
Delft University of Technology
Delft Center for Systems and Control

Technical report 14-010

Forward reachability computation for
autonomous max-plus-linear systems∗

D. Adzkiya, B. De Schutter, and A. Abate

If you want to cite this report, please use the following reference instead:
D. Adzkiya, B. De Schutter, and A. Abate, “Forward reachability computation for
autonomous max-plus-linear systems,” Proceedings of the 20th International Confer-
ence on Tools and Algorithms for the Construction and Analysis of Systems (TACAS
2014), Grenoble, France, pp. 248–262, Apr. 2014.

Delft Center for Systems and Control
Delft University of Technology
Mekelweg 2, 2628 CD Delft
The Netherlands
phone: +31-15-278.24.73 (secretary)
URL: https://www.dcsc.tudelft.nl

∗ This report can also be downloaded via https://pub.bartdeschutter.org/abs/14_010.html

https://www.dcsc.tudelft.nl
https://pub.bartdeschutter.org/abs/14_010.html

Forward Reachability Computation for

Autonomous Max-Plus-Linear Systems ⋆

Dieky Adzkiya1, Bart De Schutter1, and Alessandro Abate2,1

1 Delft Center for Systems and Control
TU Delft – Delft University of Technology, The Netherlands

{d.adzkiya,b.deschutter,a.abate}@tudelft.nl
2 Department of Computer Science

University of Oxford, United Kingdom
alessandro.abate@cs.ox.ac.uk

Abstract. This work discusses the computation of forward reachabil-
ity for autonomous (that is, deterministic) Max-Plus-Linear (MPL) sys-
tems, a class of continuous-space discrete-event models that are relevant
for applications dealing with synchronization and scheduling. Given an
MPL model and a set of initial states, we characterize and compute its
“reach tube,” namely the sequential collection of the sets of reachable
states (these sets are regarded step-wise as “reach sets”). We show that
the exact computation of the reach sets can be quickly and compactly
performed by manipulations of difference-bound matrices, and derive
explicit worst-case bounds for the complexity of these operations. The
concepts and techniques are implemented within the toolbox VeriSiMPL,
and are practically elucidated by a running example. We further dis-
play the computational performance of the approach by two concluding
numerical benchmarks: the technique comfortably handles reachability
computations over twenty-dimensional MPL models (i.e., models with
twenty continuous variables), and it clearly outperforms an alternative
state-of-the-art approach in the literature.

1 Introduction

Reachability analysis is a fundamental problem in the areas of formal meth-
ods and of systems theory. It is concerned with assessing whether a certain set
of states of a system is attainable from a given set of initial conditions. The
problem is particularly interesting and compelling over models with continuous
components – either in time or in the (state) space. For the first class of models,
reachability has been widely investigated over discrete-space systems, such as
timed automata [1, 2], or (timed continuous) Petri nets [3], or hybrid automata
[4]. On the other hand, much research has been done to enhance and scale the

⋆ This work has been supported by the European Commission STREP project MoVeS
257005, by the European Commission Marie Curie grant MANTRAS 249295, by the
European Commission IAPP project AMBI 324432, by the European Commission
NoE Hycon2 257462, and by the NWO VENI grant 016.103.020.

reachability analysis of continuous-space models. Among the many approaches
for deterministic dynamical systems, we report here the use of face lifting [5], the
computation of flow-pipes via polyhedral approximations [6, 7], the formulation
as solution of Hamilton-Jacobi equations [8] (related to the study of forward and
backward reachability [9]), the use of ellipsoidal techniques [10, 11], differential
inclusions [12], support functions [13], and Taylor models [14].

Max-Plus-Linear (MPL) models are discrete-event systems [15] with con-
tinuous variables that express the timing of the underlying sequential events.
Autonomous MPL models are characterized by deterministic dynamics. MPL
models are employed to describe the timing synchronization between interleaved
processes, and as such are widely employed in the analysis and scheduling of
infrastructure networks, such as communication and railway systems [16] and
production and manufacturing lines [17]. They are related to a subclass of timed
Petri nets, namely timed-event graphs [15], however not directly to time Petri
nets [18] nor to timed automata [1]. MPL models are classically analyzed over
properties such as transient and periodic regimes [15]. They can be simulated
(though not verified) via the max-plus toolbox Scilab [19].

Reachability analysis of MPL systems from a single initial condition has
been investigated in [20, 21] by the computation of the reachability matrix (as
for discrete-time linear dynamical systems). It has been shown in [22, Sect. 4.13]
that the reachability problem for autonomous MPL systems with a single initial
condition is decidable – this result however does not hold for a general, uncount-
able set of initial conditions. Under the limiting assumption that the set of initial
conditions is expressed as a max-plus polyhedron [23, 24], forward reachability
analysis can be performed over the max-plus algebra. In conclusion, to the best
of our knowledge, there exists no computational toolbox for general reachability
analysis of MPL models, nor it is possible to leverage software for related timed-
event graphs or timed Petri nets. As an alternative, reachability computation
for MPL models can be studied using the Multi-Parametric Toolbox (MPT) [25]
(cf. Section 4).

In this work, we extend the state-of-the-art results for forward reachabil-
ity analysis of MPL models by considering an arbitrary (possibly uncountable)
set of initial conditions, and present a new computational approach to forward
reachability analysis of MPL models. We first alternatively characterize MPL dy-
namics by Piece-wise Affine (PWA) models, and show that the dynamics can be
fully represented by Difference-Bound Matrices (DBM) [26, Sect. 4.1], which are
structures that are quite simple to manipulate. We further claim that DBM are
closed over PWA dynamics, which leads to being able to map DBM-sets through
MPL models. We then characterize and compute, given a set of initial states,
its “reach tube,” namely the sequential collection of the sets of reachable states
(aggregated step-wise as “reach sets”). With an emphasis on computational and
implementation aspects, we provide a quantification of the worst-case complexity
of the algorithms discussed throughout the work. Notice that although DBM are
a structure that has been used in reachability analysis of timed automata, this

does not imply that we can employ related techniques for reachability analysis
of MPL systems, since the two modeling frameworks are not equivalent.

