(1)+ f6

(12)

where CJ =
[

0 · · · 0 ∆s1 · · · ∆sN

]T
, Ṽ =

[

ũT δ̃ T z̃T ω̃T
]T

,

ũ =











u(1)
u(2)
...

u(N)











, δ̃ =











δ (1)
δ (2)
...

δ (N +1)











, z̃ =











z(1)
z(2)
...

z(N +1)











, ω̃ =











ω(1)
ω(2)
...

ω(N +1)











,

for properly defined matrices and vectors F1, F2, f3, F4, F5, and f6. The MILP problem (11)-

(12) can be solved by several existing commercial and free solvers, such as CPLEX, Xpress-MP,

GLPK (see e.g. Linderoth & Ralphs (2005); Atamtürk & Savelsbergh (2005)).

3. Principle of block signaling systems

Block signaling is used to maintain a safe distance between successive trains on the same

track. The main principles of the fixed block signaling system and the moving block signaling

system are presented next.

3.1. Fixed block signaling system

The fixed blocking signaling (FBS) system is commonly used in the railway operation sys-

tems nowadays (Pachl, 2009). In FBS system, the line is divided into blocks, the length of which

depends on the maximum train speed, the worst-case braking rate, and the number of signal as-

pects, which mark the visual appearance of the signal, such as a green, yellow, or red light. Each

block is exclusively occupied by only one train and the presence of a train within a block is usu-

ally detected by the track circuits (Takeuchi et al., 2003). Furthermore, the blocks are protected

by lineside or cab signals. Lineside signals are still typical in railways, however, cab signals are

used more and more, in particular on high-speed lines where lineside signals cannot be watched

clearly by the driver because of the high speed. There exist two kinds of FBS systems, namely

one-block signaling and multiple-block signaling (Pachl, 2009). In one-block signaling, the in-

dication of the block signal depends only on the state of the block section beyond the signal and

every block signal must have a distant signal which is supposed to provide the required approach

information. In multiple-block signaling systems, the indication of a block signal depends on the

state of two or more following block sections. A simple example is a two-block signaling sys-

tem with three aspects, i.e. red, yellow, and green, and which is called the three-aspect signaling

system. Later on, we will discuss the constraints caused by fixed block signaling system using

this simple three-aspect signaling system. However, the methodology proposed in this paper can

be extended to other types of FBS systems.

A three-aspect signaling system is shown as Figure 1. On a line equipped with an automatic

train protection system, each block carries an electronic speed code on top of its track circuit.

The speed code data consists of two parts, the authorized-speed code for this block and the

target-speed code for the next block. The speed code data is coded by the electronic equipment

controlling the track circuitry and transmitted via the tracks. Then this speed code data is picked

up by antennae on the train. If the train tries to enter a zero speed block or an occupied block,

or if it enters a section at a speed higher than that authorized by the speed code, the on-board
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Figure 1: Speed codes for the fixed-block system

electronics will cause an emergency brake application. Figure 1 shows how the speed code

works. When a train in Block 4 approaching to Signal 3 will receive a vmax/vyellow code, to

indicate a permitted speed of vmax in this block and a target speed of vyellow for the next. When

the train enters Block 2, the code changes to vyellow/vmin because the next block ( Block 1) is

occupied by train 1, so the speed must be vmin (usually taking the value zero) by the time train

reaches the end of Block 2. If the train attempts to enter Block 1, the on-board equipment will

detect the minimum speed code (vmin/vmin) and will cause an emergency brake application.

In order to ensure that a train’s operation is not impeded by the signaling system, i.e. a train’s

operation is not then affected by the train in front, the minimum headway is introduced. The

minimum headway is the minimum time separation between successive trains at train stations.

For undisturbed running In FBS system, the minimum headway can be defined as (Hill & Bond,

1995)

Hmin,FBS =
La

vmax

[

2+ INT

{

LF
r +(vF

max)
2/(2aF

b)

La

}]

+
vF

max

2aF
b

+ tL
d +

√

2(LL
t +Ls)

aL
acc

, (13)

where the La is the block length, LF
r is the distance that the following train will travel during

the reaction time tF
r of the driver and/or train control equipment of the following train, vF

max is

the maximum speed of the following train, aF
b is the maximum braking rate, tL

d is the station

dwell time of the leading train, LL
t is the length of the leading train, Ls is the length of the secure

section, and aL
acc is the acceleration of the leading train.

3.2. Moving block signaling system

With the increasing operational density in railway systems, there is a shortage of transporta-

tion capacity for railway systems with an FBS system. Even though the line capacity of an FBS

system can be increased using shorter block lengths, the installation and maintenance cost of

the signaling and track equipment may not be justified by the increasing capacity. Consequently,

moving block signaling (MBS) systems have been proposed to achieve even higher performance.

An MBS system relies on the continuous bidirectional communication connections between

trains and zone controllers. A zone controller calculates the limit-of-movement-authority for

every train in the zone it controls and makes sure that trains will be running with a safe distance

with respect to other trains. More specifically, the limit-of-movement-authority indicates the tail
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Figure 2: The principle of a pure MBS system

of the preceding train with a safety margin included, i.e. the maximum position that a train is

allowed to move to. In addition, the limit-of-movement-authority of the following train moves

forward continuously as the leading train travels. In the literature, four MBS schemes (Pearson,

1973) have been discussed: moving space block signaling, moving time block signaling, pure

MBS, and relative MBS. Takeuchi et al. (2003) evaluated the first three schemes and compared

them with the FBS scheme based on two basic criteria, namely steady state performance and

perturbed performance. It is concluded that the pure MBS scheme gives the best performance.

In addition, Takeuchi et al. (2003) stated that the concept of the relative MBS has never been

accepted for normal rail traffic even though it is routinely accepted for road traffic. Therefore,

we will consider the pure MBS scheme in this paper. However, the proposed approach can be

extended to other MBS schemes too. Moreover, the pure MBS scheme is the basis of all systems

currently implemented in practice (Takeuchi et al., 2003), the principle of which is shown in

Figure 2.

