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Abstract

In this paper a class of hybrid-fuzzy models is presented, where binary membership functions are used to capture the hybrid

behavior. We describe a hybrid-fuzzy identification methodology for nonlinear hybrid systems with mixed continuous and discrete

states that uses fuzzy clustering and principal component analysis. The method first determines the hybrid characteristic of the

system inspired by an inverse form of the merge method for clusters, which makes it possible to identify the unknown switching

points of a process based on just input-output (I/O) data. Next, using the detected switching points, a hard partition of the I/O

space is obtained. Finally, TS fuzzy models are identified as submodels for each partition. Two illustrative examples, a hybrid-tank

system and a traffic model for highways, are presented to show the benefits of the proposed approach.

Keywords: Fuzzy Identification, Hybrid Systems, Fuzzy Clustering, Principal Component Analysis, Switching Regression

Models.

1. Introduction and backgrounds

Hybrid systems represent a class of dynamical systems that

contain continuous and discrete/integer variables. Different

types of models can be used to represent hybrid systems [1],

[2], for example mixed logical dynamic (MLD) models, com-

plementarity systems, piece-wise affine (PWA) models, max-

min plus scaling systems, timed or hybrid Petri-nets, differen-

tial automata, switched systems, hybrid inclusions, and real-

time temporal logics, among others. Each sub-class has its own

advantages over the others. For example, control techniques

have been developed for MLD hybrid models, stability criteria

for PWA systems, and conditions of existence and uniqueness

of solution trajectories for linear complementarity systems (see

[3], [4] and the references within).

For nonlinear systems, a broad family of identification

methodologies are available, for fuzzy, neural networks, neuro-

fuzzy models [5], [6], [7], [8], [9]. However, few methodolo-

gies consider nonlinear models with continuous and discrete

variables, i.e. identification of hybrid systems. In general, the

identification of hybrid systems requires to solve two issues:

to classify the different modes of operation (discrete behavior)

and to estimate the parameters for each mode. Assuming prior

knowledge about the discrete modes is not the interest of this

paper, because the identification of the model parameters for

each mode can be performed straightforwardly using conven-

tional identification techniques. In the literature, the identifi-

cation methods for hybrid systems mainly focus on Piecewise
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AutoRegressive eXogenous (PWARX) systems. In [10] an ex-

tensive comparison between some of those methods and their

drawbacks is presented, and in [11] a recent and complete re-

view of identification methods for hybrid systems (including

among other topics like system description, state estimation,

control, etc.) can be found. Next, some of those procedures are

briefly described.

1.1. Identification methods for hybrid systems

Ferrari-Trecate et al. [12] propose a methodology for the

identification of discrete-time hybrid systems in the PWA form,

formulated as a discontinuous PWA map. The algorithm is

based on clustering, linear identification, and pattern recogni-

tion techniques. An algebraic identification procedure to cope

with the identification problem of Switched AutoRegressive

eXogenous (SARX) systems was proposed by Ma and Vidal

[13]. Multiple ARX models are encoded in a single polyno-

mial expression that decouples the determination of parame-

ters from the switching mechanism. The Bayesian procedure

for the identification of Piecewise AutoRegressive eXogenous

(PWARX) systems proposed by Juloski et al. [14], exploits

some prior knowledge about the discrete states and parameters

of the submodels. The parameters of submodels are treated as

random variables, and described through their probability den-

sity functions. A bounded-error procedure was proposed by

Bemporad et al. [15] in order to identify PWARX systems. The

main feature of the method is to ensure that the identification

error is bounded for all data points. Nakada et al. [16] address

the problem of identifying PWARX systems by using statisti-

cal clustering. The method consists of clustering the measured

data, while estimating the boundary hyperplane and the param-

eters. Gegundez et al. [17] present an identification method for
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PWA systems based on fuzzy clustering and competitive learn-

ing. The method estimates the number of submodels of the

system, the parameters corresponding to each submodel, and

the regions in the regression space. Lauer et al. [18] propose a

nonlinear hybrid system identification method based on kernel

functions in order to estimate arbitrary nonlinearities without

prior knowledge.

1.2. Fuzzy identification

Many advances in fuzzy systems identification and applica-

tions are available in the literature [19, 20, 21, 22, 23, 24], in-

cluding observers [25, 26] and control methods [27, 28]. Nefti

et al. [29] present a method for merging fuzzy sets based on

clustering in the parameter space. The fuzzy sets are replaced

by the most compatible prototypical fuzzy set, which is deter-

mined from a inclusion-based clustering algorithm. Hadjili and

Wertz [30] propose an identification method for Takagi-Sugeno

(TS) models, incorporating the selection of optimal rules and

input variables. The subtractive clustering algorithm, based on

compactness and the separation of clusters, is performed in or-

der to determine the number of rules. Roubos and Setnes [31]

propose a complexity-reduction algorithm based on genetic-

algorithm optimization procedures to find redundancy among

the rules with a criterion based on maximum accuracy and

maximum set similarity. In addition, Kim et al. [32] present a

combined identification method, based on the TS and Sugeno-

Yasukawa models. The approach implements fuzzy regression

clustering for initial tuning of the parameters and a gradient-

descent method to adjust them accurately. In Abonyi et al. [33]

a modified Gath-Geva fuzzy clustering algorithm for the iden-

tification of TS models is proposed to directly obtain the pa-

rameters of the membership functions. A linear transformation

of the input variables makes it possible to recover accurately

the fuzzy partition of the antecedents. Li et al. [34] propose a

new fuzzy c-regression model clustering algorithm where the

clustering prototype in fuzzy space partition is a hyperplane.

The new clustering algorithm is used in the identification of TS

fuzzy model, obtaining good results in the identification of the

premise parameters of the model.

1.3. Hybrid-fuzzy identification

For hybrid-fuzzy models, stability analysis and control de-

signs have been proposed in the literature [35], [36]. Regarding

the identification of hybrid-fuzzy systems, although most of the

developments have been made in conventional fuzzy systems,

a few hybrid-fuzzy identification methods have been proposed.