While this new approach reduces reachability analysis of MPL models to
a computationally feasible task, the foundations of this contribution go beyond
mere manipulations of DBM: the technique is inspired by the recent work in [27],
which has developed an approach to the analysis of MPL models based on finite-
state abstractions. In particular, the procedure for forward reachability compu-
tation on MPL models discussed in this work is implemented in the VeriSiMPL

(“very simple”) software toolbox [28], which is freely available. While the general
goals of VeriSiMPL go beyond the topics of this work and are thus left to the
interested reader, in this article we describe the details of the implementation of
the suite for reachability analysis within this toolbox over a running example.
With an additional numerical case study, we display the scalability of the tool
as a function of model dimension (the number of its continuous variables): let
us emphasize that related approaches for reachability analysis of discrete-time
dynamical systems based on finite abstractions do not reasonably scale beyond
models with a few variables [29], whereas our procedure comfortably handles
models with about twenty continuous variables. In this numerical benchmark
we have purposely generated the underlying dynamics randomly: this allows
deriving empirical outcomes that are general and not biased towards possible
structural features of a particular model. Finally, we successfully benchmark the
computation of forward reachability sets against an alternative approach based
on the well-developed MPT software tool [25].

2 Models and Preliminaries

2.1 Max-Plus-Linear Systems

Define IRε, ε and e respectively as IR∪{ε}, −∞ and 0. For α, β ∈ IRε, introduce
the two operations α ⊕ β = max{α, β} and α ⊗ β = α + β, where the element
ε is considered to be absorbing w.r.t. ⊗ [15, Definition 3.4]. Given β ∈ IR, the
max-algebraic power of α ∈ IR is denoted by α⊗β and corresponds to αβ in the
conventional algebra. The rules for the order of evaluation of the max-algebraic
operators correspond to those of conventional algebra: max-algebraic power has
the highest priority, and max-algebraic multiplication has a higher priority than
max-algebraic addition [15, Sect. 3.1].

The basic max-algebraic operations are extended to matrices as follows. If
A,B ∈ IRm×n

ε ; C ∈ IRm×p
ε ; D ∈ IRp×n

ε ; and α ∈ IRε, then [α ⊗ A](i, j) =
α⊗A(i, j); [A⊕B](i, j) = A(i, j)⊕B(i, j); [C⊗D](i, j) =

⊕p

k=1 C(i, k)⊗D(k, j);
for i = 1, . . . ,m and j = 1, . . . , n. Notice the analogy between ⊕, ⊗ and +, ×
for matrix and vector operations in conventional algebra. Given m ∈ IN, the
m-th max-algebraic power of A ∈ IRn×n

ε is denoted by A⊗m and corresponds to
A ⊗ · · · ⊗ A (m times). Notice that A⊗0 is an n-dimensional max-plus identity
matrix, i.e. the diagonal and nondiagonal elements are e and ε, respectively. In
this paper, the following notation is adopted for reasons of convenience. A vector
with each component that is equal to 0 (or −∞) is also denoted by e (resp., ε).

Furthermore, for practical reasons, the state space is taken to be IRn, which also
implies that the state matrix has to be row-finite (cf. Definition 1).

An autonomous (that is, deterministic) MPL model [15, Remark 2.75] is
defined as:

x(k) = A⊗ x(k − 1) , (1)

where A ∈ IRn×n
ε , x(k − 1) = [x1(k − 1) . . . xn(k − 1)]T ∈ IRn for k ∈ IN. The

independent variable k denotes an increasing discrete-event counter, whereas
the state variable x defines the (continuous) timing of the discrete events. Au-
tonomous MPL models are characterized by deterministic dynamics. Related to
the state matrix A is the notion of regular (or row-finite) matrix and that of
irreducibility.

Definition 1 (Regular (Row-Finite) Matrix, [16, Sect. 1.2]) A max-plus
matrix A ∈ IRn×n

ε is called regular (or row-finite) if A contains at least one ele-
ment different from ε in each row.

A matrix A ∈ IRn×n
ε is irreducible if the nondiagonal elements of

⊕n−1
k=1 A

⊗k

are finite (not equal to ε). If A is irreducible, there exists a unique max-plus
eigenvalue λ ∈ IR [15, Th. 3.23] and the corresponding eigenspace E(A) = {x ∈
IRn : A⊗ x = λ⊗ x} [15, Sect. 3.7.2].

Example: Consider the following autonomous MPLmodel from [16, Sect. 0.1],
representing the scheduling of train departures from two connected stations
i = 1, 2 (xi(k) denotes the time of the k-th departure for station i):

x(k) =

[

2 5
3 3

]

⊗ x(k − 1) , or equivalently ,

[

x1(k)
x2(k)

]

=

[

max{2 + x1(k − 1), 5 + x2(k − 1)}
max{3 + x1(k − 1), 3 + x2(k − 1)}

]

.

(2)

Matrix A is a row-finite matrix and irreducible since A(1, 2) 6= ε 6= A(2, 1). ⊓⊔

Proposition 1 ([16, Th. 3.9]) Let A ∈ IRn×n
ε be an irreducible matrix with

max-plus eigenvalue λ ∈ IR. There exist k0, c ∈ IN such that A⊗(k+c) = λ⊗c ⊗
A⊗k, for all k ≥ k0. The smallest k0 and c verifying the property are defined as
the length of the transient part and the cyclicity, respectively.