In pure MBS system, the minimum distance between two successive trains is basically the

instantaneous braking distance required by the following train plus a safety margin. Therefore,

even if the leading train comes to a sudden halt, a collision can be avoided by using the minimum

distance. In practice, the minimum distance in the MBS system is larger because the driver or the

automatic train control system need time to react to situations. Furthermore, the train length has

to be considered too. Therefore, the minimum distance of a practical MBS system is modified

as (Takeuchi et al., 2003)

sL(t)− sF(t)≥ LF
r +(vF(t))2/(2aF

b)+SSM +LL
t , (14)

where sL(t) and sF(t) are the positions of the front of the leading train and the following train at

time t, vF(t) is the speed of the following train, aF
b is the maximal braking rate, SSM is the safety

margin distance, LF
r is the distance that the following train will travel during the reaction time

tF
r of the driver and/or train equipment of the following train, and LL

t is the length of the leading

train. The value of the reaction time could be obtained from historical data. The minimum

distance between two successive trains (14) can approximately1 be recast as the minimum time

difference of two successive trains

tF(s)− tL(s)≥ tF
r + tF

b (s)+ tF
safe(s), (15)

1If vF(t) is a constant, (15) is then exactly equivalent to (14).
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where tL(s) and tF(s) are the time instants at which the front of the leading train and the following

train pass position s, respectively. The braking time of the following train tF
b (s) and the time

margin tF
safe(s) caused by the safe margin distance and the train length can be computed as

tF
b (s) = vF(s)/aF

b , (16)

tF
safe(s) = (SSM +LL

t )/vF(s), (17)

where vF(s) is the speed of the following train at position s.

In order to ensure that near stations a train’s operation is not impeded by the signaling system,

i.e. a train’s operation is not then affected by the (in principle slowly moving or stopped) train

in front, the minimum headway is introduced. The minimum headway is the minimum time

separation between successive trains at train stations, and it is defined as Takeuchi et al. (2003)

Hmin,MBS = tL
d + tin−out = tL

d + tF
r + tF

b,max + tL
safe, (18)

with the run-in/run-out time tin−out = tF
r +tF

b,max+tL
safe, where tF

b,max is the time it takes the follow-

ing train to come to a full stop when it is running at its maximum speed, i.e. tF
b,max = vF

max/aF
b , and

the run-out time tL
safe is the time that the leading train needs to completely clear the secure section

(i.e. a special section to protect the leading train), if present, and including a safety margin, i.e.2

tL
safe =

√

2(SSM +LL
t +Ls)/aL

acc. The acceleration of the leading train aL
acc is usually considered

as a constant value for the minimum headway calculation.

4. FBS system constraints and their formulation into the MILP approach

The constraints caused by the leading train in the FBS system are first discretized at each

grid point sk for k = 1,2, · · · ,N + 1. These logical constraints are then transformed into linear

constraints, which can be easily included in the MILP approach. Two solution approaches are

proposed to solve the optimal control problem for multiple trains in FBS system.

4.1. Discretizing the FBS system constraints

We assume for each m ∈ {1,2, . . . ,M}, there exists an index lm ∈ {1,2, . . . ,N +1} such that

SFB,m = slm , (19)

and define a piecewise constant function such that

ℓ(k) = m, for lm < k ≤ lm+1, for m ∈ {1,2, . . . ,M} (20)

Then sk is in the fixed block (slℓ(k)
,slℓ(k)+1

]. The constraints caused by the leading train in a three-

aspect fixed block signaling system shown in Figure 1 can be transformed at each grid point sk

as the follows:

• If the following train and the leading train are in the same block section, i.e. tF(k) ∈
(

tL(lℓ(k)), t
L(lℓ(k)+1)

]

, which is in fact not allowed by signaling system, then the speed of

the following train must equal to the minimum speed, i.e.

vF(k) =Vmin. (21)

2The calculation of this time can be obtained using the equations given in the appendix.
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• If the leading train is one block section before the following train, i.e. tF(k) ∈
(

tL(lℓ(k)+1),

tL(lℓ(k)+2)
]

, then the speed of the following train at positions slℓ(k)
and slℓ(k)+1

should be

less than or equal to VYellow and equal to Vmin, respectively, i.e.

vF
lℓ(k)

≤VYellow,

vF
lℓ(k)+1

=Vmin.
(22)

The deceleration is assumed as a constant for the entire interval [slℓ(k)
,slℓ(k)+1

]. Based on

the relationship among position, speed, and acceleration (see appendix), we have

2aℓ(k)(slℓ(k)+1
− slℓ(k)

) =V 2
min −V 2

Yellow, (23)

2aℓ(k)(sk − slℓ(k)
) = V̄ 2

Yellow,k −V 2
Yellow, (24)

where aℓ(k) is the deceleration and V̄Yellow,k is the maximum speed for trains at position sk.

By eliminating aℓ(k) in (23) and (24), we obtain

V̄Yellow,k =

√

V 2
Yellow +(V 2

min −V 2
Yellow)

sk − slℓ(k)

slℓ(k)+1
− slℓ(k)

, (25)

which is a constant because all the elements in (25) are constants. Therefore, in this case

we have the constraint

vF(k)≤ V̄Yellow,k. (26)

• If the leading train is two blocks before the following train, i.e. tF(k)∈
(

tL(lℓ(k)+2), t
L(lℓ(k)+3)

]

,

then the speed of the following train at positions slℓ(k)
and slℓ(k)+1

should be less than or

equal to Vmax and VYellow, respectively, i.e.

vF
lℓ(k)

≤Vmax,

vF
lℓ(k)+1

≤VYellow.
(27)

Similarly as V̄Yellow,k, we can obtain

V̄max,k =

√

V 2
max +(V 2

Yellow −V 2
max)

sk − slℓ(k)

slℓ(k)+1
− slℓ(k)

, (28)

where V̄max,k is the maximum speed for trains at position sk. Note that V̄max,k is also a

constant. Therefore, we in this case have the constraint

vF(k)≤ V̄max,k. (29)

4.2. Considering the FBS constraints into the MILP approach

In order to transform these logical constraints into linear constraints, the following binary

variables are introduced:
[tF(k)≤ tL(lℓ(k)+1)]⇔ [δ1(k) = 1],

[tF(k)≤ tL(lℓ(k)+2)]⇔ [δ2(k) = 1],

[tF(k)≤ tL(lℓ(k)+3)]⇔ [δ3(k) = 1].