Palm and Driankov [37] present a hierarchical identification ap-

proach for fuzzy switched systems. The proposed method con-

siders a black-box fuzzy identification approach by using fuzzy

clustering and measurable discrete states in order to obtain the

hybrid-fuzzy model. Although good performance is obtained,

prior knowledge about the discrete modes is required. Next,

Girimonte and Babuška [38] describe two structure-selecting

methods for nonlinear models with mixed discrete and contin-

uous inputs. The first method, based on fuzzy clustering, uses

fuzzy sets to obtain the relevant inputs. The second approach

involves an induction algorithm included in a search method.

The results show that fuzzy clustering is faster in terms of com-

putation time. Zeng et al. [39] propose a new representation

theorem for hierarchical systems when a discrete input space is

considered. The theorem states that one-to-one mappings for

low-level functions are required to obtain a flexible hierarchical

representation. Moreover, they demonstrate that flexible hierar-

chical fuzzy systems satisfy the universal approximation prop-

erty, which allows us to estimate any hierarchical function to

any degree of accuracy. A new hierarchical structure of hybrid

systems integrating modeling and control is presented by Cheng

et al. in [40], where the fuzzy controller is synthesized based on

the identification of continuous and discrete components. The

authors of [40] assume that measurements of the discrete com-

ponents are available, which allows the use of fuzzy adaptive

identification techniques or other ways to directly learn a TS

model by clustering or by identifying a neuro-fuzzy model for

each of the separate regions. In our paper, direct measurements

of the discrete component are not available, and as a conse-

quence it is not possible to do an experimental contrast within

those other hybrid-fuzzy identification frameworks.

In this paper, a new identification method is proposed for

nonlinear hybrid systems that identifies first the discrete tran-

sitions and then all other nonlinearities through fuzzy models

only using input-output data of the process, where the main dif-

ference with the literature is that prior knowledge of the discrete

modes is not required. Next the hybrid-fuzzy models and the

identification problem are presented.

2. Problem statement

For the modeling of hybrid systems two of the most popular

model types used in the literature are piecewise affine (PWA)

systems and mixed logical and dynamical (MLD) systems [11].

In this paper the use of another type of model called hybrid-

fuzzy systems is proposed, which combine the characteristics of

fuzzy models to represent nonlinearities, and of hybrid systems

to include quantized variables.

A hybrid discrete-time nonlinear dynamic system is con-

sidered with input u(t) ∈ R
m, and to explain the identi-

fication method a single output y(t) ∈ R is assumed (the

method is easily extendible for multiple outputs). Let ut−1 =
[

uT (t − 1), . . . ,uT (t − nb)
]T
∈ R

m·nb be past inputs, and yt−1 =
[

y(t − 1), . . . , y(t − na)
]T ∈ χ ⊂ R

na be past outputs, up to time

t−1, where na and nb are the model orders (given a priori). The

class of hybrid systems considered is described as:

y(t) =

s
∑

i=1

fi(y
t−1,ut−1)̺i(y

t−1),

̺i(y
t−1) =

{

1, if yt−1 ∈ χi

0, otherwise
,

(1)

where s is the number of discrete modes (submodels). The lo-

cal behavior of the system is described by the functions fi(·)
and the discrete mode ̺i(y

t−1) is a binary variable that equals

1 if yt−1 belongs to the region of χi ⊂ R
na , and 0 otherwise.
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The regions χi form a complete partition of the regressor set

χ, i.e.,
⋃s

i=1 χi = χ and χi ∩ χ j = ∅, ∀i , j. Note that dis-

crete dynamics (transitions) of the system are assumed to occur

when yt−1 satisfies some conditions, and they will not depend

on the inputs. The aim in this work is to present a systematic

method for determining the functions fi(·) and the regions χi

given only the input-output data of the process. The functions

fi(·) could be any nonlinear function that will be identified by

the TS models and the regions χi are assumed to be convex

polyhedra, described by

χi = {yt−1 ∈ Rna : Hiy
t−1 � hi} (2)

where Hi ∈ Rqi×na , hi ∈ Rqi i = 1, ..., s, and � denotes compo-

nentwise inequality, where some inequalities are strict to pre-

vent the boundaries of the regions from overlapping. Note that

qi is the number of linear inequalities defining the i-th polyhe-

dral region. In this paper, as a consequence of the algorithm, the

resulting Hi, i = 1, ..., s, are diagonal matrices, so the partition

will be a box (hyperrectangle). To assume the partition is a box

will be sufficient to model a limited class of hybrid systems;

however, when the model does not fit this characteristic (like

in more general classes of hybrid systems [44]), the partition

can be can approximate arbitrarily close at the cost of increased

complexity. Optimization-based and other techniques could be

applied to solve this issue, to obtain more general partitions,

and then to model a larger class of hybrid systems [45], [46].

The system given by (1) can be represented by a two-level

fuzzy model, which was described by Tanaka et al. [47]. The

corresponding two levels are the local fuzzy level and the dis-

crete/quantized level. The local fuzzy level is a set of ŝ TS

fuzzy models with local validity in one region of an estimated

partition χ̂i, i = 1, ..., ŝ. The discrete/quantized level is given by

a set of crisp functions δi(y
t−1), which activate the i-th local TS

model if yt−1 is in χ̂i.

Assume that input-output data is available: (y(t), yt−1,ut−1),

t = 1, ...,N. The structure of a hybrid-fuzzy model to be identi-

fied for the variable y(t) is described as:

y(t) =

ŝ
∑

i=1

f TS
i (zt−1, yt−1,ut−1)δi(y

t−1),

δi(y
t−1) =

{

1, if yt−1 ∈ χ̂i

0, otherwise
,

(3)

f TS
i (zt−1, yt−1,ut−1) =

Ri
∑

j=1

βi j(z
t−1)yi j(y

t−1,ut−1),

yi j(y
t−1,ut−1) = (ai j)

T yt−1 + (bi j)
T ut−1 + ri j,

βi j(z
t−1) =

p
∏

r=1

Ai j,r(zr(t − 1))

Ri
∑

j=1

p
∏

r=1

Ai j,r(zr(t − 1))

,

(4)

where the vector of the premises is zt−1 =
[

z1(t − 1), . . . , zp(t − 1)
]T

and p is the number of inputs

at the premises. The premises variables are permitted to

be inputs or outputs, and in this paper we will assume

zt−1 =
[

(yt−1)T , (ut−1)T
]T

, so p = na + m · nb. Moreover, (ai j)
T ,

(bi j)
T , ri j are the parameters of the fuzzy model f TS

i
(·) for the

region i in rule j, Ri is the number of rules of the fuzzy model

at the ith region, Ai j,r(zr(t − 1)) is the membership degree for

the input zr(t − 1) in premise r at the ith region and rule j, and

βi j(z(t − 1)) is the activation degree of the jth rule that belongs

to the fuzzy model of the ith region.