Proposition 1 allows to establish the existence of a periodic behavior. Given
an initial condition x(0) ∈ IRn, there exists a finite k0(x(0)), such that x(k+c) =
λ⊗c ⊗ x(k), for all k ≥ k0(x(0)). Notice that we can seek the length of the
transient part k0(x(0)) specifically for the initial condition x(0), which is in
general less conservative than the global k0 = k0(A), as in Proposition 1. Upper
bounds for the length of the transient part k0 and for its computation have been
discussed in [30].

Example: In the example (2), from Proposition 1 we obtain a max-plus
eigenvalue λ = 4, cyclicity c = 2, and a (global) length of the transient part

k0 = 2. The length of the transient part specifically for x(0) = [3, 0]T can be
computed observing the trajectory

[

3
0

]

,

[

5
6

]

,

[

11
9

]

,

[

14
14

]

,

[

19
17

]

,

[

22
22

]

,

[

27
25

]

,

[

30
30

]

,

[

35
33

]

,

[

38
38

]

, . . .

The periodic behavior occurs (as expected) after 2 event steps, i.e. k0([3, 0]
T) =

2, and shows a period equal to 2, namely x(4) = 4⊗2 ⊗ x(2) = 8 + x(2), and
similarly x(5) = 4⊗2 ⊗ x(3). Furthermore x(k + 2) = 4⊗2 ⊗ x(k) for k ≥ 2. ⊓⊔

2.2 Piece-wise Affine Systems

This section discusses Piece-wise Affine (PWA) systems [31] generated by an
autonomous MPL model. In the following section, PWA systems will play an
important role in forward reachability analysis. PWA systems are characterized
by a cover of the state space, and by affine (linear plus constant) dynamics that
are active within each set of the cover.

Every autonomous MPL model characterized by a row-finite matrix A ∈
IRn×n

ε can be expressed as a PWA system in the event domain. The affine dy-
namics are characterized, along with its corresponding region, by the coefficients
g = (g1, . . . , gn) ∈ {1, . . . , n}n or, more precisely, as:

Rg =

n
⋂

i=1

n
⋂

j=1

{x ∈ IRn : A(i, gi) + xgi ≥ A(i, j) + xj} ; (3)

xi(k) = xgi(k − 1) +A(i, gi) , 1 ≤ i ≤ n . (4)

Implementation: VeriSiMPL employs a backtracking algorithm to generate
the PWA system. Recall that we are looking for all coefficients g = (g1, . . . , gn)
such that Rg is not empty. In the backtracking approach, the partial coefficients
are (g1, . . . , gk) for k = 1, . . . , n and the corresponding region is

R(g1,...,gk) =

k
⋂

i=1

n
⋂

j=1

{x ∈ IRn : A(i, gi) + xgi ≥ A(i, j) + xj} .

Notice that if the region associated with a partial coefficient (g1, . . . , gk) is empty,
then the regions associated with the coefficients (g1, . . . , gn) are also empty, for
all gk+1, . . . , gn. The set of all coefficients can be represented as a potential
search tree. For a 2-dimensional MPL model, the potential search tree is given
in Fig. 1. The backtracking algorithm traverses the tree recursively, starting from
the root, in a depth-first order. At each node, the algorithm checks whether the
corresponding region is empty: if the region is empty, the whole sub-tree rooted
at the node is skipped (pruned).

The function maxpl2pwa is used to construct a PWA system from an au-
tonomous MPL model. The autonomous MPL model is characterized by a row-
finite state matrix (Ampl), whereas the PWA system is characterized by a collec-
tion of regions (D) and a set of affine dynamics (A,B). The affine dynamics that

are active in the j-th region are characterized by the j-th column of both A and
B. Each column of A and the corresponding column of B contain the coefficients
[g1, . . . , gn]

T and the constants [A(1, g1), . . . , A(n, gn)]
T , respectively. The data

structure of D will be discussed in Section 2.3.
Considering the autonomous MPL example in (2), the following script gen-

erates the PWA system:

>> Ampl = [2 5;3 3], [A,B,D] = maxpl2pwa(Ampl)

It will become clear in Section 2.3 that the nonempty regions of the PWA system
produced by the script are: R(1,1) = {x ∈ IR2 : x1 − x2 ≥ 3}, R(2,1) = {x ∈ IR2 :

e ≤ x1 − x2 ≤ 3}, and R(2,2) = {x ∈ IR2 : x1 − x2 ≤ e}. The affine dynamics
corresponding to a region Rg are characterized by g, e.g. those for region R(2,1)

are given by x1(k) = x2(k − 1) + 5, x2(k) = x1(k − 1) + 3. ⊓⊔

IR
2

R(2)

R(2,2)R(2,1)

R(1)

R(1,2)R(1,1)

Fig. 1. Potential search tree for a 2-dimensional MPL model.

2.3 Difference-Bound Matrices

This section introduces the definition of a DBM [26, Sect. 4.1] and of its canonical-
form representation. DBM provide a simple and computationally advantageous
representation of the MPL dynamics, and will be further used in the next section
to represent the initial conditions and reach sets.

Definition 2 (Difference-Bound Matrix) A DBM is the intersection of fini-
tely many sets defined by xj−xi ⊲⊳i,j αi,j, where ⊲⊳i,j∈ {<,≤}, αi,j ∈ IR∪{+∞},
for 0 ≤ i 6= j ≤ n and the value of x0 is always equal to 0.

The special variable x0 is used to represent bounds on a single variable:
xi ≤ α can be written as xi − x0 ≤ α. A “stripe” is defined as a DBM that
does not contain x0. Definition 2 can be likewise given over the input and the
corresponding augmented space.

