
Delft University of Technology

Delft Center for Systems and Control

Technical report 14-007

Computational techniques for reachability

analysis of max-plus-linear systems∗

D. Adzkiya, B. De Schutter, and A. Abate

If you want to cite this report, please use the following reference instead:

D. Adzkiya, B. De Schutter, and A. Abate, “Computational techniques for reacha-

bility analysis of max-plus-linear systems,” Automatica, vol. 53, pp. 293–302, Mar.

2015.

Delft Center for Systems and Control

Delft University of Technology

Mekelweg 2, 2628 CD Delft

The Netherlands

phone: +31-15-278.51.19 (secretary)

fax: +31-15-278.66.79

URL: http://www.dcsc.tudelft.nl

∗This report can also be downloaded via http://pub.deschutter.info/abs/14_007.html

http://www.dcsc.tudelft.nl
http://pub.deschutter.info/abs/14_007.html


ComputationalTechniques forReachabilityAnalysis

ofMax-Plus-Linear Systems ⋆

Dieky Adzkiya a, Bart De Schutter a, Alessandro Abate b,a

aDelft Center for Systems and Control, Delft University of Technology, Mekelweg 2, 2628 CD, Delft, The Netherlands

bDepartment of Computer Science, University of Oxford, Wolfson Building, Parks Road, Oxford, OX1 3QD, United Kingdom

Abstract

This work discusses a computational approach to reachability analysis of Max-Plus-Linear (MPL) systems, a class of discrete-
event systems widely used in synchronization and scheduling applications. Given a set of initial states, we characterize and
compute its “reach tube,” namely the collection of set of reachable states (regarded step-wise as “reach sets”). By an alternative
characterization of the MPL dynamics, we show that the exact computation of the reach sets can be performed quickly
and compactly by manipulations of difference-bound matrices, and further derive worst-case bounds on the complexity of
these operations. The approach is also extended to backward reachability analysis. The concepts and results are elucidated
by a running example, and we further illustrate the performance of the approach by a numerical benchmark: the technique
comfortably handles twenty-dimensional MPL systems (i.e. with twenty continuous state variables), and as such it outperforms
the state-of-the-art alternative approaches in the literature.

Key words: Max-plus-linear systems; forward and backward reachability analysis; reach tube and reach set; piecewise affine
systems; difference-bound matrices.

1 Introduction

Reachability analysis is a fundamental problem in the
area of formal methods, systems theory, and perfor-
mance and dependability analysis. It is concerned with
assessing whether a certain state of a system is attain-
able from given initial states of the system. The problem
is particularly interesting and compelling over mod-
els with continuous components – either in time or in
(state) space. Over the first class of models, reachability
has been widely investigated over discrete-space sys-
tems, such as timed automata [10,14], Petri nets [36,44],
or hybrid automata [34]. On the other hand, much re-
search has been directed to computationally push the

⋆ This work is supported by the European Commission
STREP project MoVeS 257005, by the European Commis-
sion Marie Curie grant MANTRAS 249295, by the European
Commission IAPP project AMBI 324432, by the European
Commission NoE Hycon2 257462, and by the NWO VENI
grant 016.103.020. This article represents an integrated and
extended version of [6,7].

Email addresses: d.adzkiya@tudelft.nl (Dieky
Adzkiya), b.deschutter@tudelft.nl (Bart De Schutter),
a.abate@tudelft.nl,aabate@cs.ox.ac.uk (Alessandro
Abate).

envelope for reachability analysis of continuous-space
models. Among the many approaches for deterministic
dynamical systems, we report here the use of face lift-
ing [22], the computation of flow-pipes via polyhedral
approximations [19], later implemented in CheckMate
[18], the formulation as solution of Hamilton-Jacobi
equations [43] (related to the study of forward and back-
ward reachability [42]), the use of ellipsoidal techniques
[38], later implemented in [37], and the use of differ-
ential inclusions [11]. Techniques that have displayed
scalability features (albeit at the expense of precision
due to the use of over-approximations) are the use of
low-dimensional polytopes [30] and the computation of
reachability using support functions [40].

Max-Plus-Linear (MPL) systems are discrete-event sys-
tems [12,35] with continuous variables that express the
timing of the underlying sequential events. MPL systems
are used to describe the timing synchronization between
interleaved processes, and as such are widely employed in
the analysis and scheduling of infrastructure networks,
such as communication and railway systems [33] or pro-
duction and manufacturing lines [46]. They are related
to a subclass of timed Petri nets, namely timed-event
graphs [12]. MPL systems are classically analyzed over
properties such as transient and periodic regimes [12],

Preprint submitted to Automatica



or ultimate dynamical behavior [23]. They can be simu-
lated (though not verified) via the max-plus toolbox for
Scilab [45].

Reachability analysis of MPL systems from a single
initial condition has been investigated in [20,26,29] by
leveraging the computation of the reachability matrix,
which leads to a parallel with reachability for discrete-
time linear dynamical systems. It has been shown in [27,
Sec. 4.13] that the reachability problem for autonomous
MPL systems with a single initial condition is decidable
– this result does not hold for a general, uncountable set
of initial conditions. Furthermore, the existing literature
does not deal with backward reachability analysis.

Under the requirement that the set of initial conditions
is expressed as a max-plus polyhedron [28,48], forward
reachability analysis can be performed over themax-plus
algebra. Similarly for backward reachability analysis of
autonomous MPL systems, where in addition the system
matrix has to be max-plus invertible. A matrix is max-
plus invertible if and only if there is a single finite ele-
ment (not equal to−∞) in each row and in each column.
Despite the requirements, computationally the approach
based on max-plus polyhedra can be advantageous since
its time complexity is polynomial. To the authors’ best
knowledge, there are no approaches for solving the back-
ward reachability problem of nonautonomous MPL sys-
tems in the max-plus algebra. Let us also mention that
reachability analysis has been used to determine a static
max-plus linear feedback controller for a nonautonomous
MPL system such that the trajectories lie within a given
target tube [8, Sec. 4.3]. In each event step, the target
tube is defined as a max-plus polyhedron [8, Eqs. (8)
and (11)].

In this work, we generalize the results for reachability
analysis of MPL systems. We extend the results for for-
ward reachability by considering an arbitrary set of ini-
tial conditions. Additionally for backward reachability
analysis, we are able to handle nonautonomous MPL
systems and state matrices that are not max-plus in-
vertible. The approach is as follows. We first alterna-
tively characterize MPL dynamics by Piece-wise Affine
(PWA) systems, and show that they can be fully rep-
resented by Difference-Bound Matrices (DBM) [24, Sec.
4.1], which are quite simple to manipulate computation-
ally. We further claim that DBM are closed over PWA
dynamics, which leads to being able to map DBM-sets
through MPL systems. Then given a set of initial states,
we characterize and compute its “reach tube,” namely
the union of sets of reachable states (aggregated step-
wise as “reach sets”). The set of initial conditions is as-
sumed to be a union of finitely many DBM, which con-
tains the class of max-plus polyhedra (cf. Section 2.3)
and of max-plus cones as a special case. The approach
is also applied to backward reachability analysis. Due to
the computational emphasis of this work, we provide a
quantification of the worst-case complexity of the algo-

rithms and of the operations that we discuss through-
out the work. Interestingly, DBM and max-plus poly-
hedra have been used for reachability analysis of timed
automata [16,41] and implemented in UPPAAL [14] and
in opaal [21], respectively. Although related schedul-
ing problems can be solved via timed automata [1], this
does not imply that we can employ related techniques
for reachability analysis of MPL systems since the two
modeling frameworks are not comparable.

Computationally, the present contribution leverages a
related, recent work in [3,5], which has explored an ap-
proach to analysis of MPL systems that is based on
finite-state abstractions. In particular, the technique for
reachability computation on MPL systems discussed in
this work is implemented in the VeriSiMPL (“very sim-
ple”) software toolbox, which is freely available at [2].
To the best of our knowledge, there does not exist any
computational toolbox for general reachability analysis
of MPL systems, nor is it possible to leverage current
software for related timed-event graphs or timed Petri
nets. As further elaborated later, reachability computa-
tion for MPL systems can be alternatively tackled using
the Multi-Parametric Toolbox (MPT) [39]. In a numeri-
cal case study, we display the scalability of the tool ver-
sus model dimension, and benchmark its computation
of forward reachability sets against the alternative nu-
merical approach based on the MPT software [39].

This manuscript represents an extension of the results
in [6,7] to forward and backward reachability of non-
autonomousMPL systems. Further, this article provides
a more thorough connection and indeed an extension of
existing literature: we have proved that a given max-
plus polyhedron can be expressed as a union of finitely
many DBM (cf. Proposition 7). Moreover, we explicitly
show that, under some assumptions, the number of PWA
regions generated by A⊗N is higher than that generated
by A (cf. Proposition 12). This is an important result
that allows elucidating the computational complexity of
the discussed batch vs. one-shot procedures, which are
later on implemented in the computational benchmark.