The hybrid-fuzzy model can be seen as a multimodel [48],

where the validity indices (relevance degree of each model) are

the on/off conditions that define whether a point belongs to a

region of the complete partition of the system; as a consequence

of the fusion principle, only one model (the most dominant)

represent the dynamics in that region. Figure 1 shows a simple

scheme of the hybrid-fuzzy model structure (3).
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Figure 1: Fusion principle for hybrid-fuzzy models

Remarks:

• Note that the model given by (3) and (4) is a Takagi-

Sugeno fuzzy model, with ŝ · Ri rules and activation de-

gree βi j(z
t−1)δi(y

t−1). One of the most important parts of

the hybrid-fuzzy model is the fuzzy rule base. The rule i, j

is the following:

Ri j : if yt−1 ∈ χ̂i and z1(t − 1) is Ai j,1 and z2(t − 1) is Ai j,2

and .... and zp(t − 1) is Ai j,p then yi j(t) = (ai j)
T yt−1 +

(bi j)
T ut−1 + ri j, j = 1, ..,Ri, i = 1, .., ŝ.

• The first component of the fuzzy rule (yt−1 ∈ χ̂i) evaluates

the binary membership function δi(y
t−1). This component

explicitly incorporates the discrete transitions of the sys-

tem.

By only using a finite input-output data set of the process

(y(t), yt−1,ut−1), t = 1, ...,N, the identification problem of a

hybrid-fuzzy model given by (3) and (4) consists of estimating

the following parameters: the number of regions ŝ, the partition

χ̂i, i = 1, .., ŝ, and for each TS model, the number of rules Ri,

the parameters of the membership functions Ai j,r(·), and the pa-

rameters (ai j)
T , (bi j)

T , ri j. Usually an identification procedure

is carried out by minimizing a cost function with respect to the

unknown parameters [15]:

VN =
1

N

N
∑

t=1

V

















y(t) −
ŝ
∑

i=1

f TS
i (zt−1, yt−1,ut−1)δi(y

t−1)

















(5)
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where V is a penalty function for the error, typically a quadratic

function. The optimization problem should also include ad-

ditional terms to avoid overfit (to limit for example ŝ or Ri),

or the premises may be obtained by using a specific cluster-

ing method. The minimization of (5) is in general a non-

convex nonlinear mixed-integer optimization (MINLP) prob-

lem. Therefore, in the next section, an identification proce-

dure for hybrid-fuzzy systems based on well-known principles

(avoiding to solve the MINLP problem) is described.

3. A hybrid-fuzzy identification method

As a motivation example, the hybrid tank system in Figure

2 is considered, which is a modified version of the one used in

[17] for PWA identification. In the figure, A1, A2 and A3 are the

cross-section of the tanks, S 1, S 2 and S 3 are the cross-section

of the outlet holes, g is the acceleration due to gravity, Q(t) is

the input flow at time t, and h(t) is the level of the tank. The

hybrid tank system is divided into three regions because the

cross-section of the tank is larger when the level is higher than

h1 or h2.

A
3

h
2

Q(t)

S
1
(2g(h(t))

0.5
S

1

S
2

S
3

A
1

if h
2
 ≤ h(t):

S
3
 (2g(h(t)−h

2
))

0.5

if h
1
 ≤ h(t):

S
2
 (2g(h(t)−h

1
))

0.5

h
1

A
2

Figure 2: Hybrid Tank Sytem

Thus, for a fixed input flow, it will take more time to in-

crease the level h(t) when it is higher than h1 or h2, because

the cross-section is larger. This means that the level values h1

and h2 are switching points in the sense that those levels are

the boundaries of the three different operating regions, the dy-

namics of which are different. In order to avoid complicated

optimization-based methods, we propose to detect the switch-

ing point by analyzing the principal component of the clusters’

variance matrices, as provided by the Gustafson-Kessel (G-K)

algorithm [41]. The G-K algorithm is typically used in the iden-

tification of TS models [43], so no extra information is required

to perform the algorithm. The cluster slopes are analyzed by

using the principal components, to be able to identify switch-

ing points of systems whose discrete behavior is reflected in the

data by an abrupt variation of the spatial orientation of clusters.

The method presented is interpretable as an “inverse” form of

the merge method of clusters presented in [42],[49], where, in-

stead of merging similar clusters, clusters that differ a lot are

used to detect switching points and to define a complete parti-

tion χ̂i, i = 1, ..., ŝ, over the regressor space. The slope changes

concept has been used recently for the statistical monitoring of

nonlinear profiles in [50].

Once the partition is known, the local TS models f TS
i

(·), i =

1, ..., ŝ, are identified by classifying the data according to the

rule: the datum (y(t), yt−1,ut−1) is used for the identification of

f TS
i

(·) if yt−1 ∈ χ̂i.

3.1. Hybrid-Fuzzy Model Identification Procedure

Throughout this paper, we assume that a sequence of N in-

put/output data have been collected:

Φ =



































y(1) (y0)T (u0)T

y(2) (y1)T (u1)T

...
...

...

y(N) (yN−1)T (uN−1)T



































N,na+m·nb+1

, (6)

where N denotes the number of data samples.

The identification procedure consists of seven steps. In the

Step 1, based on the G-K algorithm, the information of the

clusters (center, covariance matrices, eigenvectors and eigen-

values) is obtained. Then, in Step 2 the principal components

are extracted. Next, with the projections on the regressors

space obtained in Step 3 and in Step 4, the cluster slopes are

calculated. With the cluster slopes, in Step 5 the switching

points are determined. In Step 6 the partition is generated, and

finally in the Step 7 the local fuzzy models are identified. The

details of each step are explained next.