Implementation: VeriSiMPL represents a DBM in IRn as a 1×2 cell: the
first element is an (n+1)-dimensional real-valued matrix representing the upper
bound α, and the second element is an (n + 1)-dimensional Boolean matrix
representing the value of ⊲⊳. More precisely, the (i+1, j+1)-th element represents
the upper bound and the strictness of the sign of xj − xi, for i = 0, . . . , n
and j = 0, . . . , n (cf. Definition 2). Furthermore, a collection of DBM is also

represented as a 1×2 cell, where the corresponding matrices are stacked along
the third dimension. ⊓⊔

Each DBM admits an equivalent and unique canonical-form representation,
which is a DBM with the tightest possible bounds [26, Sect. 4.1]. The Floyd-
Warshall algorithm can be used to obtain the canonical-form representation of
a DBM, with a complexity that is cubic w.r.t. its dimension. One advantage
of the canonical-form representation is that it is easy to compute orthogonal
projections w.r.t. a subset of its variables, which is simply performed by deleting
rows and columns corresponding to the complementary variables [26, Sect. 4.1].

Implementation: The Floyd-Warshall algorithm has been implemented in
the function floyd warshall. Given a collection of DBM, this function generates
its canonical-form representation. The following MATLAB script computes the
canonical-form representation of D = {x ∈ IR4 : x1 − x4 ≤ −3, x2 − x1 ≤
−3, x2 − x4 ≤ −3, x3 − x1 ≤ 2}:

>> D = cell(1,2), ind = sub2ind([5,5],[4,1,4,1]+1,[1,2,2,3]+1)

>> D{1} = Inf(5), D{1}(1:6:25) = 0, D{1}(ind) = [-3,-3,-3,2]

>> D{2} = false(5), D{2}(1:6:25) = true, D{2}(ind) = true

>> Dcf = floyd warshall(D)

Let us discuss the steps in the construction of the DBM D. We first initial-
ize D with IR4 as D = cell(1,2), D{1} = Inf(5), D{1}(1:6:25) = 0, D{2} =

false(5), D{2}(1:6:25) = true. The variable ind contains the location, in lin-
ear index format, of each inequality in the matrix. We define the upper bounds
and the strictness in D{1}(ind) = [-3,-3,-3,2] and D{2}(ind) = true, re-
spectively. The output is Dcf = {x ∈ IR4 : x1−x4 ≤ −3, x2−x1 ≤ −3, x2−x4 ≤
−6, x3 − x1 ≤ 2, x3 − x4 ≤ −1}. Notice that the bounds of x2 − x4 and x3 − x4

are tighter. Moreover, the orthogonal projection of D (or Dcf) w.r.t. {x1, x2} is
{x ∈ IR2 : x2 − x1 ≤ −3}. ⊓⊔

The following result plays an important role in the computation of reacha-
bility for MPL models.

Proposition 2 ([27, Th. 1]) The image of a DBM with respect to affine dy-
namics (in particular the PWA expression (4) generated by an MPL model) is
a DBM.

Implementation: The procedure to compute the image of a DBM in IRn

w.r.t. the affine dynamics (4) involves: 1) computing the cross product of the
DBM and IRn; then 2) determining the DBM generated by the expression of
the affine dynamics (each equation can be expressed as the difference between
variables at event k and k−1); 3) intersecting the DBM obtained in steps 1 and
2; 4) generating the canonical-form representation; finally 5) projecting the DBM
over the variables at event k, i.e. {x1(k), . . . , xn(k)}. The worst-case complexity
critically depends on computing the canonical-form representation (in the fourth
step) and is O(n3).

The procedure has been implemented in dbm image. It computes the image
of a collection of DBM w.r.t. the corresponding affine dynamics. The following

example computes the image of D = {x ∈ IR2 : e ≤ x1 − x2 ≤ 3} w.r.t. x1(k) =
x2(k − 1) + 5, x2(k) = x1(k − 1) + 3:

>> D = cell(1,2), ind = sub2ind([3,3],[2,1]+1,[1,2]+1)

>> D{1} = Inf(3), D{1}(1:4:9) = 0, D{1}(ind) = [3,0]

>> D{2} = false(3), D{2}(1:4:9) = true, D{2}(ind) = true

>> A = [2;1], B =[5;3], Dim = dbm image(A,B,D)

The image is Dim = {x ∈ IR2 : −1 ≤ x1 − x2 ≤ 2}, which is a DBM. ⊓⊔
The result in Proposition 2 allows computing the image of a DBM in IRn

w.r.t. the MPL model characterized by a row-finite matrix A ∈ IRn×n
ε . In order

to do so, we leverage the corresponding PWA system dynamics and separate
the procedure in the following steps: 1) intersecting the DBM with each region
of the PWA system; then 2) computing the image of nonempty intersections
according to the corresponding affine dynamics (cf. Theorem 2). The worst-case
complexity depends on the last step and is O(|R(A)| · n3), where |R(A)| is the
number of regions in the PWA system generated by matrix A.

Proposition 2 can be extended as follows.

Corollary 1 The image of a union of finitely many DBM w.r.t. the PWA sys-
tem generated by an MPL model is a union of finitely many DBM.

3 Forward Reachability Analysis

The goal of forward reachability analysis is to quantify the set of possible states
that can be attained under the model dynamics, from a set of initial conditions.
Two main notions can be defined.

Definition 3 (Reach Set) Given an MPL model and a nonempty set of initial
positions X0 ⊆ IRn, the reach set XN at the event step N > 0 is the set of all
states {x(N) : x(0) ∈ X0} obtained via the MPL dynamics.