(30)
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Note that an extra constraint is needed, i.e.

tF(k)> tL(k), (31)

which means that the following train passes the position sk later than the leading train in order to

avoid the collision of trains. In addition, based on the definition of δ1(k), δ2(k), and δ3(k), the

following logical conditions are satisfied

[δ1(k) = 1]⇔ [δ2(k) = δ3(k) = 1],

[δ2(k) = 1]⇔ [δ3(k) = 1].
(32)

The constraints caused by the leading train in the three-aspects fixed block signaling system can

then be reformulated as:

δ1(k)v
F(k)≤Vmin, (33)

(1−δ1(k))δ2(k)v
F(k)≤ V̄Yellow,k, (34)

(1−δ2(k))δ3(k)v
F(k)≤ V̄max,k, (35)

where ’≤’ is used in (33) because when δ1(k) = 0, δ1(k)v
F(k) is equal to 0, and not equal to Vmin.

By defining M̃i = T F
max−tL(lℓ(k)+i)≥max(tF(k)−tL(lℓ(k)+i)), m̃i =min(tF(k)−tL(lℓ(k)+i))≥

T F
min − tL(lℓ(k)+i), the logical constraints (30) is equal to the following inequalities by transfor-

mation property (5):

tF(k)− tL(lℓ(k)+i)≤ M̃i(1−δi(k)),

tF(k)− tL(lℓ(k)+i)≥ ε +(m̃i − ε)δi(k),
(36)

for i = 1,2,3, where T F
max is the arrival time of the following train at the final destination, T F

min

the departure time of the following train, and ε is the machine precision. In addition, we define

binary variables δ4(k) = δ1(k)δ2(k) and δ5(k) = δ2(k)δ3(k) to deal with the nonlinear terms

δ1(k)δ2(k) and δ2(k)δ3(k) in (34)-(35) respectively. According to the transformation properties

in Section 2.2, the definitions of δ4(k) and δ5(k) are equivalent to linear constraints of the form

(6). In addition, the auxiliary variables zF
i (k) are introduced to deal with the nonlinear terms

δi(k)v
F(k), which is defined as

zF
i (k) = δi(k)v

F(k), for i = 1,2,3,4,5. (37)

This definition is equivalent to linear constraints of the form (7). The constraints caused by the

leading train in fixed block systems can thus be formulated into the MILP problem setting.

4.3. Optimal control problem for multiple trains under FBS systems

Now two solution approaches are proposed for the optimal control problem for multiple

trains under FBS systems. For simplicity, we consider the optimal trajectory planning problem

for two trains. However, the solution approaches can be easily extended to multiple trains. One

is greedy (or sequential) approach, where the leading train’s trajectory is first scheduled and then

the trajectory of the following train is optimized based on the results of the leading train. The

other approach is optimizing the trajectories of these two trains simultaneously.

In the greedy approach, first the trajectory of the leading train is determined by solving the

MILP problem. Next, the optimal control problem of the following train is solved, which is

similar to the one in Wang et al. (2011) both with the extra constraints of Section 4.2 caused by

11



the leading train in FBS system. The coefficient matrices in the mixed logical dynamic model

(8)-(9) are determined by the following train. Since the trajectory of the leading train is known,

tL(lℓ(k)+i) is also known. Therefore, M̃i and m̃i are constants and (36) is then a system of linear

constraints.

When optimizing the trajectories of multiple trains simultaneously, the models of these two

trains are determined by a model of the form (8)-(9). The optimal control problem of these two

successive trains can also be rewritten in the form of the MILP problem (11)-(12) but including

the model and constraints of each train and the constraints caused by the FBS system. However,

tL(lℓ(k)+i) is now also a variable in this case since the leading train’s trajectory also has to be

optimized. The constraints (36) can be rewritten as

(T F
max − tL(lℓ(k)+i))δi(k)≤−tF(k)+T F

max,

(T F
min − tL(lℓ(k)+i)− ε)δi(k)≤ tF(k)− ε − tL(lℓ(k)+i).

(38)

In order to deal with the nonlinear terms in (38), we define

zL
i (k) = tL(lℓ(k)+i)δi(k), for i = 1,2,3. (39)

Similar to zF
i (k), the auxiliary variables zL

i (k) is equivalent to linear constraints according to the

transformation properties in Section 2.2.

5. MBS system constraints and their formulation into the MILP approach

5.1. Discretizing the MBS constraints

Recall that the mixed logical dynamic model of the train’s operation is discretized in space

with N space intervals with grid points sk, k = 1, . . . ,N + 1 as shown in Section 2.3. Here, we

discretize the constraint (15) caused by the MBS system at the grid points sk as

tF(k)≥ tL(k)+ tF
r + tF

b (k)+ tF
safe(k), for k = 1,2, . . . ,N, (40)

tF(k)≥ tL(k)+ tF
r + tF

b,max + tL
d + tL

safe, for k = N +1. (41)

In addition, some intermediate constraints are introduced to ensure that the points between the

grid points also satisfy the constraints caused by the MBS system. According to (15), we obtain

the following constraint for each s ∈ [sk,sk+1] as:

tF(s)− tF
r − tF

b (s)− tF
safe(s)≥ tL(s), (42)

If we assume the left-hand side of (42) to be an affine function in the interval [sk,sk+1], then we

can add the following constraints:

(1−α)(tF(k)− tF
r − tF

b (k)− tF
safe(k))+α(tF(k+1)− tF

r − tF
b (k+1)− tF

safe(k+1))

≥ tL(s+α∆sk),
(43)

for some values α in a finite subset Sα ∈ [0,1), e.g. Sα = {0.1,0.2, . . . ,0.9}, where tL(s+α∆sk)
is known if the optimal trajectory of the leading train is fixed. Note that for α = 0 and α = 1

(40) is retrieved (except if k = N − 1). However, if the leading train’s trajectory is not known

beforehand, then we need to optimize both trajectories simultaneously. In this case, the term

tL(s+α∆sk) is unknown. If we assume the right-hand side of (42) is also an affine function,

i.e. tL(s+α∆sk) = (1−α)tL(k)+αtL(k+ 1), then it is sufficient to check (42) in the points k

and k+1 (i.e., for α = 0 and α = 1), since due to linearity (42) will then also automatically be

satisfied for all intermediary points.
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5.2. Considering the MBS constraints into the MILP approach