The article is structured as follows. Section 2 introduces
models and preliminary notions. The procedure for for-
ward and backward reachability analysis is discussed
in Sections 3 and 4, respectively. Section 5 tests the
developed approach over a computational benchmark,
whereas a running case study is discussed throughout
the manuscript. Finally, Section 6 concludes the work.

2 Models and Preliminaries

This section introduces the models under study (MPL
systems), as well as the concepts of Piecewise-Affine
(PWA) systems and of Difference-Bound Matrices
(DBM), which will play a role in reachability computa-
tions.

2



2.1 Max-Plus-Linear Systems

Define Rε, ε and e respectively as R ∪ {ε}, −∞ and 0.
For α, β ∈ Rε, introduce the two operations α ⊕ β =
max{α, β} and α ⊗ β = α + β, where the element ε is
absorbing w.r.t. ⊗ [12, Definition 3.4]. Given β ∈ R, the
max-algebraic power of α ∈ R is denoted by α⊗β and
corresponds to α × β in the conventional algebra. The
rules for the order of evaluation of the max-algebraic
operators correspond to those of conventional algebra:
max-algebraic power has the highest priority, and max-
algebraic multiplication has a higher priority than max-
algebraic addition [12, Sec. 3.1].

The basic max-algebraic operations are extended to ma-
trices as follows. If A,B ∈ R

m×n
ε ;C ∈ R

m×p
ε ;D ∈ R

p×n
ε ;

and α ∈ Rε, then [α ⊗ A](i, j) = α ⊗ A(i, j);
[A ⊕ B](i, j) = A(i, j) ⊕ B(i, j); and [C ⊗ D](i, j) =
⊕p

k=1 C(i, k) ⊗D(k, j), for 1 ≤ i ≤ m, 1 ≤ j ≤ n. No-
tice the analogy between ⊕, ⊗ and +, × for matrix and
vector operations in the conventional algebra. Given
m ∈ N, the m-th max-algebraic power of A ∈ R

n×n
ε

is denoted by A⊗m and corresponds to A ⊗ · · · ⊗ A
(m times). Notice that A⊗0 is an n-dimensional max-
plus identity matrix, i.e. the diagonal and nondiago-
nal elements are e and ε, respectively. Given two sets
V,W ⊆ R

n
ε , the max-plus Minkowski sum V ⊕W is de-

fined as the set {v ⊕ w : v ∈ V,w ∈ W}. In this paper,
the following notation is adopted for reasons of conve-
nience. A vector with each component that is equal to
0 (resp., −∞) is also denoted by e (resp., ε). Further-
more, for practical reasons, the state space is taken to
be R

n, which also implies that the state matrix A has
to be row-finite (cf. Definition 1).

An autonomous MPL system [12, Rem. 2.75] is defined
as:

x(k) = A⊗ x(k − 1), (1)

where A ∈ R
n×n
ε , x(k−1) = [x1(k−1) . . . xn(k−1)]T ∈

R
n for k ∈ N. The independent variable k denotes an in-

creasing discrete-event counter, whereas the state vari-
able x defines the (continuous) timing of the discrete
events. Autonomous MPL systems are characterized by
deterministic dynamics, namely they are unaffected by
exogenous inputs in the form of control signals or of en-
vironmental non-determinism.

Definition 1 ([33, p. 20]) A matrix A ∈ R
n×n
ε is

called regular (or row-finite) if A contains at least
one element different from ε in each row. The matrix
A is called irreducible if the nondiagonal elements of
⊕n−1

k=1 A
⊗k are finite (not equal to ε).

If A is irreducible, there exists a unique max-plus
eigenvalue λ ∈ R [12, Th. 3.23] and a corresponding

eigenspace E(A) = {x ∈ R
n : A ⊗ x = λ ⊗ x} [12, Sec.

3.7.1].

Example Consider the following autonomous MPL sys-
tem from [33, Sec. 0.1], representing the scheduling of
train departures from two connected stations i ∈ {1, 2}
(xi(k) is the time of the k-th departure at station i):

x(k) =

[

2 5

3 3

]

⊗ x(k − 1), or equivalently,

[

x1(k)

x2(k)

]

=

[

max{2 + x1(k − 1), 5 + x2(k − 1)}

max{3 + x1(k − 1), 3 + x2(k − 1)}

]

.

(2)

Matrix A is a row-finite matrix and irreducible since
A(1, 2) 6= ε 6= A(2, 1).

Proposition 2 ([33, Th. 3.9]) Let A ∈ R
n×n
ε be an ir-

reducible matrix with max-plus eigenvalue λ ∈ R. There
exist k0, c ∈ N such that A⊗(k+c) = λ⊗c ⊗ A⊗k, for all
k ≥ k0. The smallest k0 and c verifying the property are
defined as the length of the transient part and cyclicity,
respectively.

Proposition 2 allows to establish the existence of a pe-
riodic behavior. Given an initial condition x(0) ∈ R

n,
there exists a finite k0(x(0)), such that x(k+ c) = λ⊗c⊗
x(k), for all k ≥ k0(x(0)). Notice that we can seek a spe-
cific length of the transient part k0(x(0)), in general less
conservative than the global k0 = k0(A), as in Proposi-
tion 2. Upper bounds for the length of the transient part
k0 and for its computation have been discussed in [31,
Th. 10,Th. 13] and more recently in [17].

Example In the numerical example (2), from Proposi-
tion 2 we obtain a max-plus eigenvalue λ = 4, cyclicity
c = 2, and a (global) length of the transient part k0 = 2.
The specific length of the transient part for x(0) = [0, 0]T

can be computed observing the trajectory

[

0

0

]

,

[

5

3

]

,

[

8

8

]

,

[

13

11

]

,

[

16

16

]

,

[

21

19

]

,

[

24

24

]

,

[

29

27

]

, . . .

Notice that the periodic behavior occurs immediately, i.e.
k0([0, 0]

T ) = 0, and shows a period equal to 2, namely
x(2) = 4⊗2 ⊗ x(0) = 8 + x(0). Furthermore notice that
x(k + 2) = 8⊗ x(k), for k ∈ N ∪ {0}.

For the backward reachability analysis we introduce the
quantity k∅(x), for any given x ∈ R

n \ E(A⊗c), as the
smallest k such that the system of max-plus linear equa-
tionsA⊗k⊗x′ = x does not have a solution. (Practically,
there is no point x′ ∈ R

n that can reach x in k∅ steps
or more.) The solution can be computed by using the
method in [12, Sec. 3.2.3.2]. Otherwise if x ∈ E(A⊗c),

3



k∅ is set to 0. It is easy to see that the quantity can be
bounded as k∅(x) ≤ k0(A)− k0(x) + 1, for each x ∈ R

n.
This (arguably counter-intuitive) definition will be use-
ful for the ensuing work.

A nonautonomous MPL system [12, Corollary 2.82] is
defined by embedding an external input u in the dynam-
ics of (1) as:

x(k) = A⊗ x(k − 1)⊕B ⊗ u(k), (3)

where A ∈ R
n×n
ε ,B ∈ R

n×m
ε , x(k−1) ∈ R

n, u(k) ∈ R
m,

for k ∈ N. In this work we regard the external input
as an exogenous schedule (a control signal) affecting the
dynamics. As suggested in [12, Sec. 2.5.4], the nonau-
tonomous MPL system (3) can be transformed into an
augmented MPL system with the following dynamics:

x(k) = Ā⊗ x̄(k − 1), (4)

where Ā = [A,B], x̄(k − 1) = [x(k − 1)T , u(k)T ]T .

2.2 Piecewise-Affine Systems

This section discusses Piecewise-Affine (PWA) systems
[47] generated by an autonomous and by a nonau-
tonomous MPL system. In the ensuing work, PWA
systems will play an important role in the forward and
backward reachability analysis. PWA systems are char-
acterized by a cover of the state space and by affine
(linear, plus a constant) dynamics within each set of the
cover.