Step 1: Clustering. Determine the fuzzy clusters over the

data Φ, using the G-K algorithm [41]. This algorithm includes

fuzzy covariances in an n-dimensional space, and closely re-

sembles maximum likelihood estimation on mixture densities.

It is suitable for the identification of hybrid-fuzzy models be-

cause the consequents of hybrid-fuzzy models are hyperplanes

in the premise-consequent product space. The algorithm will

cluster the data given a specified number of clusters c, the

parameters for the cluster fuzziness, and the stopping crite-

rion. The G-K algorithm provides the centers of the clusters

vl = [v1
l
, ..., v

na+m·nb+1

l
]T , a covariance matrix for each fuzzy

cluster l, with na + m · nb + 1 eigenvectors ϕ1,l, . . . , ϕna+m·nb+1,l,

and with the corresponding eigenvalues λ1,l, . . . , λna+m·nb+1,l.

It is well known that the G-K algorithm does not give an

indication of the correct number of clusters c needed. A

large number of clusters will result in a complicated rule-base

model, while a small number of clusters will result in a poor

model. So to obtain the optimum number of clusters, the use

of a compatible cluster merging method is proposed, just like

it is suggested for the identification of TS models in [42], [49].

This method works as follows: let the center of two clusters

be vl1 and vl2 , with ϕ1,l1 and ϕ1,l2 the eigenvectors associated

with the minimum eigenvalue λ1,l1 and λ1,l2 respectively. The

criteria to merge the clusters proposed in [49] consider that

the nearly-parallel major axes of consecutive clusters should

be merged (|ϕ1,l1 · ϕ1,l2 | ≥ k1, with k1 close to 1) and also

4



the cluster centers should be sufficiently close for merging

(‖vl1 − vl2‖2 ≤ k2, with k2 close to 0). In this step we could also

use a set of cluster validity metrics like fuzzy entropy, fuzzy

hypervolume, etc.

Step 2: Principal components. First select the eigenvec-

tor ϕ∗
l
= [φ1

l
, φ2

l
, ..., φ

na+m·nb+1

l1
]T associated with the maximum

eigenvalue λ∗
l

for each cluster l = 1, . . . , c:

λ∗l = max{λ1,l, λ2,l, . . . , λna+m·nb+1,l}. (7)

The switching points are obtained by analyzing the most

important eigenvectors (the principal vectors or the principal

components), in the direction of which the most information is

given. Inspired by the merge method for clusters [49], instead

of merging clusters with nearly-parallel major axes, we will

split the output-regressor space when those consecutive clus-

ters are very different (i.e. the angle between the hyperplanes

is big). It is assumed that the switching points are defined by

the outputs, so the analysis is done for each component of the

output-regressor space y(t − k), k = 1, ..., na.

Step 3: Projections. For every cluster l = 1, ..., c and every

component of the output regressor space y(t − k), k = 1, ..., na,

calculate the vector π̂lk, which represents the projection of the

eigenvector ϕ∗
l

on the subspace given by the inputs and the out-

put y(t − k), and which is given by:

π̂lk =
Φkϕ

∗
l

‖Φkϕ
∗
l
‖2
, ∀l = 1, ..., c, ∀k = 1, ..., na, (8)

where ϕ∗
l

is the eigenvector chosen in Step 2 andΦk is the matrix

of dimension (na + m · nb + 1) × (na + m · nb + 1), the elements

of which are defined as:

(Φk)ℓ,℘ =



















1 if ℓ = ℘ = k + 1,

1 if ℓ = ℘ and ℓ > na + 1,

0 if otherwise.

(9)

Note that the vector is normalized, so ‖π̂lk‖2 = 1. Note also

that (8) is just the projection of the eigenvector on the sub-space

generated by the inputs and the output y(t − k).

For every vector π̂lk determine π̂u
lk

which represents the pro-

jection of π̂lk in the subspace generated by the inputs, and which

is obtained in the following way:

π̂u
lk =

Φuπ̂lk

‖Φuπ̂lk‖2
, ∀l = 1, ..., c, ∀k = 1, ..., na, (10)

where π̂il is the vector obtained in Step 3, and Φu is the matrix

of dimension (na + m · nb + 1) × (na + m · nb + 1), the elements

of which are defined as:

(Φu)ℓ,℘ =

{

1 if ℓ = ℘ and ℓ > na + 1,

0 if otherwise.
(11)

Note that the vector is normalized, so ‖π̂u
lk
‖ = 1. Note also

that in (10) we are just projecting (8) on the subspace generated

by the inputs. This vector is used to define the angle we need to

estimate the switching point.

Step 4: Cluster slope. Let γ̂lk be the estimation of the angle

between π̂lk and π̂u
lk

. It is possible to obtain this angle by calcu-

lating arccos
(

π̂T
lk
π̂u

lk

)

. Then, for each cluster l and every output

variable y(t − k), compute the cluster slope Γlk = tan(γ̂lk) given

by:

Γlk = tan(arccos
(

π̂T
lk
π̂u

lk

)

) =
|π̂T

lk
π̂u

lk
|

π̂T
lk
π̂u

lk

√

1

(π̂T
lk
π̂u

lk
)2 − 1,

∀l = 1, ..., c, ∀k = 1, ..., na,
(12)

As an example consider Figure 3 with yt−1 = y(t − 1),

ut−1 = u(t − 1). Figure 3-a shows the data with the correspond-

ing clusters, and the lines inside the cluster represent the vectors

ϕ∗
l

associated with the maximum variance for each cluster. Fig-

ure 3-b shows the projections of the vectors ϕ∗
l

and the angles

γ̂lk.

Figure 3: a) Representation of projections obtained in Step 3, b) and angles

obtained in Step 4

Step 5: Switching points. In this step the switching points

candidates are determined for each variable y(t−k), k = 1, ..., na.

Consider two consecutive clusters l1 and l2, with centers vl1 and

vl2 in descending order for the component k of the vector related

with the variable y(t − k), (vk
l1
< vk

l2
).