Note that the constraints (40), (41), and (43) are linear in tL(k), tL(k+ 1), tF(k). However,

they are nonlinear in vF(k) and vF(k+1) since the time safety margin (17) is a nonlinear function

of the following train’s velocity vF(k). Furthermore, the kinetic energy per mass EF(k) is one of

the states instead of vF(k) with EF(k) = 0.5(vF(k))2 (cf. Section 2). Therefore, both the braking

time tF
b (k) and the safe time margin tF

safe(k) are nonlinear functions of EF(k), where

tF
b (k) =

1

aF
b

√

2EF(k) (44)

and

tF
safe(k) = (SSM +LL

t )
1

√

2EF(k)
. (45)

The nonlinear functions f1(·) : EF →
√

2EF and f2(·) : EF → 1√
2EF

could be approximated by

PWA functions as follows. There are various methods for approximating functions in a PWA way,

see e.g., the overview by Azuma et al. (2010). In this paper, we first select the number of regions

of the PWA function based on the trade-off of complexity and accuracy. Next, the interval lengths

and parameters of the affine functions is optimized using least-squares optimization for f1(·).
Then the parameters of the affine function for f2(·) is optimized using the same number of regions

and same interval lengths of the PWA approximations of f1(·). If we consider approximations

with 2 affine subfunctions, the PWA approximations of functions f1(·) and f2(·) can be written

as

f1,PWA(E
F(k)) =

{

α1EF(k)+β1 for Emin ≤ EF(k)< E1,
α2EF(k)+β2 for E1 ≤ EF(k)≤ Emax,

(46)

f2,PWA(E
F(k)) =

{

λ1EF(k)+µ1 for Emin ≤ EF(k)< E1,
λ2EF(k)+µ2 for E1 ≤ EF(k)≤ Emax,

(47)

with optimized parameters α1, α2, β1, β2, λ1, λ2, µ1, µ2, and E1. For more details of this

transformation into PWA functions, see Wang et al. (2011). Now the constraint (40) can be

approximated as the following linear constraint:

tF(k)≥ tL(k)+ tF
r +

1

aF
b

(α1EF(k)+β1)+(SSM +LL
t )(λ1EF(k)+µ1), if Emin ≤ EF(k)< E1

(48)

tF(k)≥ tL(k)+ tF
r +

1

aF
b

(α2EF(k)+β2)+(SSM +LL
t )(λ2EF(k)+µ2), if E1 ≤ EF(k)≤ Emax

(49)

Similarly, the constraints (41) and (42) can also be written as linear constraints. These approxi-

mated linear constraints caused by the MBS system can be easily included in the MILP approach

and we still get an MILP problem.

5.3. Optimal control problem for multiple trains under MBS systems

The greedy approach and the simultaneous approach mentioned in Section 4.3 can also be

applied in MBS systems. In the greedy approach tL(k) and tL(s+α∆sk) are known for the

trajectory planning problem for the following train since the trajectory of the leading train is

known by the zone controller or the following train. The trajectory planning problem for the

following train is similar to the one in Wang et al. (2011) but with the MBS constraints of Section
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Table 1: Parameters of train and line path

Property Symbol Value

Train mass [kg] m 2.78 ·105

Basic resistance [N/kg] Rb 0.0142+1.0393 ·10−4v2

Mass factor ρ 1.06

Maximum velocity [m/s] Vmax 22.2
Line length [m] send 1332

Minimum kinetic energy [J] Emin 0.1
Maximum traction force [N] umax 2.224 ·105

Maximum braking force (regular) [N] umin −2.224 ·105

Table 2: Parameters for the calculation of the minimum headway

Property Symbol Value

Train length [m] Lt 90

Safety margin [m] SSM 30

Length of the secure section [m] Ls 60

Initial acceleration [m/s2] aL
acc 1

Braking deceleration [m/s2] aF
b 0.9

Braking reaction time [s] tr 1

Station dwell time [s] td 25

5.2. When optimizing the trajectories of multiple trains at the same time, the model for each of

these trains is determined by a model of the form (8)-(9). The optimal control problem of these

successive trains can also be rewritten in the form of the MILP problem (11)-(12). However,

the number of the state variables, binary variables, auxiliary variables, and constraints increase

linearly with the number of trains compared to the case of a single train. Therefore, the size of

this optimal trajectory planning problem is much bigger than the problem for a single train and

the computation time of the bigger problem will be much longer. However, since optimizing the

trajectories of two trains at the same time is a global optimization problem for these two trains,

the control performance will in general be better than that of the greedy approach.

6. Case study

In order to demonstrate the performance of the proposed greedy and simultaneous approaches

for the optimal trajectory planning for multiple trains under an FBS system and an MBS system,

a part of the Beijing Yizhuang subway line is used as a test case study.

6.1. Set-up

The performance of the MILP approach is compared with the widely used pseudospectral

method and for both approaches we consider both the greedy and the simultaneous variant. For

the sake of simplicity, we only consider two3 stations in the Yizhuang subway line: Songji-

azhuang station and Xiaocun station. The track length between these two stations is 1332 m and

3Note however that the MILP approaches and the pseudospectral methods can also be applied if more than 2 stations

are considered.
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Figure 3: The speed limits and the grade profile between Songjiazhuang station and Xiaocun station

the speed limits and grade profile are shown in Figure 3. The parameters of the train and the

line path are listed in Table 1. The rotating mass factor is often chosen as 1.06 in the litera-

ture (Hansen & Pachl, 2008) and therefore we also adopt this value. According to the assump-

tions made in Section 2.1, the unit kinetic energy should be larger than some positive threshold

Emin. In this test case, the minimum kinetic energy is chosen as 0.1 J. The maximum traction

force of the train is a nonlinear function of the train’s velocity and the maximum value of this

function is 315 kN. Moreover, the maximum acceleration and maximum deceleration used for

trajectory planning along the line is assumed to be 0.8 m/s2 in order to make sure that the planned

trajectory can be followed by the train controlled by the lower level controller. Since the train

mass here is 2.78·105 kg, the maximum traction force and maximum braking force are 222.4 kN

and -222.4 kN, respectively. The objective function of the optimal train control problem consid-

ered in this paper is the energy consumption of the train operation without regenerative braking

(cf. (10)).

In this case study, two trains are scheduled to run from Songjiazhuang station with a head-

way of 75 s to Xiaocun station. We consider two cases: the FBS system and the MBS system.