Every MPL system characterized by a generic row-finite
matrix A ∈ R

n×p
ε can be expressed as a PWA system in

the event domain [32, Sec. 3]. The affine dynamics, along
with the corresponding region on the state space, can
be constructed from the coefficients g = (g1, . . . , gn) ∈
{1, . . . , p}n. For each i, the coefficient gi characterizes
the maximal term in the i-th state equation xi(k) =
max{A(i, 1)+x1, . . . , A(i, p)+xp}, that is A(i, j)+xj ≤
A(i, gi) + xgi , ∀j ∈ {1, . . . , p}. It follows that the set of
states corresponding to g, denoted by Rg, is

Rg =
⋂

1≤i≤n
1≤j≤p

{x ∈ R
n : A(i, j) + xj ≤ A(i, gi) + xgi}. (5)

The affine dynamics that are active in Rg follow directly
from the definition of g (see previous paragraph) as

xi(k) = xgi(k − 1) +A(i, gi), 1 ≤ i ≤ n. (6)

Given a row-finite state matrix A, Algorithm 1 describes
a general procedure to construct a PWA system corre-
sponding to an autonomousMPL system. Similarly, if we

run the algorithm with the augmented matrix Ā, we ob-
tain a PWA system related to the nonautonomous MPL
system. Correspondingly, the parameter p above equals
n or n+m. On the side, notice that the affine dynamics
associated with a dynamical system generated by Algo-
rithm 1 are a special case of the general PWA dynamics
as defined in [47, Sec. 1]. The complexity of Algorithm
1 will be formally assessed in the next section.

Algorithm 1 Generating a PWA system from a generic
row-finite max-plus matrix. The assignment zeros(·, ·)
generates a matrix of a specified dimension, with compo-
nents equal to e.

input: A ∈ R
n×p
ε , a row-finite max-plus matrix

output: R,A,B, a PWA system over Rp

1: R← ∅, A← ∅, B← ∅ ⊲ notation← is assignment
2: for all (g1, . . . , gn) ∈ {1, . . . , p}

n do
3: Rg ← R

p, Ag ← zeros(n, p), Bg ← zeros(n, 1)
4: for all 1 ≤ i ≤ n do ⊲ define regions (5)
5: for all 1 ≤ j ≤ p do
6: Rg ← Rg ∩ {x ∈ R

p : A(i, gi) + xgi ≥
A(i, j) + xj}

7: end for
8: Ag(i, gi)← 1, Bg(i)← A(i, gi) ⊲ eqn (6)
9: end for

10: if Rg is not empty then
11: R← R∪{Rg}, A← A∪{Ag}, B← B∪{Bg}
12: end if
13: end for

Algorithm 1 works as follows. First, the output variables
are initialized to empty sets (step 1). For each of the
coefficients in g (step 2), the region Rg (step 6) and the
corresponding affine dynamics (step 8) are computed.
Notice that steps 6 and 8 refer to equations (5) and (6),
respectively. If the obtained region is not empty (step
10), the procedure saves the region and the associated
affine dynamics to the output variables (step 11).

Example Considering the autonomous MPL exam-
ple (2), the nonempty regions of the PWA system are:
R(1,1) = {x ∈ R

2 : x1 − x2 ≥ 3}, R(2,1) = {x ∈ R
2 :

e ≤ x1 − x2 ≤ 3}, R(2,2) = {x ∈ R
2 : x1 − x2 ≤ e}.

The affine dynamics corresponding to a region Rg are
characterized by g, e.g. those for region R(2,1) are given
by x1(k) = x2(k − 1) + 5, x2(k) = x1(k − 1) + 3.

2.3 Difference-Bound Matrices

This section introduces the definition of a DBM [24, Sec.
4.1] and of its canonical-form representation. DBM pro-
vide a simple and computationally advantageous repre-
sentation of the MPL dynamics, and will be further used
in the next section to represent the reach sets, the back-
ward reach sets and (for nonautonomous models) the set
of inputs at each event step.

4



Definition 3 (Difference-Bound Matrix) A DBM
in R

n is the intersection of finitely many sets defined by
xi−xj ⊲⊳i,j αi,j, where ⊲⊳i,j∈ {<,≤}, αi,j ∈ R∪{+∞},
for 0 ≤ i 6= j ≤ n and the value of x0 always equal to 0.

The special variable x0 is used to represent bounds over
a single variable: xi ≤ α can be written as xi − x0 ≤ α.
In the following, a “stripe” is defined as a DBM that
does not contain x0. Definition 3 can be likewise given
over the input and the corresponding augmented space
for nonautonomous MPL systems.

Each DBM admits an equivalent and unique representa-
tion in canonical form, which is a DBM with the tightest
possible bounds [24, Sec. 4.1]. The Floyd-Warshall algo-
rithm [25] can be used to obtain the canonical-form rep-
resentation of a DBM. One advantage of the canonical-
form representation is that it is easy to compute orthog-
onal projections w.r.t. a subset of its variables, which is
simply performed by deleting rows and columns corre-
sponding to the complementary variables [24, Sec. 4.1].

Another property of a DBM that will be used later is
the check of its emptiness: this can be achieved by the
Bellman-Ford algorithm [15, Sec. 5]. The complexity of
checking the emptiness of a DBM in R

n is cubic, i.e.
O(n3); however when a DBM is in canonical form, this
complexity reduces to linear w.r.t. its dimension, i.e.
O(n). Further, the intersection of two DBM is a DBM
and can be simply obtained by intersecting their sets (cf.
Definition 3) and checking for emptiness.

Let us now draw a connection between DBM and PWA
dynamics, and particularly with those in (5)-(6). Each
affine dynamics (6) can generate a DBM in R

p × R
n,

which comprises points (x(k− 1), x(k)) ∈ R
p ×R

n such
that x(k) is the image of x(k − 1). More precisely, the
DBM is obtained by rewriting the expression of the affine
dynamics as

⋂n

i=1{(x(k − 1), x(k)) ∈ R
p × R

n : xi(k)−
xgi(k−1) ≤ A(i, gi)}∩

⋂n

i=1{(x(k−1), x(k)) ∈ R
p×Rn :

xi(k)− xgi(k − 1) ≥ A(i, gi)}. Furthermore each region
(5) is a DBM in R

p.

Looking back at Algorithm 1, its worst-case complex-
ity can be precisely elaborated as follows. Notice that
the maximum number of iterations in steps 2, 4 and 5
is pn, n and p, respectively. Furthermore, the complex-
ity in steps 6 and 10 is constant and amounts to O(p3),
respectively. Thus, the worst-case complexity of Algo-
rithm 1 is O(pn(np+ p3)). The bottleneck resides in the
worst-case cardinality of the collection of regions in the
PWA expression of the MPL dynamics (pn), which can
often be tightened – for example, in the autonomous
case if the matrix A has n′ ≤ n non-ε elements in each
row, then the complexity is (n′)n. Furthermore, in prac-
tice this worst-case is not incurred since many regions
can happen to be empty (see step 10 in Algorithm 1).
Computationally, we leverage a backtracking technique

to improve the performance (cf. Table 1). The follow-
ing result plays an important role in the computation of
reachability for MPL systems.

Proposition 4 ([4, Th. 1]) The image and the inverse
image of a DBM w.r.t. affine dynamics (in particular
the PWA expressions in (5)-(6) generated by an MPL
system) is a DBM.

Given a row-finite matrix A ∈ R
n×p
ε , the complexity of

computing the image and the inverse image of a DBM
can be quantified as O((n + p)3). The following proce-
dure computes the image of a DBM in R

p, and uses the
PWA system generated by A ∈ R

n×p
ε : 1) intersecting

the DBM with each region of the PWA system; then 2)
computing the image of nonempty intersections accord-
ing to the corresponding affine dynamics (cf. Proposi-
tion 4). The worst-case complexity depends on the last
step and amounts to O(pn(n+ p)3).

Similarly, the inverse image of a DBM in R
n w.r.t. the

MPL system characterized by A ∈ R
n×p
ε can be com-

puted via its PWA representation: 1) computing the in-
verse image of the DBM w.r.t. each affine dynamics of
the PWA system (cf. Proposition 4); then 2) intersecting
the inverse image with the corresponding region, which
is a DBM; finally 3) collecting the nonempty intersec-
tions. The worst-case complexity is quantified again as
O(pn(n+p)3). Proposition 4 can be extended as follows.

Corollary 5 The image and the inverse image of a
union of finitely many DBM w.r.t. the PWA system
generated by an MPL system is a union of finitely many
DBM.

Computing the image and the inverse image of a union
of q DBM can be done by computing the image and the
inverse image of each DBM. Thus the complexity of both
cases is O(qpn(n+ p)3).

Remark 6 Some of the above results can be generalized
to DBM in R

p
ε and to matrices that are not row-finite

by using similar proof techniques. One of them is the
following: the image of a DBM in R

p
ε w.r.t. a matrix in

R
n×p
ε is a union of finitely many DBM in R

n
ε .