The candidate switching point should be in between the co-

ordinates vk
l1

and vk
l2

. A good estimator of the switching point

5



could be the coordinate vk
l1
+
√

λ∗
l1
φk

l1
, which is interpretable as

the coordinate obtained when running from the center of the el-

lipsoid cluster l1, given by vk
l1

, through the k-th axis, up to the

edge of the ellipsoid. The value λ∗
l1

is the eigenvalue obtained in

Step 2 corresponding to cluster l1, and φk
l1

the k-th coordinate of

the corresponding eigenvector. For the same reason, if the clus-

ter l2 is used, which is on the other side of the switching point,

the value vk
l2
−
√

λ∗
l2
φk

l2
can be chosen as a candidate switching

point. Then, for estimating the location of the switching point

V
l1l2
k

, a weighted sum of those coordinates is proposed:

V
l1l2
k
=

vk
l1
+
√
λ∗

l1
φk

l1

λ∗
l1

+
vk

l2
−
√
λ∗

l2
φk

l2

λ∗
l2

1
λ∗

l1

+ 1
λ∗

l2

, (13)

where φk
l1

and φk
l2

are the k-th coordinates of the corresponding

eigenvectors. The weighted sum represents the fact that from

experiments we found out that the switching points are usually

closer to the cluster with the smaller eigenvalue. Better methods

to estimate the switching point location can be further investi-

gated.

The next step is to choose the switching point candidates V
l1l2
k

the rate ∆Γl1l2k of which satisfies a criterion. The rate ∆Γl1l2k is

given by:

∆Γl1l2k =
∣

∣

∣Γl1k − Γl2k

∣

∣

∣ . (14)

One criterion could be to select rates ∆Γl1l2k that are larger

than a given threshold. For example, a threshold could be the

mean value of ∆Γl1l2k (denoted as ∆Γk), plus two times its stan-

dard deviation (σ∆Γk
). So, if all the rates are similar, this means

that there is not a switching point in the variable y(t−k). Other-

wise, just the clusters with a larger variation will be considered.

The main advantage of this method is the chance to obtain a

good estimation of all the switching points in a row, without

any further analysis. The main drawback in this criterion is the

possibility to miss switching points (or include not switching

points) if the threshold is not appropriate.

As an alternative to the threshold criterion, a sensitivity

analysis could be performed to evaluate if the inclusion of a

switching point improves the performance of the prediction

model while keeping the complexity of the model reduced.

If so, one extra switching point will be included, the corre-

sponding hybrid-fuzzy model identified, and then Step 5 is

analyzed again, to determine the inclusion of another switch-

ing point. The process will finish once a the performance of

the hybrid-fuzzy model does not improve significantly (within

some thresholds) by the inclusion of new switching points. So,

let us assume we have generated a partition {χ̂i}ŝ−1
i=1

. We now

analyze the inclusion of a new switching point in the model, by

splitting the region χ̂i into two new regions defined by the new

switching point. So, let consider the switching point candidate,

with the maximum rate, given by:

Vŝ = {V l1l2

k
: (l1, l2, k) = argmax{∆Γl1l2k}}. (15)

Step 6: Generation of the partition. The region χ̂i is di-

vided into two new regions. Recall that the region χ̂i is defined

as follows:

χ̂i =
{

yt−1 : Hiy
t−1 � hi

}

,

where Hi ∈ Rqi×na is diagonal, hi ∈ Rqi i = 1, ..., s, the symbol

� denotes componentwise inequality, where some inequalities

are strict to avoid the boundaries of the regions to have multiple

values. Given the new switching point Vŝ in the variable y(t−k),

the two new regions are defined as follows:

χ̂i
1 =
{

yt−1 : Hiy
t−1 � hi ∧ y(t − k) ≤ Vŝ

}

.

χ̂i
2 =
{

yt−1 : Hiy
t−1 � hi ∧ −y(t − k) < −Vŝ

}

.

Step 7: Fuzzy identification. For the sub-regions χ̂i
1

and

χ̂i
2
, a local TS model is identified. First, the data belong-

ing to the region χ̂i is split into the two new regions, by the

rule: if y(t − k) ≤ Vŝ then (y(t), (yt−1)T , (ut−1)T ) ∈ χ̂i
1
, else

(y(t), (yt−1)T , (ut−1)T ) ∈ χ̂i
2
, t = 1, ...,N. Then, for each new

partition, just considering data that belongs to the subregion,

the number of rules Ri and the membership functions Ai j,r(·)
are obtained with a clustering method (G-K). Each TS model is

optimized for the number of fuzzy clusters and their regressor

structure is obtained by a sensitivity analysis, (see [30], [29]

and [51]).

The next step is to identify the consequent parameters of each

rule of the TS model, (see [52], [53], [54] and [34]). Let us

write the consequent parameters for the fuzzy rule j in the re-

gion i as follows:

Θi j =





















ai j

bi j

ri j





















, (16)

An identification procedure is carried out by minimizing the

following cost function with respect to the unknown parameters

Θi j:

VNi j
=

1

Ni j

Ni j
∑

t=1

(

βi j(z
t−1)
)2 (

y(t) −
[

(yt−1)T (ut−1)T 1
]

Θi j

)2

(17)

where Ni j is the number of input-output data pairs correspond-

ing to the rule j of the region i considering only the data that

belongs to the region i and for which βi j(z(t − 1)) ≥ δ, with δ a

small positive number.

The model parameters for the rule j of region i can be ob-

tained using the least squares identification method as follows:

Θi j = (ΨT
i jΨi j)

−1ΨT
i jYi j (18)
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where the matrices Ψi j and Yi j are as follows:

Ψi j =



































βi j(z
0)[(y0)T (u0)T 1]

βi j(z
1)[(y1)T (u1)T 1]

...

βi j(z
Ni j−1)[(yNi j−1)T (uNi j−1)T 1]



































, (19)

Yi j =



































βi j(z
0)y(1)

βi j(z
1)y(2)
...