Definition 4 (Reach Tube) Given an MPL model and a nonempty set of ini-
tial positions X0 ⊆ IRn, the reach tube is defined by the set-valued function
k 7→ Xk for any given k > 0 where Xk is defined.

Unless otherwise stated, in this work we focus on finite-horizon reachability:
in other words, we compute the reach set for a finite index N (cf. Definition 3)
and the reach tube for k = 1, . . . , N , where N < ∞ (cf. Definition 4). While the
reach set can be obtained as a by-product of the (sequential) computations used
to obtain the reach tube, we will argue that it can be as well calculated by a
tailored procedure (one-shot).

In the computation of the quantities defined above, the set of initial condi-
tions X0 ⊆ IRn will be assumed to be a union of finitely many DBM. In the
more general case of arbitrary sets, these will be over- or under-approximated
by DBM. As it will become clear later, this will in general shape the reach set
Xk at event step k > 0 as a union of finitely many DBM. For later use, we
assume that Xk is a union of |Xk| DBM and in particular that the set of initial
conditions X0 is a union of |X0| DBM.

3.1 Sequential Computation of the Reach Tube

This approach uses the one-step dynamics for autonomous MPL systems itera-
tively. In each step, we leverage the DBM representation and the PWA dynamics
to compute the reach set.

Given a set of initial conditions X0, the reach set Xk is recursively defined
as the image of Xk−1 w.r.t. the MPL dynamics as

Xk = I(Xk−1) = {A⊗ x : x ∈ Xk−1} .

In the dynamical systems and automata literature the mapping I is also known
as Post [32, Definition 2.3]. Under the assumption that X0 is a union of finitely
many DBM, by Corollary 1 it can be shown by induction that the reach set Xk

is also a union of finitely many DBM, for each k ∈ IN.
Implementation: Given a state matrix A and a set of initial conditions

X0, the general procedure for obtaining the reach tube works as follows: first,
we construct the PWA system generated by A; then, for each k = 1, . . . , N , the
reach set Xk is obtained by computing I(Xk−1).

The worst-case complexity of the procedure (excluding that related to the
generation of PWA system) can be assessed as follows. The complexity of com-
puting I(Xk−1) is O(|Xk−1| · |R(A)| · n

3), for k = 1, . . . , N . This results in an

overall complexity of O(|R(A)| · n3
∑N−1

k=0 |Xk|). Notice that quantifying explic-
itly the cardinality |Xk| of the DBM union at each step k is not possible in
general (cf. Benchmark in Section 4).

The procedure has been implemented in maxpl reachtube for. The inputs
are the PWA system (A, B, D), the initial states (D0), and the event horizon
(N). The set of initial states D0 is a collection of finitely many DBM and the
event horizon N is a natural number. The output is a 1×(N + 1) cell. For each
1 ≤ i ≤ N+1, the i-th element contains the reach set Xi−1, which is a collection
of finitely many DBM (cf. Section 2.3).

Let us consider the unit square as the set of initial conditions X0 = {x ∈
IR2 : 0 ≤ x1 ≤ 1, 0 ≤ x2 ≤ 1}. The following MATLAB script computes the
reach tube for two steps:

>> Ampl = [2 5;3 3], [A,B,D] = maxpl2pwa(Ampl), N = 2

>> D0 = cell(1,2), ind = sub2ind([3,3],[1,2,0,0]+1,[0,0,1,2]+1)

>> D0{1} = Inf(3), D0{1}(1:4:9) = 0, D0{1}(ind) = [0,0,1,1]

>> D0{2} = false(3), D0{2}(1:4:9) = true, D0{2}(ind) = true

>> D0N = maxpl reachtube for(A,B,D,D0,N)

The reach sets are DBM given by X1 = {x ∈ IR2 : 1 ≤ x1 − x2 ≤ 2, 5 ≤ x1 ≤
6, 3 ≤ x2 ≤ 4}, X2 = {x ∈ IR2 : 0 ≤ x1 − x2 ≤ 1, 8 ≤ x1 ≤ 9, 8 ≤ x2 ≤ 9}, and
are shown in Fig. 2 (left). ⊓⊔

Recall that, given a set of initial conditions X0 and a finite event horizon
N ∈ IN, in order to compute XN , we have to calculate X1, . . . , XN−1. If the
autonomous MPL system is irreducible, we can exploit the periodic behavior
(cf. Proposition 1) to simplify the computation.

b

b

b

b

b

b

b

b

b

b

b b b b b b b b b x1

x2 R(2,2)

R(2,1)

R(1,1)

10 20 30 40 50 60 70 80 90 100
10

−2

10
−1

10
0

10
1

10
2

10
3

10
4

n = 4

n = 7

n = 10

n = 13

ru
n
n
in
g
ti
m
e
(i
n
se
co
n
d
s)

event horizon (N)

Fig. 2. (Left plot) Reach tube for autonomous MPL model over 2 event steps. (Right
plot) Time needed to generate reach tube of autonomous models for different models
size and event horizons, cf. Section 4.

Proposition 3 Let A ∈ IRn×n
ε be an irreducible matrix with max-plus eigen-

value λ ∈ IR and cyclicity c ∈ IN. There exists a k0(X0) = maxx∈X0
k0(x), such

that Xk+c = λ⊗c ⊗Xk, for all k ≥ k0(X0).

Proof. Recall that for each x(0) ∈ IRn, there exists a k0(x(0)) such that x(k +
c) = λ⊗c ⊗ x(k), for all k ≥ k0(x(0)). Since k0(X0) = maxx∈X0

k0(x), for each
x(0) ∈ X0, we have x(k+c) = λ⊗c⊗x(k), for k ≥ k0(X0). Recall from Definition 3
that Xk = {x(k) : x(0) ∈ X0}, for all k ∈ IN. ⊓⊔

Thus if the autonomous MPL system is irreducible, we only need to compute
X1, . . . , Xk0(X0)∧N in order to calculate XN , for any N ∈ IN, where k0(X0)∧N =
min{k0(X0), N}.