In Section 1 we have discussed an alternative approach
to reachability analysis of MPL systems based on op-
erations over max-plus polyhedra, and emphasized the
limitations of such an approach. A max-plus polyhedron
is defined as the max-plus Minkowski sum of a finitely-
generated max-plus cone and a finitely-generated max-
plus convex set [9, Sec. 2.2]. Finitely-generated max-plus
cones in R

n
ε are a max-plus linear combination of finitely

many vectors in R
n
ε , i.e. α1⊗w1⊕· · ·⊕αp⊗wp. Equiv-

alently, a max-plus cone can be represented as the im-
age of Rp

ε w.r.t. a matrix in R
n×p
ε . A finitely-generated

max-plus convex set is defined as the max-plus convex

5



combination of finitely many vectors: its form is similar
to that of a max-plus cone, with the additional require-
ment that α1⊕· · ·⊕αp = e. Based on Remark 6 and us-
ing the homogeneous coordinates representation [9, Sec.
2.2], one can show the following proposition.

Proposition 7 Every max-plus polyhedron can be ex-
pressed as a union of finitely many DBM.

As a result, our approach is more general than the one
based on max-plus polyhedra. Let us remark that work-
ing with unions of DBM has the drawback of a potential
explosion in the number of DBM during computations.
However, our benchmarks at the end of this paper seem
to suggest that this is not a problem.

3 Forward Reachability Analysis

The goal of forward reachability analysis is to quantify
the set of possible states that can be arrived at under
the model dynamics, at a particular event step or over a
set of consecutive events, from a set of initial conditions
and possibly under the choice of control actions. Two
main notions can be introduced.

Definition 8 (Reach Set) Given an MPL system and
a nonempty set of initial conditions X0 ⊆ R

n, the reach
set XN at the event step N > 0 is the set of all states
{x(N) : x(0) ∈ X0} obtained via the MPL dynamics,
possibly by application of any of the allowed controls.

Definition 9 (Reach Tube) Given an MPL system
and a nonempty set of initial conditions X0 ⊆ R

n, the
reach tube is defined by the set-valued function k 7→ Xk

for any given k > 0 where Xk is defined.

Unless otherwise stated, in this work we focus on finite-
horizon reachability: in other words, we compute the
reach set for a finite index N (cf. Definition 8) and the
reach tube for k ∈ {1, . . . , N}, where N < ∞ (cf. Defi-
nition 9). While the reach set can be obtained as a by-
product of the (sequential) computations used to obtain
the reach tube, it can be as well calculated by a tailored
procedure (one-shot).

In the computation of the quantities defined above, the
set of initial conditionsX0 ⊆ R

n and the set of inputs at
each event step Uk ⊆ R

m are assumed to be a union of
finitely many DBM and a single DBM, respectively. Let
us remark that our approach can also handle the case
when the set of inputs at each event step is a union of
finitely many DBM: the preceding assumption is used
to simplify the presentation and notations. As it will be-
come clear later, this assumption will shape the reach set
Xk at any event step k > 0 as a union of finitely many
DBM. In the more general case of arbitrary sets for X0

and Uk, these can be over- or under-approximated by

DBM. Notice that MPL dynamics are known to be non-
expansive [33, Lemma 3.10]: thus if X0 is (overapproxi-
mated by) a DBM, possible numerical errors associated
with forward reachability computations do not accrue
[42]. To pin down notations for the complexity calcula-
tions below, we assume thatXk is a union of qk DBM for
k ∈ {1, . . . , N} and in particular that the set of initial
conditions X0 is a union of q0 DBM.

3.1 Sequential Computation of the Reach Tube

This approach uses the one-step dynamics for au-
tonomous and nonautonomous MPL systems iteratively.
In each step, we make use of the DBM representation
and the PWA dynamics to compute the successive reach
set.

With focus on autonomous MPL systems, given a set
of initial conditions X0, the reach set Xk is recursively
defined as the image of Xk−1 w.r.t. the MPL dynamics:

Xk = I(Xk−1) = {A⊗ x : x ∈ Xk−1} = A⊗Xk−1.

In the dynamical systems and automata literature, the
mapping I is also known as Post [13, Definition 2.3].
From Corollary 5, if Xk−1 is a union of finitely many
DBM, then Xk is also a union of finitely many DBM.
Then by induction, under the assumption that X0 is a
union of finitely many DBM, it can be concluded that
the reach set Xk is a union of finitely many DBM, for
each k ∈ N.

Given a state matrix A and a set of initial conditions
X0, the general procedure for obtaining the reach tube
works as follows: first, we construct the PWA system
generated by A; then, for each k ∈ {1, . . . , N}, the reach
set Xk is obtained by computing I(Xk−1). The reach
tube is then obtained by aggregating the reach sets.

The worst-case complexity can be assessed as follows. As
discussed above, the complexity to characterize theMPL
system via PWA dynamics isO(nn+3). Furthermore, the
complexity of computing I(Xk−1) is O(qk−1n

n+3), for
k ∈ {1, . . . , N}. This results in an overall complexity of

O(nn+3
∑N−1

k=0 qk). Notice that quantifying the cardinal-
ity qk of the DBM union at each step k is not possible
in general (cf. benchmark in Section 5).

Let us now look at cases where the structure of the
MPL dynamics leads to savings for the computation of
the reach tube. Recall that, given an X0 and a finite
N ∈ N, in order to compute XN , we need to calcu-
lateX1, . . . , XN−1. Whenever the state matrix of an au-
tonomous MPL system is irreducible, implying the exis-
tence of a periodic behavior (cf. Proposition 2), this can
be simplified.

6



Proposition 10 Let A ∈ R
n×n
ε be an irreducible ma-

trix with max-plus eigenvalue λ ∈ R and cyclicity c ∈
N. There exists a k0(X0) = maxx∈X0

k0(x), such that
Xk+c = λ⊗c ⊗Xk, for all k ≥ k0(X0).

Thus if the state matrix is irreducible, we only need to
compute X1, . . . , Xk0(X0)∧N in order to calculate XN ,
for any N ∈ N, where k0(X0) ∧ N = min{k0(X0), N}.
Furthermore if X0 is a union of finitely many stripes,
the infinite-horizon reach tube is also a union of finitely
many stripes and can be computed explicitly in finite
time, as elaborated in the following statement.

Theorem 11 Let A ∈ R
n×n
ε be an irreducible matrix

with cyclicity c ∈ N. If X0 is a union of finitely many

stripes,
⋃k0(X0)+c−1

i=0 Xi =
⋃k

i=0 Xi, for all k ≥ k0(X0)+
c− 1.

PROOF. First we will show that Xk is a union of
finitely many stripes for all k ∈ N. In order to show
that, we need to prove that the image of a stripe w.r.t.
affine dynamics (generated by an MPL system) is again
a stripe. The general procedure to compute the image of
a DBM in R

p w.r.t. an affine dynamics mapping R
p →

R
n involves [4, Proof of Th. 1]: 1) computing the cross

product of the DBM and R
n; 2) intersecting the cross

product with the DBM generated by the expression of
the affine dynamics; 3) calculating the canonical form
of the obtained intersection; and finally 4) projecting
the canonical-form representation over x1(k), . . . , xn(k).
The claim follows by noticing that: 1) Rn is a stripe; 2)
the cross product of two stripes is a stripe; 3) the DBM
generated by the expression of the affine dynamics is a
stripe; 4) the intersection of two stripes is a stripe; 5)
the canonical form of a stripe is a stripe; and that 6)
the projection of a stripe is a stripe. Up to now, we have
shown that the image of a stripe w.r.t. affine dynamics
(generated by an MPL system) is again a stripe. Then
by following the arguments after Proposition 4, it can be
shown that the image of a union of finitely many stripes
w.r.t. the PWA system generated by an MPL system is
a union of finitely many stripes. In this case, we use the
fact that each region of the PWA system generated by
an MPL system (5) is a stripe and the intersection of
two stripes is a stripe. Combining the preceding result
and the assumption that X0 is a union of finitely many
stripes, we conclude that Xk is a union of finitely many
stripes for all k ∈ N.

Since a stripe is a collection of equivalence classes [33,
Sec. 1.4], then X0 ⊗ α = X0, for any α ∈ R. It fol-
lows from Proposition 10 that Xk+c = Xk, for all k ≥
k0(X0). ✷

For nonautonomous MPL systems, given a set of initial
conditions X0, the reach set Xk depends on the reach

set at event step k − 1 and on the set of inputs at event
step k:

Xk = Ī(Xk−1 × Uk) = {Ā⊗ x̄ : x̄ ∈ Xk−1 × Uk}.

We can show by induction that the reach set Xk is a
union of finitely many DBM, for k ∈ N. In the base case
(k = 1), sinceX0 is a union of finitely many DBM andU1

is a DBM, thenX0×U1 is a union of finitely many DBM,
which implies that its image X1 is a union of finitely
many DBM (cf. Corollary 5). A similar argument holds
for the inductive step.