βi j(z
Ni j−1)y(Ni j)



































, (20)

By the identification of each rule (not the overall model), and

also by weighting the data for the corresponding activation

degree of each rule βi j, a better conditioning of the matrices

is obtained, compared to the conditioning of the whole data

matrix. This approach leads to a better estimation of the

hybrid-fuzzy model parameters as the data close to the center

of the cluster will be more important to minimize than the

data at the borders. This fact can help with the problem of

misclassification of data, where due to errors in the estimation

of the switching points or due to the noise of the system, a

data point belonging to one region is considered to belong to

another.

Remarks:

• The proposed generation of the partition (2) is quite lim-

ited as it is defined by diagonal matrices Hi, i = 1, ..., s.

Systems defined by another kind of partitions like polyhe-

dral (Hiy
t−1 − hi � 0 with Hi non diagonal), or a nonlinear

partition (Hi(y
t−1) � 0 with Hi a nonlinear function), will

not fit into this configuration. The proposed method im-

proves the monitoring and prediction capabilities in some

processes, but the analysis and algorithms for a more gen-

eral case is topic for the further research.

• Note that, as we first perform the identification of the dis-

crete transitions, our method can be adapted for use as a

key element in other modeling methods for hybrid sys-

tems. For instance, other modeling tools can be used in-

stead of a fuzzy system like neural networks, PWA sys-

tems, etc., to create subsystems models after the successful

identification of the discrete modes.

4. Simulation results

Next, an illustrative experiment on a hybrid-tank system is

described. Then, as an empirical validation of the method,

based on real-life data measured on a part of a highway in The

Netherlands, the results of the hybrid-fuzzy identification of a

first-order traffic model is presented.

4.1. Hybrid Tank System

Let us consider the hybrid tank system shown in Figure 2.

The following nonlinear equations describe the dynamics of the

tank system:

dh

dt
=











































1

A1

(Q(t) − Q1(h(t))) if h(t) ≤ h1

1

A2

(Q(t) − Q2(h(t)))) if h1 < h(t) ≤ h2

1

A3

(Q(t) − Q3(h(t))) if h2 < h(t)

, (21)

where h(t) [m] is the level of the tank at time t, u(t) = Q(t)

[m3/s] is the input flow, Q1(h(t)) = S 1

√

2gh(t) is the out-

flow of the first part of the tank, the outflow of the second

part is Q2(h(t)) = S 2

√

2g(h(t) − h1) + Q1(h(t), Q3(h(t)) =

S 3

√

2g(h(t) − h2)+Q2(h(t))+Q1(h(t)) is the outflow of the third

part, A1 = 0.0154 [m2] is the cross-section of the first part of the

tank, the cross-sections of the second and third parts are given

by A2 = 3A1, A3 = 9A1, S 1 = S 2 = S 3 = 0.0005 [m2] are the

cross-sections of the outlet holes, and g = 9.81 [m2/s] is the

acceleration due to gravity, h1 = 0.2 [m] and h2 = 0.4 [m]. We

will assume that just input-output data shown in Figure 4 are

available for identification and validation. For the input Q(t)

a uniformly distributed random signal with minimum value 0,

maximum value 0.005, and sample time 0.1 [s] was used. The

experiment was designed in a way to just have a good num-

ber of h1 and h2 crossings. A total of 4000 samples were used

as identification set, and 4000 as the validation set. The re-

sults presented next were obtained with signals sampled with

Ts = 0.1 [s].
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Figure 4: Input/output data.

The identification problem is to find the relation between h(t)

and Q(t) considering the input/output data. The main goal is to

find the number of switching regions and the switching points

(in this case h1 = 0.2 [m] and h2 = 0.4 [m]), that define the

partition. After an optimization of the order of the models,

first-order model is considered good enough to predict the dy-

namics of the system, so the input/output data vectors consid-

ered are yt−1 = h(t − 1) as the output and ut−1 = Q(t − 1) as
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the input. In order to evaluate the performance of the hybrid-

fuzzy model (with one and two switching points detected) and

a TS model (with no switching point included), the Root Mean

Squared (RMS) error is used.

4.1.1. TS Modeling Results

The G-K algorithm was used to obtain the clusters. The

premises were obtained by denormalization of the cluster pa-

rameters given by the G-K algorithm with normalized data.

The consequent parameters were obtained using the method

explained in Step 7. The number of clusters obtained from a

sensitivity analysis was six. The number of clusters can be in-

creased if a smaller RMS is needed; however, the complexity

of the model will then also increase. Just to be fair in the com-

parison with the hybrid-fuzzy model, the number of rules will

be the same as the TS model.

The TS model is given by:

R j : if h(t − 1) is A j,1 and Q(t − 1) is A j,2 then h(t) = a j1h(t −
1) + b j1Q(t − 1) + r j, j = 1, .., 6.

where A j,l(zl(t − 1)) = e−0.5(c1, j,l(zl(t−1)−c2, j,l))
2

.

The parameters of the premises and the consequents of the

TS model are listed in Table I.

Table 1: Parameters of TS model
Rules c1, j,1 c2, j,1 c1, j,2 c2, j,2 a j1 b j1 r j

j = 1 0.0093 0.2393 2.3866 0.0015 0.9886 1.5045 0.0005

j = 2 0.6257 0.1013 0.0935 0.0006 0.9884 1.5274 0.0005

j = 3 3.2164 0.4244 0.0086 0.0028 0.9899 1.2738 0.0006

j = 4 0.0211 0.3417 2.0847 0.0020 0.9886 1.5045 0.0005

j = 5 2.4465 0.3778 0.0156 0.0031 0.9891 1.4083 0.0005

j = 6 2.1503 0.5101 0.0261 0.0035 0.9898 1.2978 0.0006

4.1.2. Hybrid-Fuzzy Model Results

The same procedure based on the G-K algorithm used for TS

model is performed. Using the covariance matrices, given by

the G-K algorithm from Step 1, the eigenvalues and eigenvec-

tors associated with each cluster are determined. Each cluster

has 3 eigenvalues and 3 eigenvectors. Then, the eigenvector

(ϕ∗
l
) associated with the largest eigenvalue for each cluster is

considered. The projections of the eigenvectors obtained from

Step 2 are determined and the slopes of the projected eigen-

vectors with respect to the coordinate h(t − 1) were computed.

