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Optimal Hybrid Perimeter and Switching Plans

Control for Urban Traffic Networks
Mohammad Hajiahmadi, Jack Haddad, Bart De Schutter, and Nikolas Geroliminis

Abstract—Since centralized control of urban networks with
detailed modeling approaches is computationally complex, devel-
oping efficient hierarchical control strategies based on aggregate
modeling is of great importance. The dynamics of a heteroge-
neous large-scale urban network is modeled as R homogeneous
regions with the macroscopic fundamental diagrams (MFDs)
representation. The MFD provides for homogeneous network
regions a unimodal, low-scatter relationship between network
vehicle density and network space-mean flow. In this paper, the
optimal hybrid control problem for an R-region MFD network is
formulated as a mixed integer nonlinear optimization problem,
where two types of controllers are introduced: (i) perimeter
controllers, and (ii) switching signal timing plans controllers.
The perimeter controllers are located on the border between
the regions, as they manipulate the transfer flows between them,
while the switching controllers influence the dynamics of the
urban regions, as they define the shape of the MFDs and as a
result affect the internal flows within each region. Moreover, to
decrease the computational complexity due to the nonlinear and
non-convex nature of the optimization problem, we reformulate
the problem as a mixed integer linear programming (MILP)
problem utilizing piecewise affine approximation techniques. Two
different approaches for transformation of the original model and
building up MILP problems are presented, and the performances
of the approximated methods along with the original problem
formulation are evaluated and compared for different traffic
scenarios of a two-region urban case study.

Index Terms—Urban traffic control, hybrid systems, model
predictive control, macroscopic fundamental diagram, perimeter
control, switching timing plans.

I. INTRODUCTION

LARGE-SCALE urban networks need efficient traffic

management and control schemes. Modeling a large

urban network would be a complex task if one wants to study

and model the traffic dynamics of each element (i.e. each link

and each intersection, including route choice of travelers). On

the other hand, centralized control of an urban network with

such detailed modeling approach would be computationally

complex and makes its implementation in real-time infeasible.

Hence, instead of adopting a detailed modeling approach, re-

searchers are investigating alternative possibilities of deriving

an aggregate model for the whole traffic network.
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Fig. 1. A well-defined macroscopic fundamental diagram.

The idea of macroscopic fundamental diagrams (MFDs)

with optimum accumulations was first proposed in [1] and

similar approaches were introduced later in [2]–[4]. Existence

of the MFDs with dynamic features was recently revealed

in [5]. The MFD captures macroscopically (at a network

level) the traffic flow characteristics and dynamics of an urban

region. It relates the number of vehicles (accumulation) in

the region and its production, defined as the trip completion

flow of vehicles reaching their destination. The underlying

assumption in these previous works has been that the network

is homogeneously congested, which is not always the case.

Homogeneous networks with a small variance on link densities

have a well-defined MFD, i.e. there is a low scatter of flows

for the same densities (or accumulations) [6], [7]. A well-

defined MFD is schematically shown in Fig. 1. The shape of

the MFD can be approximated by a non-symmetric unimodal

curve skewed to the right, i.e. the critical accumulation, ncr

(veh), that maximizes network flow is smaller than half the

jammed accumulation nmax. Note that the network topology,

the signal timing plans of the signalized intersections, and the

infrastructure characteristics affect the shape of the MFD, see

e.g. [8]–[10]. Other investigations of the MFD using empirical

or simulated data can be found in [11]–[13], while routing

strategies based on the MFD can be found in [14], [15].

Heterogeneous networks might not have a well-defined

MFD, mainly in the congestion (decreasing) part of the MFD,

and the scatter becomes higher as accumulation increases, see

[6], [7], [12]. A possible solution is to partition heterogeneous

networks (in a static or dynamic way) into more homogeneous

regions with small variances of link densities such that each

region has a well-defined MFD, see [16].

The MFD can be utilized to establish efficient and elegant

strategies to control network flows. While most of the existing

control strategies are locally oriented or distributed at only a

small scale, coordinated strategies can decrease delays and

increase mobility in large urban networks. Meanwhile, the
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idea of perimeter control on the borders of urban regions

has attracted many researchers. Recently in [17], optimal

perimeter control for a two-region urban city is formulated

by exploiting the notion of MFD. For stability analysis of

perimeter control, the reader can refer to [18], while optimal

control for mixed urban freeway networks utilizing MFDs is

found in [15]. Perimeter control for single or multiple-region

homogeneous networks has been analyzed with linear multi-

variable feedback regulators in [19] and [20].