Given a state matrix A, an input matrix B, a set of
initial conditions X0, and a sequence of sets of inputs
U1,. . . ,UN , the general procedure for obtaining the reach
tube works as follows: first, we construct the PWA sys-
tem generated by Ā; then for each k ∈ {1, . . . , N}, the
reach set Xk is obtained by computing the image of
Xk−1 × Uk w.r.t. the PWA system.

Let us quantify the complexity of the procedure. Con-
structing the PWA system can be done inO((n+m)n+3).
For each k ∈ {1, . . . , N}, the complexity of comput-
ing Xk critically depends on the image computation
and is O(qk−1(n + m)n+3). The overall complexity is

O((n+m)n+3
∑N−1

k=0 qk).

Example Let us consider the unit square as the set of
initial conditions X0 = {x ∈ R

2 : 0 ≤ x1 ≤ 1, 0 ≤ x2 ≤
1}. The set X0 is intersected with the regions R(2,2) and
R(2,1). The intersections are given by X0∩R(2,2) = {x ∈
R

2 : x1 − x2 ≤ 0, x1 ≥ 0, x2 ≤ 1} and X0 ∩ R(2,1) =

{x ∈ R
2 : x1 − x2 ≥ 0, x1 ≤ 1, x2 ≥ 0}. The image

of X0 ∩ R(2,2) and of X0 ∩ R(2,1) w.r.t. affine dynamics
that are active in R(2,2) and respectively R(2,1) are {x ∈
R

2 : x1 − x2 = 2, x1 ≥ 5, x2 ≤ 4} and respectively
{x ∈ R

2 : x1 − x2 ≤ 2, x1 ≥ 5, x2 ≤ 4}. The reach set
at event step 1 is the union of both image regions, i.e.
X1 = {x ∈ R

2 : x1 − x2 ≤ 2, x1 ≥ 5, x2 ≤ 4}. By
applying the same procedure, one can obtain X2 = {x ∈
R

2 : x1−x2 ≥ 0, x1 ≤ 9, x2 ≥ 8}. The reach sets for two
event steps are shown in Fig. 1.

The set of initial conditions can also be described as a
stripe, for example X0 = {x ∈ R

2 : −1 ≤ x1 − x2 ≤ 1}.
In this case, the reach sets are stripes given byX1 = {x ∈
R

2 : 1 ≤ x1−x2 ≤ 2} andX2 = {x ∈ R
2 : 0 ≤ x1−x2 ≤

1}.

3.2 One-Shot Computation of the Reach Set

In this section we design a procedure for computing the
reach set for a specific event step N using a tailored
(one-shot) procedure.

7



Fig. 1. Forward and backward reach tubes for the au-
tonomous MPL system over 2 event steps. The down-point-
ing arrow in X

−1 indicates a half-line: that set can be ex-
pressed as a union of two DBM. The rectangle (X

−2) at the
bottom left is unbounded in the left direction.

Let us focus on autonomous MPL systems: given a set of
initial conditions X0, we compute the reach set at event
step N using

XN = (I ◦ · · · ◦ I)(A) = IN (A) = {A⊗N ⊗ x : x ∈ X0}.

Using Corollary 5, it can be seen that the reach set XN

is a union of finitely many DBM. Given a state matrix
A, a set of initial conditions X0 with X0 being a union
of finitely many DBM and a finite index N , the general
procedure for obtaining XN is: 1) computing A⊗N ; then
2) constructing the PWA system generated by A⊗N ; fi-
nally 3) computing the image of X0 w.r.t. the obtained
PWA system.

The worst-case complexity of computing the N -th
max-algebraic power of an n × n matrix (cf. Section
2.1) is O(⌈log2(N)⌉n3). Since X0 is in general a union
of q0 DBM, the overall complexity of the procedure
is O(⌈log2(N)⌉n3 + q0n

n+3). In comparison with the
complexity for computing the N -step reach tube, which

amounted to O(nn+3
∑N−1

k=0 qk), the one-shot procedure
appears to be advantageous. However, notice that the
bottleneck lies on the (exponential) complexity of Al-
gorithm 1, which is applied to two different matrices
(A⊗N and A, respectively). Thus while in general com-
paring the performance of the sequential and one-shot
approaches is difficult, Proposition 12 suggests that un-
der some dynamical assumptions the number of PWA
regions generated by A⊗N is higher than that generated
by A.

Proposition 12 Let Rg and Rg′ be regions generated by
A ∈ R

n×n
ε . If I(Rg) ⊆ Rg′ , then Rg ⊆ Rg′′ for some

region Rg′′ generated by A⊗2.

PROOF. In this proof, the coefficients g, g′, g′′ are
treated as functions from {1, . . . , n} to {1, . . . , n}, e.g.
g : i 7→ gi, for 1 ≤ i ≤ n. Recall that the affine dynamics
in Rg are

xi(k − 1) = xg(i)(k − 2) +A(i, g(i));

and the ones in Rg′ are

xi(k) = xg′(i)(k − 1) +A(i, g′(i)).

Hence, the affine dynamics in Rg′′ can be formulated as
a composition of the affine dynamics in Rg′ and Rg as

xi(k) = xg(g′(i))(k − 2) +A(i, g′(i)) +A(g′(i), g(g′(i))),

= xg′′(i)(k − 2) +A⊗2(i, g′′(i)).

Notice that g′′ = g ◦ g′, where ◦ denotes the function
composition operator. ✷

Of course obtaining a higher number of PWA regions
relates to obtaining a reach set expressed with a higher
number of DBM. The result above can be generalized to
A⊗N as follows. Let Rg(0) , . . . , Rg(N−1) be regions gener-

ated by A. If Ii(Rg(0)) ⊆ Rg(i) , for each i ∈ {1, . . . , N −
1}, then by induction it can be shown that there exists a
regionRg(N) generated byA⊗N , such thatRg(0) ⊆ Rg(N) ,

where g(N) = g(0) ◦ · · · ◦ g(N−1).

On the side, let us remark that if the MPL dynamics are
characterized by an irreducible matrixA, then the above
figures should substitute the quantityN withN∧k0(A).

A similar technique can be applied to nonautonomous
MPL systems. Given a set of initial conditions X0, the
reach set at event step N is computed by using the fol-
lowing formula:

XN = [A⊗N , A⊗(N−1) ⊗B, . . . , B]⊗ (X0 × · · · × UN ).

From Corollary 5, the reach set XN is again a union of
finitely many DBM, since X0×U1× · · ·×UN is a union
of finitely many DBM. Notice that X0 is a union of q0
DBM and U1, . . . , UN are DBM.

Given a state matrixA, an input matrixB, a set of initial
conditions X0, a sequence of sets of inputs U1,. . . ,UN ,
the general procedure for obtaining XN is: 1) generat-
ing [A⊗N , A⊗(N−1)⊗B, . . . , B]; then 2) constructing the
PWA system generated by it; finally 3) computing the
image of X0 × U1 × · · · × UN w.r.t. the PWA system.

Let us determine the complexity of the approach. In or-
der to generate the matrix, first we compute A⊗i, for i ∈

8



{2, . . . , N}; then A⊗i⊗B, for i ∈ {1, . . . , N − 1}, which
leads to a worst-case complexityO(Nn3+Nn2m). Since
the size of the obtained matrix is n×(n+mN), the com-
plexity of the second and third steps is O((n+mN)n+3)
andO(q0(n+mN)n+3), respectively. Unfortunately, this
approach is not tractable for problems over long event
horizons, since the maximum number of regions of the
PWA system is (n + mN)n and grows exponentially
w.r.t. the event horizon N . In this instance, using the
sequential procedure (cf. Section 3.1) can be advanta-
geous.

4 Backward Reachability Analysis

The objective of backward reachability analysis is to de-
termine the set of states that enter a given set of final
conditions, possibly under the choice of control inputs.
This setup is of practical importance, for instance in
seeking the set of initial conditions leading to a set of un-
desired states for any choice of the inputs, as well as in
the transient analysis of irreducible MPL systems. Sim-
ilar to the forward instance, two main notions are first
introduced.

Definition 13 (Backward Reach Set) Given an
MPL system and a nonempty set of final positions
X0 ⊆ R

n, the backward reach set X−N is the set of all
states x(−N) that lead to X0 in N steps of the MPL
dynamics, possibly by application of any of the allowed
controls.

Definition 14 (Backward Reach Tube) Given an
MPL system and a nonempty set of final positions
X0 ⊆ R

n, the backward reach tube is defined by the set-
valued function k 7→ X−k for any given k > 0 where
X−k is defined.