If the initial condition X0 is a stripe, the infinite-horizon reach tube can be
computed in a finite time, as stated in the following theorem.

Theorem 1 Let A ∈ IRn×n
ε be an irreducible matrix with cyclicity c ∈ IN. If

X0 is a union of finitely many stripes, then
⋃k0(X0)+c−1

i=0 Xi =
⋃k

i=0 Xi, for all
k ≥ k0(X0) + c− 1.

Proof. First we will show thatXk is a union of finitely many stripes for all k ∈ IN.
By using the procedure to compute the image of a DBMw.r.t. an affine dynamics,
it can be shown that the image of a stripe w.r.t. affine dynamics (generated by
an MPL model) is a stripe. Following the arguments after Theorem 2, it can be
shown that the image of a union of finitely many stripes w.r.t. the PWA system
generated by an MPL model is a union of finitely many stripes.

Since a stripe is a collection of equivalence classes [16, Sect. 1.4], then X0 ⊗
α = X0, for each α ∈ IR. From Proposition 3 and the previous observations,
Xk+c = Xk for all k ≥ k0(X0). ⊓⊔

Example: The set of initial conditions can also be described as a stripe, for
example X0 = {x ∈ IR2 : −1 ≤ x1 − x2 ≤ 1}. The reach sets are stripes given

by X1 = {x ∈ IR2 : 1 ≤ x1 − x2 ≤ 2} and X2 = {x ∈ IR2 : 0 ≤ x1 − x2 ≤ 1}.
Additionally, we obtain X1 = X2k−1 and X2 = X2k, for all k ∈ IN. It follows
that the infinite-horizon reach tube is

⋃+∞

k=0 Xk =
⋃2

k=0 Xk = {x ∈ IR2 : −1 ≤
x1 − x2 ≤ 2}. ⊓⊔

3.2 One-Shot Computation of the Reach Set

In this section we discuss a procedure for computing the reach set for a spe-
cific event step N using a tailored (one-shot) procedure. Given a set of initial
conditions X0, we compute the reach set at event step N by using

XN = (I ◦ · · · ◦ I)(A) = IN (A) = {A⊗N ⊗ x : x ∈ X0} .

Using Corollary 1, it can be seen that the reach set XN is a union of finitely
many DBM.

Implementation: Given a state matrix A, a set of initial conditions X0 and
a finite index N , the general procedure for obtaining XN is: 1) computing A⊗N ;
then 2) constructing the PWA system generated by it; finally 3) computing the
image of X0 w.r.t. the obtained PWA system.

Let us quantify the total complexity of the first and third steps in the pro-
cedure. The complexity of computing N -th max-algebraic power of an n × n

matrix (cf. Section 2.1) is O(⌈log2(N)⌉ · n3). Excluding the generation of the
PWA system – step 2), see above – the overall complexity of the procedure is
O(⌈log2(N)⌉ · n3 + |X0| · |R(A

⊗N)| · n3).
The procedure has been implemented in maxpl reachset for. The inputs

are the state matrix (Ampl), the initial states (D0), and the event horizon (N).
The set of initial states D0 is a collection of finitely many DBM (cf. Section 2.3)
and the event horizon N is a natural number. The output is a 1×2 cell: the first
element is the set of initial states and the second one is the reach set at event
step N. Recall that both the initial states and the reach set are a collection of
finitely many DBM.

Let us consider the unit square as the set of initial conditions X0 = {x ∈
IR2 : 0 ≤ x1 ≤ 1, 0 ≤ x2 ≤ 1}. The following MATLAB script computes the
reach set for two steps:

>> Ampl = [2 5;3 3], N = 2

>> D0 = cell(1,2), ind = sub2ind([3,3],[1,2,0,0]+1,[0,0,1,2]+1)

>> D0{1} = Inf(3), D0{1}(1:4:9) = 0, D0{1}(ind) = [0,0,1,1]

>> D0{2} = false(3), D0{2}(1:4:9) = true, D0{2}(ind) = true

>> D0N = maxpl reachset for(Ampl,D0,N)

As expected, the reach set is a DBM given by X2 = {x ∈ IR2 : 0 ≤ x1 − x2 ≤
1, 8 ≤ x1 ≤ 9, 8 ≤ x2 ≤ 9}. ⊓⊔

Intuitively, the sequential approach involves step-wise computations, and
yields correspondingly more information than the one-shot procedure as an out-
put. The complexities of both the sequential and one-shot computations depend

on the number of PWA regions corresponding to, respectively, the models related
to matrix A and A⊗N . Thus, in order to compare the performance of both meth-
ods, we need to assess the cardinality of the PWA regions generated by A⊗k,
for different values of k: from our experiments, it seems that the cardinality of
PWA regions grows if k increases, hence the one-shot approach may not always
result in drastic computational advantages. More work is needed to conclusively
assess this feature.

4 Numerical Benchmark

4.1 Implementation and Setup

The technique for forward reachability computation on MPL models discussed
in this work is implemented in the VeriSiMPL (“very simple”) version 1.3, which
is freely available at [28]. VeriSiMPL is a software tool originally developed to
obtain finite abstractions of Max-Plus-Linear (MPL) models, which enables their
verification against temporal specifications via a model checker. The algorithms
have been implemented in MATLAB 7.13 (R2011b) and the experiments have
been run on a 12-core Intel Xeon 3.47 GHz PC with 24 GB of memory.