The rates of consecutive clusters are calculated. Each rate is

associated with the estimated switching point in the coordinate

h(t − 1), by using (13). A switching point was estimated to

be in h(t − 1) = 0.2037 [m] (the real value is 0.2). After

splitting the data into the new regions h(t − 1) ≥ 0.2037 and

h(t − 1) < 0.2037, the rates between consecutive clusters be-

longing to each region are calculated again, the second switch-

ing point being estimated to be in h(t − 1) = 0.4018 [m] (the

real value is 0.4).

Two hybrid-fuzzy models are identified. The first one

(hybrid-fuzzy 1) considering one estimated switching point

h(t−1) = 0.2037. The second model (hybrid-fuzzy 2) considers

switching points h(t−1) = 0.2037 and h(t−1) = 0.4018. For the

model hybrid-fuzzy 1 there are two subregions (ŝ = 2): The first

one is χ̂11, where h(t − 1) ≥ 0.2037. The second is χ̂12, where

h(t−1) < 0.2037. For the model hybrid-fuzzy 2 There are three

subregions (ŝ = 3): The first one is χ̂21, where h(t−1) < 0.2037.

The second is χ̂22, where h(t−1) < 0.4018 and h(t−1) ≥ 0.2037.

The third is χ̂23, where h(t − 1) ≥ 0.4018. Finally, using the

proposed identification method, local TS models for the corre-

sponding switching regions are computed, optimizing the num-

ber of clusters per region. In total six rules are used in each

hybrid-fuzzy model, so the results will be comparable with the

6 rules of the TS model obtained before. Finally, the structure

of hybrid-fuzzy model with two switches (three subregions) is

given by:

R1 j: if h(t − 1) ∈ χ̂21 and h(t − 1) is A1, j,1 and Q(t − 1) is

A1, j,2, then h(t) = a1 j1h(t − 1) + b1 j1Q(t − 1) + r1 j, j = 1, 2.

R2 j: if h(t − 1) ∈ χ̂22 and h(t − 1) is A2, j,1 and Q(t − 1) is

A2, j,2, then h(t) = a2 j1h(t − 1) + b2 j1Q(t − 1) + r2 j, j = 1, 2

R3 j: if h(t − 1) ∈ χ̂23 and h(t − 1) is A3, j,1 and Q(t − 1) is

A3, j,2, then h(t) = a3 j1h(t − 1) + b3 j1Q(t − 1) + r3 j, j = 1, 2

where Ai j,r(zr(t − 1)) = e−0.5(c1,i j,r(zr(t−1)−c2,i j,r))2

. The parameters

for hybrid-fuzzy models are given in Table 2 (hybrid-fuzzy 1)

and Table 3 (hybrid-fuzzy 2).

Table 2: Parameters of the model hybrid-fuzzy 1 (2 subregions)

χ̂12 c1,1 j,1 c2,1 j,1 c1,1 j,2 c2,1 j,2 a1 j1 b1 j1 r1 j

j = 1 4.5845 179.2749 0.5278 0.0026 -0.1549 0.7641 79.5937

j = 2 7.0266 116.9673 0.4418 0.0022 -0.1711 0.7818 82.4465

j = 3 6.5462 125.5516 0.4694 0.0024 -0.1668 0.7787 81.3518

j = 4 4.3358 189.5602 0.4832 0.0024 -0.1594 0.7684 80.6628

j = 5 3.7419 219.6468 0.4455 0.0022 -0.1619 0.7709 81.4176

χ̂11 c1,2 j,1 c2,2 j,1 c1,2 j,2 c2,2 j,2 a2 j1 b2 j1 r2 j

j = 1 2.9461 167.8887 0.2734 0.0014 0.0391 0.1361 100.4664

j = 2 4.5124 109.614 0.0563 0.0003 0.047 0.0849 100.8289

j = 3 3.8836 127.362 0.2698 0.0013 0.0375 0.144 99.7747

j = 4 2.0879 236.8959 0.23 0.0012 0.037 0.1288 103.0967

j = 5 3.2343 152.9293 0.3015 0.0015 0.0383 0.1424 99.9024

Table 3: Parameters of the model hybrid-fuzzy 2 (3 subregions)

χ̂23 c1,1 j,1 c2,1 j,1 c1,1 j,2 c2,1 j,2 a1 j1 b1 j1 r1 j

j = 1 4.4844 183.2774 0.4689 0.0023 -0.1617 0.7711 81.0272

j = 2 5.3606 153.3211 0.4403 0.0022 -0.1675 0.7776 81.9565

j = 3 5.1186 160.5671 0.5224 0.0026 -0.1572 0.7679 79.6844

χ̂22 c1,2 j,1 c2,2 j,1 c1,2 j,2 c2,2 j,2 a2 j1 b2 j1 r2 j

j = 1 7.8234 129.1493 0.3513 0.0018 0.0213 0.2117 98.2485

j = 2 4.7129 214.3854 0.2462 0.0012 0.0119 0.224 101.4305

j = 3 4.4403 227.5493 0.2857 0.0014 0.0137 0.2217 101.0792

χ̂21 c1,3 j,1 c2,3 j,1 c1,3 j,2 c2,3 j,2 a3 j1 b3 j1 r3 j

j = 1 6.679 146.8651 0.0933 0.0005 0.0539 -0.0366 102.6413

j = 2 5.555 176.5839 0.0277 0.0001 0.0531 -0.0437 103.5835

j = 3 5.6231 174.4456 0.1562 0.0008 0.0511 -0.0331 103.9583

j = 4 9.1069 107.7121 0.1488 0.0007 0.0515 -0.0251 102.7786

4.1.3. Comparative Analysis

Figure 5 contains the RMS for the TS model, hybrid-fuzzy

model with one switch (hybrid-fuzzy 1) and hybrid-fuzzy

model with two switches (hybrid-fuzzy 2), considering the vali-

dation data set for Np step-ahead predictions. Figure 6 show the
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measured output and the predicted modes using Hybrid-Fuzzy

Model 2, in the case of 200 step-ahead-prediction.
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Figure 5: N-step-ahead prediction error.
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Figure 6: Measured and 200-step-ahead predicted (a) output, (b) and modes

using Hybrid-Fuzzy Model 2 .