Similar to the forward reachability instance, the set of
final conditions X0 ⊆ R

n and the set of control actions
at each event step U−k ⊆ R

m are assumed to be a union
of finitely many DBM and a single DBM, respectively. 1

In particular, we denote by q−k the cardinality of the
set of DBM representing X−k for k ∈ {1, . . . , N} and
assume that the set of final conditions X0 is a union of
q0 DBM.

4.1 Sequential Computation of Backward Reach Tube

Let us focus on autonomous MPL systems: given a set
of final conditions X0, for each k ∈ {1, . . . , N} we de-
termine the states that enter X0 in k event steps by the
following recursion:

X−k = I−1(X−k+1) = {x ∈ R
n : A⊗ x ∈ X−k+1}.

1 Our approach can also handle the case when the set of
inputs at each event step is a union of finitely many DBM.

The mapping I−1 is also known in the literature as Pre
[13, Definition 2.3]. Whenever X0 is a union of finitely
many DBM, by Corollary 5 it follows that the backward
reach set X−k is a union of finitely many DBM, for each
k > 0. As in the forward reachability case, the proce-
dure for obtaining the backward reach tube leverages the
dynamics of the PWA system associated with matrix A
and the recursion above.

The complexity of computing I−1(X−k+1) at any k ∈
{1, . . . , N} is O(q−k+1n

n+3). This results in an overall

worst-case complexity ofO(nn+3
∑N

k=1 q−k+1), where in
general it is not feasible to precisely quantify the cardi-
nality q−k+1 of the DBM union set at step k.

In general, given anX0, in order to calculateX−N , where
N is finite, we have to determine X−1, . . . , X−N+1, ex-
cept if the autonomous MPL system is irreducible. The
following result is directly shown by the definition of k∅.

Proposition 15 Let A ∈ R
n×n
ε be an irreducible matrix

with cyclicity c ∈ N. IfX0∩E(A⊗c) is empty, there exists
a k∅(X0) = maxx∈X0

k∅(x), such that X−k is empty for
all k ≥ k∅(X0).

Notice that if X0 ∩ E(A⊗c) is empty, from Proposition
15, X−k is empty for k ≥ k∅(X0). On the other hand if
X0 ∩E(A⊗c) is not empty, the backward reach set at or
after k∅(X0) steps depends only on X0 ∩E(A⊗c), i.e. it
does not depend on X0 \ (X0 ∩E(A⊗c)). More precisely
in the case ofX0∩E(A⊗c) is not empty and k ≥ k∅(X0),
we have Ik(X−k) ⊆ X0 ∩ E(A⊗c), thus k0(X−k) ≤ k.
Recall that k0(X−k) = maxx∈X−k

k0(x).

Theorem 16 Let A ∈ R
n×n
ε be an irreducible matrix

with max-plus eigenvalue λ ∈ R and cyclicity c ∈ N, then
λ⊗(−c) ⊗X−k ⊆ X−k−c, for all k ≥ k∅(X0).

PROOF. If X0 ∩ E(A⊗c) is empty, the proposition is
trivially satisfied (cf. Proposition 15). Next, we assume
thatX0∩E(A⊗c) is not empty and that k ≥ k∅(X0). We
will prove that each element of λ⊗(−c)⊗X−k enters the
set of final conditions in k+ c event steps, i.e. A⊗(k+c)⊗
λ⊗(−c) ⊗ X−k ⊆ X0. Observe that since A⊗k0(X−k) ⊗
X−k ⊆ E(A⊗c), from Proposition 2 we conclude that
A⊗(k0(X−k)+c) ⊗ X−k = A⊗k0(X−k) ⊗ X−k ⊗ λ⊗c. The
preceding observation and the fact that k0(X−k) ≤ k
(see the discussion before this theorem) are used in the
following steps:

A⊗(k+c) ⊗X−k ⊗ λ⊗(−c)

=A⊗(k−k0(X−k)) ⊗ (A⊗(k0(X−k)+c) ⊗X−k)⊗ λ⊗(−c)

= (A⊗(k−k0(X−k)) ⊗A⊗k0(X−k))⊗X−k

=A⊗k ⊗X−k ⊆ X0. ✷

9



Remark 17 Since the result in Theorem 16 is not as
strong as Proposition 10, for backward reachability we do
not obtain a result similar to that in Theorem 11.

As a side note, by modifying the procedure for obtain-
ing the backward reach tube we can add upon results on
transient analysis in the literature by producing a parti-
tion ofRn based on the value of the index k0. First the set
of final conditions X ′

0 is defined as E(A⊗c) = {x ∈ R
n :

k0(x) = 0}. The eigenspace E(A⊗c) is a union of finitely
many DBM, since E(A⊗c) [12, Sec. 3.7.2] is a max-plus
cone and each max-plus cone can be expressed as a union
of finitely many DBM (cf. Proposition 7). Then for each
k ∈ N, the backward reach set is obtained by

X ′
−k =

{

I−1(X ′
0) \X

′
0, if k = 1,

I−1(X ′
−k+1), if k > 1.

Further notice that X ′
−k = {x ∈ R

n : k0(x) = k},
for each k ∈ N ∪ {0}. The procedure is finite in time,
since X ′

1 ∩ E(A⊗c) is empty (cf. Proposition 15). More
precisely, X ′

−k is empty for k ≥ k∅(X
′
1) + 1.

For nonautonomous MPL systems, given a set of final
conditions X0, the backward reach set X−k depends on
the backward reach set and on the set of inputs at event
step −k + 1:

X−k = {x ∈ R
n : ∃u ∈ U−k+1 : Ā⊗ [xT , uT ]T ∈ X−k+1}.

A practical procedure for computing the set X−k is as
follows: 1) compute the inverse image of X−k+1 w.r.t.
the PWA system generated by Ā, i.e. {x̄ ∈ R

n+m : Ā⊗
x̄ ∈ X−k+1}; then 2) intersect the inverse image with
R

n ×U−k+1; and finally 3) project the intersection over
the state variables. As in the forward reachability case,
by Corollary 5 it can be shown that the backward reach
set X−k is a union of finitely many DBM, for k ∈ N.

Example Let us consider the unit square as the set of
final conditions X0 = {x ∈ R

2 : 0 ≤ x1 ≤ 1, 0 ≤ x2 ≤
1}. The backward reach sets are the union of finitely many
DBM given by X−1 = {x ∈ R

2 : x1 − x2 ≥ 3, x1 =
−2} ∪ {x ∈ R

2 : −3 ≤ x1 ≤ −2,−5 ≤ x2 ≤ −4},
X−2 = {x ∈ R

2 : x1 ≤ −7,−8 ≤ x2 ≤ −7}, and are
shown in Fig. 1.

Let us also consider the case of a stripe as the set of final
conditions: X0 = {x ∈ R

2 : −1 ≤ x1 − x2 ≤ 1}. In
this case, the backward reach sets are stripes described by
X−1 = {x ∈ R

2 : x1 − x2 ≥ 1} and X−2 = {x ∈ R
2 :

x1 − x2 ≤ 1}.

4.2 One-Shot Computation of the Backward Reach Set

With focus on autonomous MPL systems, given a state
matrix A, a set of final conditions X0 and a finite index
N , the states that are able to enter X0 in N event steps
are obtained similarly to those for the forward reacha-
bility case:

X−N = {x ∈ R
n : A⊗N ⊗ x ∈ X0}.

Further, by Corollary 5 it can be seen that the backward
reach set X−N is a union of finitely many DBM. Notice
that because the complexity of computing the image and
inverse image w.r.t. the MPL dynamics is the same (cf.
Section 2.3), since the complexity of the approach crit-
ically depends on this operation, the overall complexity
associated with the one-shot computation of the back-
ward reach set amounts to that for the forward instance.

For nonautonomous MPL systems, given a set of final
conditions X0, the states that are able to enter X0 in N
event steps are computed by using the following formula:

X−N = {x(−N) ∈ R
n : ∃u(−N + 1) ∈ U−N+1, . . . ,

u(0) ∈ U0 s.t. x(0) ∈ X0}.

Given a state matrix A, an input matrix B, a set of
final conditions X0 that is a union of finitely many
DBM, a sequence of sets of inputs U0, . . . , U−N+1, the
general procedure for obtaining X−N is: 1) generating
[A⊗N , A⊗(N−1) ⊗ B, . . . , B]; then 2) constructing the
PWA system generated by it; 3) computing the inverse
image of X0 w.r.t. the PWA system; 4) intersecting the
inverse image with R

n × U−N+1 × · · · × U0; and finally
5) projecting the intersection w.r.t. the state variables.
The backward reach set X−N is a union of finitely many
DBM. The complexity of the approach is the same as
the corresponding for the forward case.