In this paper, we introduce an extra level of control, that can

manipulate the flow dynamics of each urban region by switch-

ing between signal timing plans. Changing timing plans for

signalized intersections within regions might alter the shape

of the MFD, which will affect the network flow dynamics.

Therefore, instead of assuming one MFD for each region, we

introduce a set of MFDs, where each MFD corresponds to a

certain timing plan for intersections inside the region.

Combining switching timing plans and perimeter controllers

might significantly increase the network performance, as it

gives the ability to control inside and on the border of urban

regions, and to adjust to a vast variety of demands and traffic

conditions. However, combining these two control inputs is

not straightforward, as a mixture of discrete and continuous

control inputs is introduced that might have different effects

on the flow dynamics. The model of an urban region will

be a nonlinear state space model based on the MFD and

it has both continuous perimeter control inputs and binary

variables for switching the timing plans. Moreover, model

predictive control (MPC) [21] is used to solve the optimal

control problem. Since we deal with a hybrid system, the

resulting open-loop optimization problem is a mixed integer

nonlinear problem. Solving nonlinear and nonconvex opti-

mization problems can be time consuming and showing that

a global solution is found is not guaranteed. If the problem is

solved multiple times for different initial points, chances are

high that a reasonably optimal solution is found. While multi-

start optimization algorithms or global optimization techniques

can be used to overcome this problem, one can try to ap-

proximate and transform the model into a mixed linear form

and formulate the optimization problem as a mixed integer

linear programming (MILP) problem. The computation time

will decrease significantly and one global optimum solution

for the MILP problem will be obtained.

To summarize, the paper contributes in three ways. First,

a novel hybrid MFD-based model is proposed that is capable

of modeling the effect of switching between timing plans on

the MFD of an urban network. Second, a model predictive

control scheme is constructed based on the proposed hybrid

model and further simplifying mathematical techniques are

presented in order to decrease the computational complexity

of the associated optimization problem. Among the techniques

are avoiding 2-dimensional piecewise affine approximation

and using two simpler approaches instead, and quantization

of the perimeter control input to solve the problem with in-

put/states multiplications. Finally, we consider practical issues

with measuring the traffic variables, trip demands and also

the scattered MFDs observed in real networks and therefore

we add three types of uncertainties into our hybrid model in

Region i

uji(k)

uij(k)

δi,fi(k)

1 2

Region j

δj,fj (k)

1 2

Fig. 2. Hybrid R-region system with perimeter and switching timing plans
control inputs uij(k) and δi,fi (k) for region i, and uji(k) and δj,fj (k) for

region j.

order to make simulation and control of a multi-region urban

network more realistic.

The rest of the paper is organized as follows. In Section

II, a hybrid MFD-based model of an R-region urban network

is presented, while in Section III the optimal hybrid control

problem is formulated. Two mixed linear models based on

the piecewise affine approximation of the original model are

proposed in Section IV and the corresponding mixed integer

linear optimization problem is formulated in Section V. The

performance of the predictive hybrid controllers (linear and

nonlinear) are tested for several case study examples with

different scenarios in Section VI. The paper concludes with

a discussion about the results and ideas for further research.

II. MFD-BASED MODELING OF URBAN REGIONS

Let us assume that a heterogeneous urban traffic network

can be partitioned into R homogeneous regions, each having

a well-defined MFD (later we will assume that each homoge-

neous region can have a set of different MFDs corresponding

to the activated signal timing plans), see Fig. 2. In this paper,

the model time step counter and the sampling period are

denoted by k (−) and T (s), respectively, where t = k · T
and k = 0, 1, 2, . . . ,K − 1. Let qij(k) (veh/s) be the traffic

flow demand generated in region i at time step k with final

destination in region j, i = 1, 2, . . . , R, and j ∈ Ni, where Ni

is the set of regions that are directly reachable from region i.
Corresponding to the traffic demands, accumulation states

are defined to model the dynamic equations: nij(k) (veh)
denotes the total number of vehicles in region i with direct

destination to region j at time step k. Let us denote ni(k)
(veh) as the accumulation or the total number of vehicles in

region i at time step k, i.e. ni(k) = nii(k) +
∑

j∈Ni
nij(k).

The MFD is defined by Gi(·) (veh/s) which is the trip

completion flow for region i at ni(k). The trip completion

flow for region i is the sum of transfer flows, i.e. trips from

i with destination j, j ∈ Ni, plus the internal flow, i.e.

trips from i with destination i. The transfer flow from i
with destination to j, denoted by Mij(k) (veh/s), is calcu-

lated corresponding to the ratio between accumulations, i.e.