Moreover, we assume that the leading train has a malfunction during the whole simulation and as

a consequence its maximum speed is reduced to 40 km/h, i.e. 11.1 m/s. In addition, the leading

train and the following train will arrive to different platforms in Xiaocun station and the follow-

ing train will overtake the leading train at Xiaocun station. The parameters for the calculation

of the minimum headway are given in Table 2. The length of the train is 90 m and the reaction

time of the driver is 1 s. For the FBS system, we assume that there exist four fixed block sections

between Songjiazhuang station and Xiaocun station and all fixed block sections are of equal

length, i.e. 333 m. The minimum headway of the FBS system can be calculated according to

(13), which is equal to 98.4 s. Based on the parameters of Table 2, the run-in/run-out time tin−out

in (18) is equal to 44.6 s and the minimum headway of the MBS system equals 69.6 s. Note that

the headway 75 s is smaller than the minimum headway of the FBS system and is larger than the

minimum headway of the MBS system.

In the MILP approaches, the lengths ∆sk of the intervals [sk,sk+1] depend on the speed limits,

gradient profile, fixed block length, and so on. If the number of the space intervals N is large,

then the accuracy will be better but the computation time of the MILP approaches will be longer.
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For this case study, the number of space intervals N is chosen as 20, 40, and 60, respectively.

Moreover, the space intervals are taken to have equal length being 66.6 m, 33.3 m, and 22.2 m

respectively for the different three values of N. In addition, the nonlinear terms in the trajectory

planning problem, such as the nonlinear terms in the differential equations of the train model,

are approximated by PWA functions (see Wang et al. (2013) for more details). If we take PWA

approximations of the nonlinear terms with more subfunctions, the approximation accuracy will

be better. Here, the PWA functions with 2 subfunctions and 3 subfunctions are compared. We

use the CPLEX solver via the Tomlab4 interface to Matlab for solving the MILP problems.

The pseudospectral method is a state-of-the-art method for solving optimal control prob-

lems (Elnagar et al., 1995; Gong et al., 2008). In the pseudospectral method, the state and control

functions are approximated using orthogonal polynomials based on interpolation at orthogonal

collocation points, such as the Gauss points. The differential equations of the optimal control

problem can then be approximated by algebraic equations. The detailed information about the

pseudospectral method is shown in Appendix B. The approximation error of the pseudospectral

method can be reduced by taking more collocation points. The numbers of Gauss collocation

points are taken as 20, 40, 80, and 120, respectively. There are several packages that implement

the pseudospectral method (see Appendix B for detailed information). One of them is PROPT,

which supports the description of the differential algebraic equations and can call many solvers,

such as MINOS and SNOPT, to solve the resulting nonlinear programming problem. We in our

case study use PROPT solver through the Tomlab interface to Matlab and SNOPT is used to

solve the resulting nonlinear programming problem.

6.2. Results for the FBS system

Table 3 shows the performance of the MILP approaches and the pseudospectral methods

for the trajectory planning of two trains in the FBS system. The performance mentioned here,

such as the energy consumption and the end time violation, is calculated by applying the obtained

optimal control inputs into the nonlinear train model (1). The total energy consumption is the sum

of the energy consumption of the leading train and the following train. The end time violation is

the sum of the absolute values of the differences between the real running times and the planned

running times of the leading train and the following train. The energy consumption for each train

is influenced by the sign of the difference between the real running time and the planned running

time. If the real running time is larger than the planned running time, e.g. 105 s for the following

train, then the energy consumption usually becomes less since a train can run with a smaller

average speed. The CPU time is the sum of the time used to solve the optimal control problem

4Tomlab website: http://tomopt.com.
5For the greedy and simultaneous MILP approaches, the n in the notation n/m is the number of subfunctions used

in the PWA approximations of the nonlinear terms in the differential equations of the nonlinear train model and m is

the number of the discrete space intervals. For the greedy and simultaneous pseudospectral methods, the n indicates the

number of collocation points used.
6For all four approaches, the number n1 in the notation n1/n2/n3 is the number of real-valued variables, n2 is the

number of integer-valued variables, and n3 is the number of constraints. Note that for the greedy and simultaneous

MILP approach, all the constraints are linear. Furthermore, in the greedy MILP and greedy pseudospectral methods, two

subproblems are solved. One is for the trajectory planning problem of the leading train, the size of which is shown as L:

n1/n2/n3. The other is for the trajectory planning problem for the following train considering the constraints caused by

the leading train, the size of which is shown as F: n1/n2/n3. For the simultaneous MILP and simultaneous pseudospectral

approaches, the trajectories of the leading train and the following train are obtained by solving a combined optimization

problem.
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Table 3: Performance comparison of the greedy and simultaneous approach using the MILP and pseudospectral method

for the FBS system

Total energy Total end Total

Approach Method Variant 5 Problem size 6 consumption time vio- CPU

[MJ] lation [s] time [s]

Greedy

MILP

2/20
L: 99/40/462

114.48 3.17 1.34
F: 199/140/1116

2/40
L: 199/80/922

113.77 1.95 14.22
F: 399/280/2326

2/60
L: 299/120/1382

110.60 1.48 24.26
F: 599/420/3486

3/20
L: 179/120/962

114.79 2.82 6.87
F: 279/220/1686

3/40
L: 359/240/1542

112.58 2.21 96.56
F: 559/440/3366

3/60
L: 539/360/2702

110.03 1.41 229.72
F: 839/660/5046

20
L: 60/0/1107

112.59 2.52 231.83
F: 60/0/1307

Pseudo- 40
L: 120/0/1207

110.04 1.43 1381.71
F: 120/0/1607

spectral 80
L: 240/0/1407

109.48 0.76 1935.09
F: 240/0/2207

120
L: 360/0/1607

109.17 0.45 3588.10
F: 360/0/2807

MILP

2/20 358/180/1837 109.65 4.07 2.76

2/40 718/360/3697 108.06 2.91 78.40

2/60 1078/540/5557 106.32 1.65 204.38

3/20 518/340/2877 108.44 3.19 24.13

Simul- 3/40 1038/680/5777 106.58 1.73 184.76

taneous 3/60 1558/1020/8677 106.19 1.08 349.31

20 120/0/2414 109.53 3.58 445.52

Pseudo- 40 240/0/2814 106.44 1.68 1521.30

spectral 80 480/0/3614 105.92 0.78 3005.71

120 720/0/4414 105.68 0.54 4875.23
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Figure 4: Trajectory planning for two trains under the

FBS system with headway 75 s using the greedy MILP and

pseudospectral approach
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Figure 5: Trajectory planning for two trains under the FBS

system with headway 75 s using the simultaneous MILP

and pseudospectral approaches

for the leading train and the optimal control problem for the following train in greedy approach.