5 Numerical Benchmark

5.1 Implementation and Setup of the Benchmark

The technique for forward and backward reachability
computations on MPL systems discussed in this work
is implemented in the VeriSiMPL (“very simple”) soft-
ware toolbox [2] version 1.4, which is freely available at
http://sourceforge.net/projects/verisimpl/. VeriSiMPL

is a software tool originally developed to obtain finite
abstractions of Max-Plus-Linear (MPL) systems, which
enables their verification against temporal specifica-
tions via a model checker [3,5]. The algorithms have
been implemented in MATLAB 7.13 (R2011b) and the
experiments reported here have been run on a 12-core
Intel Xeon 3.47 GHz PC with 24 GB of memory.

10



20 40 60 80 100

10−1

100

101

102

103

n = 4

n = 7

n = 10

n = 13

event horizon N

ru
n
n
in
g
ti
m
e
(i
n
se
co
n
d
s)

Fig. 2. Time needed to generate reach tube of autonomous
models for different models size and event horizons, cf. Sec-
tion 5.

In order to test the practical efficiency of the proposed
algorithms we compute the runtime needed to determine
the reach tube of an autonomous MPL system, for event
horizon N = 10 and an increasing dimension n of the
MPL system. We also keep track of the number of re-
gions of the PWA system generated from the MPL sys-
tem. For any given n, we generate matrices A with 2
finite elements (in a max-plus sense) that are randomly
placed in each row. The finite elements are randomly
generated integers between 1 and 100. The test over a
number of randomly generated dynamics goes against
biasing the experimental outcomes and allows claiming
the applicability of our technique over general MPL sys-
tems. The set of initial conditions is selected as the unit
hypercube, i.e. {x ∈ R

n : 0 ≤ x1 ≤ 1, . . . , 0 ≤ xn ≤ 1}.

Over 10 independent experiments, Table 1 reports the
average time needed to generate the PWA system and
to compute the reach tube, as well as the correspond-
ing average number of regions. As confirmed by Table 1,
the time needed to compute the reach tube is monotoni-
cally increasing w.r.t. the dimension of the MPL system
(as we commented previously this is not the case for the
cardinality of reach sets, which hinges on the specific dy-
namics of the MPL systems). For a fixed model size and
dynamics, the growth of the computation time for for-
ward reachability is linear with the event horizon as also
shown in Fig. 2. We have also performed reachability
computations for the case of the set of initial conditions
described as a stripe, which has led to results that are
quite analogue to those in Table 1. Further, the nonau-
tonomous and backward-reachability cases can be han-
dled similarly.

Table 1
Numerical benchmark, autonomous MPL system: computa-
tion of the reach tube (average over 10 experiments)

size generation number of generation number of

of MPL time for regions of time for DBM of

system PWA system PWA system reach tube X10 (q10)

3 0.09 [sec] 5.80 0.09 [sec] 4.20

4 0.09 [sec] 12.00 0.13 [sec] 6.10

5 0.14 [sec] 22.90 0.20 [sec] 6.10

6 0.25 [sec] 42.00 0.25 [sec] 3.40

7 0.52 [sec] 89.60 0.72 [sec] 13.40

8 0.91 [sec] 145.00 0.73 [sec] 3.20

9 2.24 [sec] 340.80 2.25 [sec] 4.10

10 4.73 [sec] 700.80 8.23 [sec] 12.30

11 10.42 [sec] 1.44 ×103 15.49 [sec] 3.20

12 20.67 [sec] 2.87 ×103 117.98 [sec] 25.60

13 46.70 [sec] 5.06 ×103 5.27 [min] 16.90

14 82.94 [sec] 9.28 ×103 15.80 [min] 59.90

15 3.48 [min] 2.01 ×104 25.76 [min] 10.10

16 7.90 [min] 4.91 ×104 84.79 [min] 23.50

17 15.45 [min] 9.07 ×104 3.17 [hr] 68.70

18 29.13 [min] 1.58 ×105 5.82 [hr] 21.00

19 67.07 [min] 3.48 ×105 7.13 [hr] 5.00

5.2 Comparison with an Alternative Computation

As discussed in the Introduction, to the best of the au-
thors’ knowledge, there exist no generally valid approach
for forward reachability computation overMPL systems.
This problem can be only alternatively assessed by lever-
aging the PWA characterization of the model dynamics
(cf. Section 2). Forward reachability analysis of PWA
systems can be best computed by the Multi-Parametric
Toolbox (MPT, version 2.0) [39]. However, the toolbox
has some implementation requirements: the state space
matrix A has to be invertible – this is in general not
the case for MPL systems; the reach sets Xk have to be
bounded – in our case the reach sets can be unbounded,
particularly when expressed as stripes; further, MPT
deals only with full-dimensional polytopes – whereas the
reach sets of interest may not necessarily be so; finally,
MPT handles convex regions and over-approximates the
reach sets Xk when necessary – our approach computes
instead the reach sets exactly.

We have been concerned with benchmarking the pro-
posed reachability computations with the described
alternative. For the sake of comparison, we have con-
structed artificial examples (with invertible dynamics)
and run both procedures in parallel, with focus on com-
putation time rather than the obtained reach tubes.
MPT can handle, in a reasonable time frame, models
with dimension up to 10: in this instance (as well as
lower-dimensional ones) we have obtained that our ap-
proach performs better (cf. Table 2). Notice that this

11



Table 2
Time for generation of the reach tube of a 10-dimensional
autonomous MPL system for different event horizons (aver-
age over 10 experiments)

event horizon 20 40 60 80 100

VeriSiMPL 11.02 [s] 17.94 [s] 37.40 [s] 51.21 [s] 64.59 [s]

MPT 47.61 [m] 1.19 [h] 2.32 [h] 3.03 [h] 3.73 [h]

is despite MPT being implemented as object code in
the C language, whereas VeriSiMPL runs as interpreted
code in MATLAB: this leaves quite some margin of
improvement to our techniques and software.

6 Conclusions and Future Work

This work has discussed a new computational tech-
nique for reachability analysis of Max-Plus-Linear
systems, which in essence amounts to exact and fast
manipulations of difference-bound matrices through
piecewise affine dynamics. The procedure scales over
20-dimensional models thanks to a space-partitioning
approach that is adapted to the underlying model dy-
namics, as well as to a compact representation and fast
manipulation of the quantities that come into play.

Computationally, we are interested in further optimiz-
ing the software for reachability computations, for ex-
ample by leveraging symbolic techniques based on the
use of decision diagrams, and by developing an efficient
implementation in the C language.

References

[1] Y. Abdeddäım, E. Asarin, and O. Maler. Scheduling with
timed automata. Theoretical Computer Science, 354(2):272–
300, 2006.

[2] D. Adzkiya and A. Abate. VeriSiMPL: Verification
via biSimulations of MPL models. In K. Joshi,
M. Siegle, M. Stoelinga, and P.R. D’Argenio, editors,
Proceedings of the 10th International Conference on
Quantitative Evaluation of Systems (QEST’13), volume
8054 of Lecture Notes in Computer Science, pages 253–
256. Springer, Heidelberg, September 2013. Available at
sourceforge.net/projects/verisimpl/.

[3] D. Adzkiya, B. De Schutter, and A. Abate. Abstraction
and verification of autonomous max-plus-linear systems.
In Proceedings of the 31st American Control Conference
(ACC’12), pages 721–726, Montreal, CA, June 2012.

[4] D. Adzkiya, B. De Schutter, and A. Abate. Finite
abstractions of max-plus-linear systems. IEEE Transactions
on Automatic Control, 58(12):3039–3053, December 2013.

[5] D. Adzkiya, B. De Schutter, and A. Abate. Finite
abstractions of nonautonomous max-plus-linear systems.
In Proceedings of the 32nd American Control Conference
(ACC’13), pages 4387–4392, Washington, DC, June 2013.

[6] D. Adzkiya, B. De Schutter, and A. Abate. Backward
reachability of autonomous max-plus-linear systems. In
Proceedings of the 12th International Workshop on Discrete
Event Systems, pages 117–122, Cachan, FR, May 2014.

[7] D. Adzkiya, B. De Schutter, and A. Abate. Forward
reachability computation for autonomous max-plus-linear
systems. In E. Ábrahám and K. Havelund, editors, Tools
and Algorithms for the Construction and Analysis of Systems
(TACAS’14), volume 8413 of Lecture Notes in Computer
Science, pages 248–262. Springer, Heidelberg, 2014.

[8] M. Ahmane and L. Truffet. Idempotent versions of Haar’s
lemma: links between comparison of discrete event systems
with different state spaces and control. Kybernetika,
43(3):369–391, 2007.