In order to test the practical efficiency of the proposed algorithms, we com-
pute the runtime needed to determine the reach tube of an autonomous MPL sys-
tem, for event horizon N = 10 and an increasing dimension n of the MPL model.
We also keep track of the number of regions of the PWA system generated from
the MPL model. For any given n, we generate matrices A with 2 finite elements
(in a max-plus sense) that are randomly placed in each row. The finite elements
are randomly generated integers between 1 and 100. The set of initial conditions
is selected as the unit hypercube, i.e. {x ∈ IRn : 0 ≤ x1 ≤ 1, . . . , 0 ≤ xn ≤ 1}.

Over 10 independent experiments, Table 1 reports the average time needed
to generate the PWA system and to compute the reach tube, as well as the
corresponding number of regions. As confirmed by Table 1, the time needed to
compute the reach tube is monotonically increasing w.r.t. the dimension of the
MPL model (as we commented previously this is not the case for the cardinality
of reach sets, which hinges on the structure of the MPL models). For a fixed
model size and dynamics, the growth of the computational time for forward
reachability is linear (in the plot, logarithmic over logarithmic time scale) with
the event horizon as shown in Fig. 2 (right). We have also performed reachability
computations for the case of the set of initial conditions described as a stripe,
which has yielded results that are analogue to those in Table 1.

4.2 Comparison with Alternative Reachability Computations

To the best of the authors knowledge, there exist no approaches for general for-
ward reachability computation over MPL models. Forward reachability can be
alternatively assessed only leveraging the PWA characterization of the model dy-
namics (cf. Section 2). Forward reachability analysis of PWA models can be best
computed by the Multi-Parametric Toolbox (MPT, version 2.0) [25]. However,
the toolbox has some implementation requirements: the state space matrix A has

Table 1. Numerical benchmark, autonomous MPL model: computation of the reach
tube (average over 10 experiments)

size time for number of time for number of
of MPL generation of regions of generation of regions of
model PWA system PWA system reach tube X10

3 0.09 [sec] 5.80 0.09 [sec] 4.20
5 0.14 [sec] 22.90 0.20 [sec] 6.10
7 0.52 [sec] 89.60 0.72 [sec] 13.40
9 2.24 [sec] 340.80 2.25 [sec] 4.10
11 10.42 [sec] 1.44 ×103 15.49 [sec] 3.20
13 46.70 [sec] 5.06 ×103 5.27 [min] 16.90
15 3.48 [min] 2.01 ×104 25.76 [min] 10.10
17 15.45 [min] 9.07 ×104 3.17 [hr] 68.70
19 67.07 [min] 3.48 ×105 7.13 [hr] 5.00

to be invertible – this is in general not the case for MPL models; the reach sets
Xk have to be bounded – in our case the reach sets can be unbounded, partic-
ularly when expressed as stripes; further, MPT deals only with full-dimensional
polytopes – whereas the reach sets of interest may not necessarily be so; finally,
MPT handles convex regions and over-approximates the reach sets Xk when
necessary – our approach computes instead the reach sets exactly.

For the sake of comparison, we have constructed randomized examples (with
invertible dynamics) and run both procedures in parallel, with focus on compu-
tation time rather than the actual obtained reach tubes. Randomly generating
the underlying dynamics allows deriving general results that are not biased to-
wards possible structural features of the model. MPT can handle in a reason-
able time frame models with dimension up to 10: in this instance (as well as
lower-dimensional ones) we have obtained that our approach performs better
(cf. Table 2). Notice that this is despite MPT being implemented in the C lan-
guage, whereas VeriSiMPL runs in MATLAB: this leaves quite some margin of
computational improvement to our techniques.

Table 2. Time for generation of the reach tube of 10-dimensional autonomous MPL
model for different event horizons (average over 10 experiments)

event horizon 20 40 60 80 100

VeriSiMPL 11.02 [sec] 17.94 [sec] 37.40 [sec] 51.21 [sec] 64.59 [sec]
MPT 47.61 [min] 1.19 [hr] 2.32 [hr] 3.03 [hr] 3.73 [hr]

5 Conclusions and Future Work

This work has discussed the computation of forward reachability analysis of Max-
Plus-Linear models by fast manipulations of DBM through PWA dynamics.

Computationally, we are interested in further optimizing the software for
reachability computations, by leveraging symbolic techniques based on the use

of decision diagrams and by developing an implementation in the C language. We
are presently exploring a comparison of the proposed approach with Flow* [14].

We plan to investigate backward reachability, as well as reachability of non-
autonomous models, which embed non-determinism in the form of a control
input, by tailoring or extending the techniques discussed in this work.

References

1. Alur, R., Dill, D.: A theory of timed automata. Theoretical Computer Science
126(2) (1994) 183–235

2. Behrmann, G., David, A., Larsen, K.: A tutorial on uppaal. In Bernardo, M.,
Corradini, F., eds.: Formal Methods for the Design of Real-Time Systems (SFM-
RT’04). Volume 3185 of Lecture Notes in Computer Science. Springer, Heidelberg
(September 2004) 200–236

3. Kloetzer, M., Mahulea, C., Belta, C., Silva, M.: An automated framework for
formal verification of timed continuous Petri nets. IEEE Trans. Ind. Informat.
6(3) (2010) 460–471

4. Henzinger, T., Rusu, V.: Reachability verification for hybrid automata. In Hen-
zinger, T., Sastry, S., eds.: Hybrid Systems: Computation and Control (HSCC’98).
Volume 1386 of Lecture Notes in Computer Science. Springer, Heidelberg (1998)
190–204

5. Dang, T., Maler, O.: Reachability analysis via face lifting. In Henzinger, T., Sastry,
S., eds.: Hybrid Systems: Computation and Control (HSCC’98). Volume 1386 of
Lecture Notes in Computer Science. Springer, Heidelberg (1998) 96–109