In the simultaneous approach, the total CPU time is equal to the time spent by solving the optimal

control problem since the optimal control inputs for the leading train and the following train are

obtained simultaneously.

Furthermore, Figure 4 and Figure 5 show the optimal control inputs and the speed-position

trajectories obtained by the MILP approaches and the pseudospectral methods for the FBS sys-

tem, where the number of space intervals for the MILP approaches and the number of the col-

location points for the pseudospectral methods are taken as 40 and the nonlinear terms in the

nonlinear train model are approximated using PWA functions with 3 affine subfunctions for the

MILP approach. The speed-position trajectories of the leading train and the following train were

produced by applying the optimal control inputs obtained by solving the optimal control prob-

lems to the nonlinear train model. It is observed from Figure 4 and Figure 5 that the operation of

the following train is affected by the leading train in the FBS system, where the signal at position

666 m shows a yellow aspect to the following train. Because the headway between the leading

train and the following train is taken as 75 s, which is less than the minimum headway of the FBS

system, i.e. 98.4 s. Thus, the following train must slow down to satisfy the speed limit caused by

the yellow signal aspect, which is 40 km/h, i.e. 11.1 m/s.

In Figure 4, the corresponding energy consumption, the end time violation, and the computa-

tion time of the greedy MILP approach are 112.58 MJ, 2.21 s, and 96.56 s, respectively. For the

greedy pseudospectral method, the energy consumption, the end time violation, and the calcu-

lation time of both trains are 110.04 MJ, 1.43 s, and 1381.71 s, respectively. It can be seen that

the energy consumption and the end time violation of the greedy MILP approach are a bit larger

than those of the greed pseudospectral method. However, the computation time of the greedy

pseudospectral method is more than one order of magnitude longer than that of the greedy MILP

approach.

The energy consumption, end time violation, and calculation time are 106.58 MJ, 1.73 s,

184.76 s, respectively, using the simultaneous MILP approach as shown in Figure 5. For the

simultaneous pseudospectral method, they are 106.44 MJ, 1.68 s, 1521.30 s, respectively. When

compared with the greedy MILP approach, the energy consumption and the end time violation
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Figure 6: Trajectory planning for two trains under the

MBS system with headway 75 s using the greedy MILP

and pseudospectral approaches
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Figure 7: Trajectory planning for two trains under MBS

system with headway 75 s using the simultaneous MILP

and pseudospectral approaches

of the simultaneous MILP approach become smaller. Because the trajectories of the leading train

and the following train are optimized simultaneously, which should be with better control perfor-

mance theoretically since the leading train’s trajectory can also be optimized with respect to the

following train. However, the computation time of the simultaneous MILP approach becomes

longer than the greedy MILP approach because in the simultaneous MILP approach, the size of

the optimization problem is almost doubled. When comparing the simultaneous pseudospectral

method with the greedy pseudospectral method, the similar observations as the MILP approach

can be obtained.

As can be observed in Table 3, the energy consumption and the end time violation of the

greedy MILP approach are generally larger than that of the greedy pseudospectral method with

respect to the same number of discrete intervals and collocation points. However, the computa-

tion time of the greedy pseudospectral method is one to two orders of magnitude higher than that

of the greedy MILP approach. In addition, the energy consumption and the end time violation

become less if we take more discrete space intervals for the greedy MILP approach and more col-

location points for the greedy pseudospectral method. The results obtained for the greedy MILP

approach and the greedy pseudospectral method also hold for the simultaneous MILP approach

and the simultaneous pseudospectral method. Moreover, it can be observed that the energy con-

sumption of the simultaneous MILP approach is less than that of the greedy MILP approach,

while the computation times of the simultaneous MILP approach are higher than those of the

greedy MILP approach. This also holds for the greedy and simultaneous pseudospectral method.

6.3. Results for the MBS system

The performance of the greedy and simultaneous approaches is shown in Table 4 for the MBS

system. In particular, Figure 6 and Figure 7 show the speed-position trajectories and the optimal

control inputs for the MBS system with the same set-up as the case illustrated in Figure 4 and

Figure 5. Similarly, the speed-position trajectories, the end time violation, etc. are obtained by

applying the optimal control inputs to the nonlinear train model (1). As we can see from Figure

6 and Figure 7, the operation of the following train is not affected by the leading train since the

scheduled headway 75 s is larger than the minimum headway of the MBS system 69.6 s.
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Table 4: Performance comparison of the greedy and simultaneous approach using the MILP and pseudospectral method

for the MBS system

Total energy Total end Total

Approach Method Variant Problem size consumption time vio- CPU

[MJ] lation [s] time [s]

Greedy

MILP

2/20
L: 99/40/462

69.16 3.45 1.41
F: 99/40/632

2/40
L: 199/80/922

68.34 2.47 12.03
F: 199/80/1292

2/60
L: 299/120/1382

67.56 1.08 24.19
F: 299/120/1952

3/20
L: 179/120/962

68.76 2.79 9.87
F: 179/120/1152

3/40
L: 359/240/1542

67.89 1.68 75.98
F: 359/240/2332

3/60
L: 539/360/2702

67.12 1.34 254.80
F: 539/360/3662

20
L: 60/0/1107

68.88 3.94 89.71
F: 60/0/1157

Pseudo- 40
L: 120/0/1207

67.42 1.66 729.24
F: 120/0/1257

spectral 80
L: 240/0/1407

67.03 0.75 1483.42
F: 240/0/1457

120
L: 360/0/1607

66.85 0.29 4542.20
F: 360/0/1657

MILP

2/20 198/80/1094 68.14 2.58 2.45

2/40 398/160/2214 67.52 1.53 56.17

2/60 598/240/3334 66.62 1.26 150.67

3/20 358/240/2134 67.73 1.71 13.49

Simul- 3/40 718/480/4294 67.03 1.04 121.29

taneous 3/60 1078/720/6454 66.87 0.85 420.37

20 120/0/2264 68.62 3.61 161.15

Pseudo- 40 240/0/2464 67.50 1.37 1051.06

spectral 80 480/0/2864 67.07 0.66 2984.23

120 720/0/3264 66.26 0.31 6954.37
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With respect to Figure 6, the energy consumption, the end time violation, and the computation

time for the greedy MILP approach are 67.89 MJ, 1.68 s, and 75.98 s. In addition, the energy

consumption, the end time violation, and the computation time for the greedy pseudospectral

method are 67.42 MJ, 1.66 s, and 729.24 s. The energy consumption and the end time violation

of the greedy MILP approach are slightly larger than those of the greedy pseudospectral method.