The switching points detected at h(t − 1) = 0.4018 and

h(t − 1) = 0.2037 are a fairly good estimation. From Figures

5 and 6, the main advantage of hybrid-fuzzy modeling are its

fuzzy rules, which can be used directly to detect the modes of

the system as shown in Figure 6.

The three-level tank system is a simple example to show the

benefits of the new identification method. In a real-world im-

plementation of this system some effects like turbulence and

boundary-layer effects in the transition between the tanks will

be found. Next, in order to get an empirical validation using

real-life data, the method is applied for the hybrid-fuzzy identi-

fication of the density in a highway.

4.2. Hybrid-fuzzy Identification for Density Traffic Monitoring

A 1.915 km long stretch of the A12 freeway, in The Nether-

lands has been used as test field to validate the identification

method. The stretch used is in the segment that crosses the

Dutch province of South Holland. In Fig. 7 the scheme of

the stretch is depicted. In this paper, the identification proce-

dure will be explained with a single-link case study, with no

on-ramps or off-ramps.
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Figure 7: Schematic sensor positions and cells of the part of the A12 freeway

in The Netherlands .

A period of six hours (5:00-11:00) representative of typical

working Monday will be modeled. The data from two repre-

sentative days were used for identification, and for validation

another day was used. The highway is divided in 4 sections or

cells (see Fig. 7). The density in the section i is denoted by ρi(t),

and the density in the next section of the highway is denoted by

ρi+1(t), and so on. The model structure of a typical first-order in

time traffic model is considered. Then, for example, to model

the density ρi(t) the regressors ρi−1(t−1), ρi(t−1), and ρi+1(t−1)

are used. Note that those are the same regressors used by the

cell transmission model [55]. Thus, the hybrid-fuzzy model to

identify for each section i = 1, ..., 4 is:

ρi(k + 1) =

si
∑

p=1

f TS
i,p (ρi(k), ρi−1(k), ρi+1(k))δi,p(ρi(k)) (22)

where the output is y(k) = ρi(k), the densities at the neighbor-

ing links are the inputs u(k) = [ρi−1(k), ρi+1(k)]T and the num-

ber of switching points is si. To evaluate the model for the

four segments, the densities at the boundaries ρ0(k) and ρ5(k)

are considered as inputs. For simplicity, the four hybrid-fuzzy

models of the freeway will have the same discrete modes repre-

sentation, thus δi,p(ρi(k)) = δp(ρi(k)). Next, results for the case

si = 3 are presented.

In Figure 8 the slope rates obtained for the 4 densities of the

highway. Only the two higher slope rates are used as criterion

to split the data.

From Figure 8, the switches (sorted from the most relevant)

are ρi(k) = 30.17 and ρi(k) = 22.06. In the Figure 9 the

predicted density for each segment and the estimated modes

δi(k) =
∑si

s=1
δi,s(k) are shown. The most relevant part of the

hybrid-fuzzy models is the estimation of the modes, not only

because the method suggests a natural classification of the op-

erational modes of the system, (in this case three modes, con-

gested if ρi(k) > 30.17, free flow if ρi(k) < 22.06, otherwise

transition mode), but also because the prediction model is good

enough to estimate the densities in current mode.
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Figure 9: Predicted densities and modes

5. Conclusions

In this paper a new identification method for nonlinear hy-

brid systems that identifies discrete transitions by using only

input-output data has been presented. A hybrid-fuzzy model

was identified that consists of a local fuzzy level and a dis-

crete/quantized level. Thus, the hybrid-fuzzy model incorpo-

rates explicitly the hybrid behavior of the process. Moreover,

the method was implemented and applied to a hybrid tank sys-

tem and a first-order traffic model. The use of principal com-

ponent analysis demonstrated to be very useful in the detection

of switching points. In the simulation results we obtain a small

prediction error using the hybrid-fuzzy model. However, we

must point out that the main advantage of hybrid-fuzzy mod-

eling are the fuzzy rules with explicit information about the

modes of the plant, which can be used directly to detect the

discrete transitions of the system.

In further research, new approaches of hybrid-fuzzy identifi-

cation will be analyzed such as a fuzzy clustering that generates

the partitions (for the fuzzy rules together with the hybrid be-

havior). With the fuzzy clustering approach, the switching point

candidates are located close to the border of the ellipsoid clus-

ters. Therefore, further research should focus on different meth-

ods to characterize this phenomenon. Also, after the success-

ful identification of the discrete modes, other models instead

of fuzzy systems could be used to create the subsystem models

(neural networks, linear models, PWA, among others). State-

space model identification and estimation is also an interesting

topic for this class of nonlinear systems. Online clustering, or

learning methods could be also applied in a further stage.

Acknowledgment

This research has been supported by the European 7th

Framework Network of Excellence “Highly complex and net-

worked control systems (HYCON2)” Grant 257462, by Fonde-

cyt Chile Grant 1110047, CONICYT/FONDAP/15110019, and

by the Ministry of Science, Higher Education and Technology

of the Republic of Slovenia.

References

[1] B. De Schutter, W.P.M.H. Heemels, J. Lunze and C. Prieur, Survey of

modeling, analysis, and control of hybrid systems, In J. Lunze and F.

Lamnabhi-Lagarrigue, editors, Handbook of Hybrid Systems Control &

Theory, Tools, Applications, chapter 2, pages 31-55. Cambridge Univer-

sity Press, Cambridge, UK, 2009.

[2] R.K. Boel, B. De Schutter, G. Nijsse, J.M. Schumacher and

J.H. van Schuppen, Approaches to modelling, analysis, and control of

hybrid systems, Journal A, vol. 40, pp. 16-27, 1999.

[3] A. Bemporad and M. Morari, Control of systems integrating logic, dy-

namics and constraints, Automatica, vol. 35(3), pp. 407-427, 1999.

[4] W.P.M.H. Heemels, B. De Schutter and A. Bemporad, Equivalence of

hybrid dynamical models, Automatica, vol. 37(7), pp. 1085-1091, 2001.
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