6. Chutinan, A., Krogh, B.: Computational techniques for hybrid system verification.
IEEE Trans. Autom. Control 48(1) (January 2003) 64–75

7. CheckMate [Online]
8. Mitchell, I., Bayen, A., Tomlin, C.: A time-dependent Hamilton-Jacobi formulation

of reachable sets for continuous dynamic games. IEEE Trans. Autom. Control
50(7) (July 2005) 947–957

9. Mitchell, I.: Comparing forward and backward reachability as tools for safety anal-
ysis. In Bemporad, A., Bicchi, A., Buttazzo, G., eds.: Hybrid Systems: Computa-
tion and Control (HSCC’07). Volume 4416 of Lecture Notes in Computer Science.,
Springer, Heidelberg (2007) 428–443

10. Kurzhanskiy, A., Varaiya, P.: Ellipsoidal techniques for reachability analysis of
discrete-time linear systems. IEEE Trans. Autom. Control 52(1) (January 2007)
26–38

11. Kurzhanskiy, A., Varaiya, P.: Ellipsoidal toolbox. Technical report, EECS Depart-
ment, University of California, Berkeley (May 2006)

12. Asarin, E., Schneider, G., Yovine, S.: Algorithmic analysis of polygonal hybrid
systems, part I: Reachability. Theoretical Computer Science 379(1–2) (2007) 231–
265

13. Le Guernic, C., Girard, A.: Reachability analysis of hybrid systems using sup-
port functions. In Bouajjani, A., Maler, O., eds.: Computer Aided Verification
(CAV’09). Volume 5643 of Lecture Notes in Computer Science. Springer, Heidel-
berg (2009) 540–554

14. Chen, X., Ábrahám, E., Sankaranarayanan, S.: Flow*: An analyzer for non-linear
hybrid systems. In Sharygina, N., Veith, H., eds.: Computer Aided Verification
(CAV’13). Volume 8044 of Lecture Notes in Computer Science. Springer, Heidel-
berg (2013) 258–263

15. Baccelli, F., Cohen, G., Olsder, G., Quadrat, J.P.: Synchronization and Linearity,
An Algebra for Discrete Event Systems. John Wiley and Sons (1992)

16. Heidergott, B., Olsder, G., van der Woude, J.: Max Plus at Work–Modeling and
Analysis of Synchronized Systems: A Course on Max-Plus Algebra and Its Appli-
cations. Princeton University Press (2006)

17. Roset, B., Nijmeijer, H., van Eekelen, J., Lefeber, E., Rooda, J.: Event driven
manufacturing systems as time domain control systems. In: Proc. 44th IEEE Conf.
Decision and Control and European Control Conf. (CDC-ECC’05). (December
2005) 446–451

18. Merlin, P., Farber, D.J.: Recoverability of communication protocols–implications
of a theoretical study. IEEE Trans. Commun. 24(9) (1976) 1036–1043

19. Plus, M.: Max-plus toolbox of Scilab [Online] (1998) Available at
www.cmap.polytechnique.fr/∼gaubert/MaxplusToolbox.html.

20. Gazarik, M., Kamen, E.: Reachability and observability of linear systems over
max-plus. Kybernetika 35(1) (1999) 2–12

21. Gaubert, S., Katz, R.: Reachability and invariance problems in max-plus algebra.
In Benvenuti, L., De Santis, A., Farina, L., eds.: Positive Systems. Volume 294
of Lecture Notes in Control and Information Science. Springer, Heidelberg (April
2003) 15–22

22. Gaubert, S., Katz, R.: Reachability problems for products of matrices in semirings.
International Journal of Algebra and Computation 16(3) (2006) 603–627

23. Gaubert, S., Katz, R.: The Minkowski theorem for max-plus convex sets. Linear
Algebra and its Applications 421(2-3) (2007) 356–369

24. Zimmermann, K.: A general separation theorem in extremal algebras. Ekonom.-
Mat. Obzor 13(2) (1977) 179–201

25. Kvasnica, M., Grieder, P., Baotić, M.: Multi-parametric toolbox (MPT) (2004)
26. Dill, D.: Timing assumptions and verification of finite-state concurrent systems. In

Sifakis, J., ed.: Automatic Verification Methods for Finite State Systems. Volume
407 of Lecture Notes in Computer Science. Springer, Heidelberg (1990) 197–212

27. Adzkiya, D., De Schutter, B., Abate, A.: Finite abstractions of max-plus-linear
systems. IEEE Trans. Autom. Control 58(12) (December 2013) 3039–3053

28. Adzkiya, D., Abate, A.: VeriSiMPL: Verification via biSimulations of MPL models.
In Joshi, K., Siegle, M., Stoelinga, M., D’Argenio, P., eds.: Proc. 10th Int. Conf.
Quantitative Evaluation of Systems (QEST’13). Volume 8054 of Lecture Notes in
Computer Science., Springer, Heidelberg (September 2013) 253–256

29. Yordanov, B., Belta, C.: Formal analysis of discrete-time piecewise affine systems.
IEEE Trans. Autom. Control 55(12) (December 2010) 2834–2840

30. Charron-Bost, B., Függer, M., Nowak, T.: Transience bounds for distributed al-
gorithms. In Braberman, V., Fribourg, L., eds.: Formal Modeling and Analysis
of Timed Systems (FORMATS’13). Volume 8053 of Lecture Notes in Computer
Science. Springer, Heidelberg (2013) 77–90

31. Sontag, E.D.: Nonlinear regulation: The piecewise-linear approach. IEEE Trans.
Autom. Control 26(2) (April 1981) 346–358

32. Baier, C., Katoen, J.P.: Principles of Model Checking. The MIT Press (2008)