However, the computation time of the greedy pseudospectral method is almost one order of mag-

nitude larger than that of the greedy MILP approach. This also holds for the results obtained by

the simultaneous MILP and pseudospectral approach. Generally, the total energy consumption

and the total end time violation decrease with the increase of the number of the discrete space

intervals in MILP approach and the number of collocation points in pseudospectral method. Nev-

ertheless, the total CPU time increases quickly with respect to the number of the discrete space

intervals and collocation points. For the greedy and/or simultaneous MILP approach, if we take

the PWA approximations with more subfunctions, the end time violation also declines. Further-

more, when compared with the greedy MILP (or pseudospectral) approach, the simultaneous

MILP (or pseudospectral) approach has better control performance in principle but it is with a

much higher computation burden since the size of the optimization problem is almost doubled.

6.4. Discussion

The above simulation results show that when compared with the greedy pseudospectral

method, the energy consumption and the end time violation of the greedy MILP approach are

inconsiderably larger, but the computation time is one to two orders of magnitude shorter. Sim-

ilarly, the energy consumption and the end time violation of the simultaneous MILP approach

are lightly larger than these of the simultaneous pseudospectral method. However, the compu-

tation time of the simultaneous MILP approach is much shorter than that of the simultaneous

pseudospectral method. Moreover, the energy consumption of the greedy MILP approach is

larger than that of the simultaneous MILP approach, but the calculation time of the simultane-

ous MILP approach is longer in general. Furthermore, the same trends also hold for the energy

consumption and the calculation time of the greedy pseudospectral method and the simultaneous

pseudospectral method.

7. Conclusions and Future Work

In this paper, we have proposed two approaches, namely the greedy approach and simultane-

ous approach, to solve the optimal trajectory planning problem for multiple trains. In the greedy

approach, the optimal trajectory planning problem of the leading train is solved first and then

based on the optimal control inputs of the leading train, the trajectory planning problem for the

following train is solved. For the simultaneous approach, the trajectories of the leading train and

the following train are optimized at the same time. The constraints caused by the leading train

in a fixed block signaling system and a moving block signaling system are included in the opti-

mal trajectory planning problem for multiple trains. The nonlinear terms in the train model and

constraints are approximated by piecewise affine functions. In this way, the optimal trajectory

planning problem for multiple trains can then be recast as a mixed integer linear programming

(MILP) problem. Furthermore, the performance of the greedy and the simultaneous MILP ap-

proach is compared with the greedy and the simultaneous pseudospectral method in a case study.

The simulation results show that the MILP approaches have a similar control performance as the

pseudospectral methods but they require a much less computation time.
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A topic for future work will be an extensive comparison and assessment between the MILP

approach, the pseudospectral method (also using other nonlinear programming subsolvers, e.g.,

MINOS and KNITRO), a dynamic programming algorithm (Hellström et al., 2010), and other

approaches and frameworks (such as AMPL, APMonitor, and ASCEND) described in the litera-

ture for various case studies and a wide range of scenarios.

Appendix A. The relationship among position, speed, and acceleration

In this appendix the relationship among position, speed, and acceleration of a train based on

a constant acceleration model is deduced explicitly. It is assumed that the initial position, speed,

and time are s0, v0, and t0, respectively. Similarly, se, ve, and te are the end position, speed, and

time, respectively.

Assuming a constant acceleration a during the time interval [t0, te], the relationship between

the initial speed v0 and the end speed ve is

ve = v0 +a(te − t0), (A.1)

In addition, we have

se = s0 + v0(te − t0)+
1

2
a(te − t0)

2, (A.2)

By substituting (A.1) into (A.2), we obtain

se = s0 + v0
ve − v0

a
+

1

2
a
(ve − v0)

2

a2
, (A.3)

which yields

2a(se − s0) = v2
e − v2

0. (A.4)

So if v0 is equal to 0, then we have

te − t0 =

√

2(se − s0)

a
. (A.5)

Appendix B. A general formulation of the pseudospectral method

The optimal train trajectory planning problem can be formulated as a multiple phase optimal

control problem and then can be solved by the pseudospectral method. Below we describe a

general optimal control problem with multiple phases and the solution procedure of the general

optimal control problem using the pseudospectral method. This explanation is based on Ross

& Fahroo (2004); Gong et al. (2008); Canuto et al. (1988); Elnagar et al. (1995); and Becerra

(2010).

Appendix B.1. The multiple-phase optimal control problem

The general optimal control problem with Np phases is formulated as follows (Ross & Fahroo,

2004). The objective function is

J =
Np

∑
i=1

(

ϕ(i)
(

x(i)(t
(i)
f ), p(i), t

(i)
f

)

+
∫ t

(i)
f

t
(i)
0

L(i)
(

x(i)(t),u(i)(t), p(i), t
)

dt

)

, (B.1)
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where [t
(i)
0 , t

(i)
f ] is the time interval for the ith phase, u(i)(·) and x(i)(·) are the control trajectories

and state trajectories, p(i) are the static parameters, for i = 1,2, . . . ,Np. The objective function

(B.1) is subject to the differential constraints

ẋ(i)(t) = f (i)
(

x(i)(t),u(i)(t), p(i), t
)

, t ∈ [t
(i)
0 , t

(i)
f ], (B.2)

the path constraints

h
(i)
L ≤ h(i)

(

x(i)(t),u(i)(t), p(i), t
)

≤ h
(i)
U , t ∈ [t

(i)
0 , t

(i)
f ], (B.3)

the event constraints

e
(i)
L ≤ e(i)