[9] X. Allamigeon, S. Gaubert, and É. Goubault. Inferring
min and max invariants using max-plus polyhedra. In
M. Alpuente and G. Vidal, editors, Static Analysis, volume
5079 of Lecture Notes in Computer Science, pages 189–204.
Springer, Heidelberg, 2008.

[10] R. Alur and D.L. Dill. A theory of timed automata.
Theoretical Computer Science, 126(2):183–235, 1994.

[11] E. Asarin, G. Schneider, and S. Yovine. Algorithmic analysis
of polygonal hybrid systems, part I: Reachability. Theoretical
Computer Science, 379(12):231–265, 2007.

[12] F. Baccelli, G. Cohen, G.J. Olsder, and J.-P. Quadrat.
Synchronization and Linearity, An Algebra for Discrete
Event Systems. John Wiley and Sons, 1992. Available at
www.maxplus.org.

[13] C. Baier and J.-P. Katoen. Principles of Model Checking.
The MIT Press, 2008.

[14] G. Behrmann, A. David, and K.G. Larsen. A tutorial on
uppaal. In M. Bernardo and F. Corradini, editors, Formal
Methods for the Design of Real-Time Systems (SFM-RT’04),
volume 3185 of Lecture Notes in Computer Science, pages
200–236. Springer, Heidelberg, September 2004.

[15] R.E. Bellman. On a routing problem. Quarterly of Applied
Mathematics, 16:87–90, 1958.

[16] J. Bengtsson. Clocks, DBMs, and States in Timed Systems.
PhD thesis, Uppsala University, 2002.

[17] B. Charron-Bost, M. Függer, and T. Nowak. Transience
bounds for distributed algorithms. In V. Braberman and
L. Fribourg, editors, Formal Modeling and Analysis of Timed
Systems (FORMATS’13), volume 8053 of Lecture Notes in
Computer Science, pages 77–90. Springer, Heidelberg, 2013.

[18] CheckMate [Online]. Available at
users.ece.cmu.edu/~krogh/checkmate/.

[19] A. Chutinan and B.H. Krogh. Computational techniques for
hybrid system verification. IEEE Transactions on Automatic
Control, 48(1):64–75, January 2003.

[20] G. Cohen, S. Gaubert, and J.-P. Quadrat. Max-plus algebra
and system theory: Where we are and where to go now.
Annual Reviews in Control, 23(0):207–219, 1999.

[21] A.E. Dalsgaard, R.R. Hansen, K.Y. Jørgensen, K.G. Larsen,
M.Chr. Olesen, P. Olsen, and J. Srba. opaal: A lattice model
checker. In M. Bobaru, K. Havelund, G.J. Holzmann, and
R. Joshi, editors, NASA Formal Methods, volume 6617 of
Lecture Notes in Computer Science, pages 487–493. Springer,
Heidelberg, 2011.

[22] T. Dang and O. Maler. Reachability analysis via face
lifting. In T.A. Henzinger and S. Sastry, editors, Hybrid
Systems: Computation and Control (HSCC’98), volume
1386 of Lecture Notes in Computer Science, pages 96–109.
Springer, Heidelberg, 1998.

[23] B. De Schutter. On the ultimate behavior of the sequence
of consecutive powers of a matrix in the max-plus algebra.
Linear Algebra and its Applications, 307(1-3):103–117, March
2000.

12



[24] D.L. Dill. Timing assumptions and verification of finite-
state concurrent systems. In J. Sifakis, editor, Automatic
Verification Methods for Finite State Systems, volume 407 of
Lecture Notes in Computer Science, chapter 17, pages 197–
212. Springer, Heidelberg, 1990.

[25] R. W. Floyd. Algorithm 97: Shortest path. Communications
of the ACM, 5(6):345, June 1962.

[26] S. Gaubert and R.D. Katz. Reachability and invariance
problems in max-plus algebra. In L. Benvenuti, A. De Santis,
and L. Farina, editors, Positive Systems, volume 294 of
Lecture Notes in Control and Information Science, chapter 4,
pages 15–22. Springer, Heidelberg, April 2003.

[27] S. Gaubert and R.D. Katz. Reachability problems for
products of matrices in semirings. International Journal of
Algebra and Computation, 16(3):603–627, 2006.

[28] S. Gaubert and R.D. Katz. The Minkowski theorem for
max-plus convex sets. Linear Algebra and its Applications,
421(2-3):356–369, 2007.

[29] M.J. Gazarik and E.W. Kamen. Reachability and
observability of linear systems over max-plus. Kybernetika,
35(1):2–12, 1999.

[30] Z. Han and B.H. Krogh. Reachability analysis of large-
scale affine systems using low-dimensional polytopes. In
J. Hespanha and A. Tiwari, editors, Hybrid Systems:
Computation and Control (HSCC’06), volume 3927 of
Lecture Notes in Computer Science, pages 287–301. Springer,
Heidelberg, 2006.

[31] M. Hartmann and C. Arguelles. Transience bounds for long
walks. Mathematics of Operations Research, 24(2):414–439,
May 1999.

[32] W. Heemels, B. De Schutter, and A. Bemporad. Equivalence
of hybrid dynamical models. Automatica, 37(7):1085–1091,
July 2001.

[33] B. Heidergott, G.J. Olsder, and J.W. van der Woude.
Max Plus at Work–Modeling and Analysis of Synchronized
Systems: A Course on Max-Plus Algebra and Its Applications.
Princeton University Press, 2006.

[34] T.A. Henzinger and V. Rusu. Reachability verification for
hybrid automata. In T.A. Henzinger and S. Sastry, editors,
Hybrid Systems: Computation and Control (HSCC’98),
volume 1386 of Lecture Notes in Computer Science, pages
190–204. Springer, Heidelberg, 1998.

[35] H.P. Hillion and J.P. Proth. Performance evaluation of job-
shop systems using timed event graphs. IEEE Transactions
on Automatic Control, 34(1):3–9, January 1989.

[36] M. Kloetzer, C. Mahulea, C. Belta, and M. Silva. An
automated framework for formal verification of timed
continuous Petri nets. IEEE Transactions on Industrial
Informatics, 6(3):460–471, 2010.

[37] A.A. Kurzhanskiy and P. Varaiya. Ellipsoidal toolbox.
Technical report, EECS Department, University of
California, Berkeley, May 2006.

[38] A.A. Kurzhanskiy and P. Varaiya. Ellipsoidal techniques for
reachability analysis of discrete-time linear systems. IEEE
Transactions on Automatic Control, 52(1):26–38, January
2007.

[39] M. Kvasnica, P. Grieder, and M. Baotić. Multi-parametric
toolbox (MPT), 2004. Available at
control.ee.ethz.ch/~mpt/.

[40] C. Le Guernic and A. Girard. Reachability analysis of
hybrid systems using support functions. In A. Bouajjani and
O. Maler, editors, Computer Aided Verification (CAV’09),
volume 5643 of Lecture Notes in Computer Science, pages
540–554. Springer, Heidelberg, 2009.

[41] Q. Lu, M. Madsen, M. Milata, S. Ravn, U. Fahrenberg,
and K.G. Larsen. Reachability analysis for timed automata
using max-plus algebra. The Journal of Logic and Algebraic
Programming, 81(3):298–313, 2012.

[42] I.M. Mitchell. Comparing forward and backward reachability
as tools for safety analysis. In A. Bemporad, A. Bicchi,
and G. Buttazzo, editors, Hybrid Systems: Computation
and Control (HSCC’07), volume 4416 of Lecture Notes
in Computer Science, pages 428–443. Springer, Heidelberg,
2007.

[43] I.M. Mitchell, A.M. Bayen, and C.J. Tomlin. A time-
dependent Hamilton-Jacobi formulation of reachable sets
for continuous dynamic games. IEEE Transactions on
Automatic Control, 50(7):947–957, July 2005.

[44] T. Murata. Petri nets: Properties, analysis and applications.
Proceedings of the IEEE, 77(4):541–580, April 1989.

[45] M. Plus. Max-plus toolbox of
Scilab [Online], 1998. Available at
www.cmap.polytechnique.fr/~gaubert/MaxplusToolbox.html.

[46] B.J.P. Roset, H. Nijmeijer, J.A.W.M. van Eekelen,
E. Lefeber, and J.E. Rooda. Event driven manufacturing
systems as time domain control systems. In Proceedings
of the 44th IEEE Conference on Decision and Control and
European Control Conference (CDC-ECC’05), pages 446–
451, December 2005.

[47] E.D. Sontag. Nonlinear regulation: The piecewise-linear
approach. IEEE Transactions on Automatic Control,
26(2):346–358, April 1981.

[48] K. Zimmermann. A general separation theorem in extremal
algebras. Ekonomicko-Matematický Obzor, 13(2):179–201,
1977.

13