(

x(i)(t
(i)
0 ),u(i)(t

(i)
0 ),x(i)(t

(i)
f ),u(i)(t

(i)
f ), p(i), t

(i)
0 , t

(i)
f

)

≤ e
(i)
U , t ∈ [t

(i)
0 , t

(i)
f ], (B.4)

the linkage constraints

ΨL ≤ Ψ
(

x(1)(t
(1)
0 ),u(1)(t

(1)
0 ),x(1)(t

(1)
f ),u(1)(t

(1)
f ), p(1), t

(1)
0 , t

(1)
f ,

x(2)(t
(2)
0 ),u(2)(t

(2)
0 ),x(2)(t

(2)
f ),u(2)(t

(2)
f ), p(2), t

(2)
0 , t

(2)
f ,

· · ·

x(Np)(t
(Np)
0 ),u(Np)(t

(Np)
0 ),x(Np)(t

(Np)
f ),u(Np)(t

(Np)
f ), p(Np), t

(Np)
0 , t

(Np)
f

)

≤ ΨU,

(B.5)

the bound constraints

u
(i)
L ≤ u(i)(t)≤ u

(i)
U , x

(i)
L ≤ x(i)(t)≤ x

(i)
U , t ∈ [t

(i)
0 , t

(i)
f ],

p
(i)
L ≤ p(i) ≤ p

(i)
U , t

(i)
0 ≤ t

(i)
0 ≤ t̄

(i)
0 , t

(i)
f ≤ t

(i)
f ≤ t̄

(i)
f ,

(B.6)

and the following constraints

t
(i)
f − t

(i)
0 ≥ 0. (B.7)

Appendix B.2. The solution process of the optimal control problem

Let i ∈ {1,2, . . . ,Np} be a particular phase of the optimal control problem (B.1)-(B.7) and

let (·)(i) denote information for the ith phase. The ith phase of the optimal control problem can

be transformed from the interval t ∈ [t
(i)
0 , t

(i)
f ] to the interval τ ∈ [−1,1] for i = 1,2, . . . ,Np by

introducing the transformation (Ross & Fahroo, 2004):

τ =
2

t
(i)
f − t

(i)
0

t − t
(i)
f + t

(i)
0

t
(i)
f − t

(i)
0

. (B.8)

Now we approximate the state and control functions using Legendre pseudospectral approx-

imation. The state x
(i)
k (τ), τ ∈ [−1,1] is approximated by the Nith order Lagrange polynomial

x
Ni,(i)
k (τ) based on interpolation at the Legendre-Gauss-Lobatto (LGL) points (Canuto et al.,

1988)

x
(i)
k (τ)≈ x

Ni,(i)
k (τ) =

Ni

∑
n=0

x̄
Ni,(i)
k (τn)φ

(i)
n (τ), (B.9)
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where x̄
Ni,(i)
k (τn) is a discrete approximation of the LGL point τn and the Lagrange basis polyno-

mials φ
(i)
n (τ) for n = 0,1, · · · ,Ni are defined as

φ
(i)
n (τ) =

Ni

∏
m=0,m,n

τ − τ
(i)
m

τ
(i)
n − τ

(i)
m

, (B.10)

and τ
(i)
n for n = 0,1, . . . ,Ni are the LGL points, which are defined as τ

(i)
0 = −1, τ

(i)
Ni

= 1, and τn

being the roots of the derivative of the Legendre polynomial

LNi
(τ) =

1

2NiNi!

dNi

dτNi
(τ2 −1)Ni ,

in the interval [−1,1] for n= 1,2, . . . ,Ni−1. The control u(i)(τ) can be approximated in a similar

way. The derivative of x
Ni,(i)
k (τ) at the LGL points τn can be obtained by differentiating (B.9),

which can be expressed as a matrix multiplication as follows:

ẋ
(i)
k (τn)≈ ẋ

Ni,(i)
k (τn) =

Ni

∑
j=0

D̃
(i)
n j x̄

Ni,(i)
k (τ j), (B.11)

where D̃(i) is the (Ni +1)× (Ni +1) differential approximation matrix (Gong et al., 2007) given

by

D̃
(i)
n j =























φ
(i)
Ni

(τn)

φ
(i)
Ni

(τ j)

1
τn−τ j

, if n , j,

−Ni(Ni +1)/4, if n = j = 0,
Ni(Ni +1)/4, if n = j = Ni,

0, otherwise.

(B.12)

The differential constraints can be recast into algebraic constraints via the differential approxima-

tion matrix. In addition, the path constraints (B.3) can be discretized at the LGL points. Note that

the dynamic constraints and path constraints are only collocated at the LGL points, which means

both the dynamic and path constraints might be violated in between collocation points (Rutquist

& Edvall, 2008). The objective function (B.1) can be approximated using LGL points as

J =
Np

∑
i=1

(

ϕ(i)
(

x̄Ni,(i)(−1), x̄Ni,(i)(1), p(i), t
(i)
0 , t

(i)
f

)

+
t
(i)
f − t

(i)
0

2

Ni

∑
n=0

L(i)
(

x̄Ni,(i)(τn), ū
Ni,(i)(τn), p(i),τn

)

ωn

)

,

(B.13)

where ωn are the weights given by

ωn =
2

N(N +1)

1

(LNi
(τn))2

, for n = 0,1, . . . ,Ni. (B.14)

If we include all the decision variables in vector y, the optimal control problem is then ready

to be expressed as a nonlinear programming problem:

min
y

J(y) (B.15)
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subject to

GL ≤ G(y)≤ GU

yL ≤ y ≤ yU.
(B.16)

By defining G(y), GL, GU, yL, and yU properly, we can write all constraints in the form (B.16).

There exist several commercial and free packages that implement the pseudospectral method:

SOCS (Betts, 2002) and DIRCOL (von Stryk, 1999) are Fortran-based proprietary packages,

while PROPT (Rutquist & Edvall, 2008) and DIDO (Ross, 2004) are examples of commercial

softwares with Matlab interface. A Matlab-based open source tool that uses the Gauss pseu-

dospectral method is GPOPS (Rao et al., 2010). PSOPT is an open source optimal control pack-

age written in C++, including Legendre and Chebyshev pseudospectral discretizations (Becerra,

2010).
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