Mij(k) = nij(k)/ni(k) ·Gi(ni(k)), j ∈ Ni, while Mii(k) is

the internal flow from i with destination to i and calculated

by Mii(k) = nii(k)/ni(k) · Gi(ni(k)). These relationships

assume that the trip lengths for all trips within a region
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(internal or external) are similar, i.e. the distance traveled

per vehicle inside a region is independent of the origin and

destination of the trip. For further description, the interested

reader is referred to [22], which will not alter the methodology.

We utilize a third-order function of ni(k) to describe the MFD,

e.g. Gi(ni(k)) = ai ·n3
i (k)+ bi ·n2

i (k)+ ci ·ni(k), where ai,
bi, and ci are estimated parameters.

The vehicle conservation equations (without integrating

control measures) of the R-region MFDs system are:

nii(k + 1) = nii(k) + T ·
(
qii(k) +

∑

j∈Ni

Mji(k)−Mii(k)
)
,

(1)

nij(k + 1) = nij(k) + T ·
(
qij(k)−Mij(k)

)
, (2)

for i = 1, 2, . . . , R and ∀j ∈ Ni. These equations are a

generalized (R regions instead of two) and discretized form

of the equations presented in [17]. Note that route choice

modeling is not integrated in the dynamic equations.

III. OPTIMAL HYBRID CONTROL FOR AN R-REGION

MFDS SYSTEM

In the previous section, the MFD-based model (1)–(2) was

introduced without any control measure. In the following, two

types of controllers are introduced in Section III-A and inte-

grated into the dynamic equations (1) and (2) in Section III-B,

while in Section III-C the optimal hybrid control problem for

the R-region MFDs system is formulated.

A. Hybrid Control: Perimeter and Switching Controllers

Two types of controllers are introduced in the hybrid control

problem: (i) perimeter controllers, and (ii) switching signal

timing plans controllers. The perimeter controllers are located

on the border between regions, as they manipulate the transfer

flows between them, while the switching controllers influence

the dynamics of the urban regions, as they define the shape

of the MFDs. Note that the switching controllers and the

perimeter controllers might affect each other but we assume

that these effects are negligible.

The signal timing plans alter the shape of the MFD, see

[8]. In this paper, it is assumed that each urban region

has a predefined library of signal fixed-timing plans for the

signalized intersections inside the region, e.g. fixed-timing

plans for the morning and evening peak hours and a typical

uncongested hour, where each plan in the library has different

green, red, cycle, and offset settings for the intersections. It is

also assumed that for each activated signal plan, the region

will have a different MFD, i.e. a non-symmetric unimodal

curve skewed to the right, but with different values of the

maximum output, and critical accumulations, see e.g. three

different MFDs for regions i and j in Fig. 2. Therefore, the

timing plan library employs a library of MFDs for each region.

The switching controller of the region activates one MFD from

the library by switching from one signal plan to another.

The optimal perimeter and switching plans decisions are

obtained by minimizing the total time spent in the R urban

regions. The total time spent (veh · s) is defined as follows:

J = T ·
K−1∑

k=1

R∑

i=1

ni(k). (3)

B. Hybrid R-region MFDs System

Let us denote the perimeter control inputs by uij(k) (−),
i = 1, 2, . . . , R, j ∈ Ni, and the switching timing plans control

inputs by δi,fi(k) ∈ {0, 1}, where fi ∈ Fi and Fi is the set of

MFDs in the library for region i. The control inputs uij(k),
δi,fi(k), and uji(k), δj,fj (k) are associated with regions i and

j, respectively.

The perimeter control inputs uij(k) and uji(k) are in-

troduced on the border between the regions i and j as

shown in Fig. 2, where the purpose is to control the transfer

flows between the two regions. The transfer flow Mij(k),
i = 1, 2, . . . , R, j ∈ Ni, is controlled such that only a fraction

of the flow actually transfers from region i to region j, i.e.

uij(k) · Mij(k), where 0 ≤ uij(k) ≤ 1. Hence, the MFD-

based model (1) and (2) is altered by replacing Mij(k) and

Mji(k) by uij(k) ·Mij(k) and uji(k) ·Mji(k), respectively.

It is also assumed that these controllers will not change the

shape of the MFDs.

Since the perimeter controllers exist only on the border

between the regions, the internal flows cannot be controlled or

restricted. However, the internal flows are determined by the

MFDs of the regions. The switching controllers can manipulate

indirectly the internal flows by switching the MFDs (or more

precisely by switching the signal timing plans of the signalized

intersections). Recall that the vehicle conservation equations

(1) and (2) assume that each region has only one MFD. Let

us now assume that each region i has a predefined MFD

library (or set of MFDs denoted by Fi) that corresponds to a

signal timing plans library for the signalized intersections. The

switching control signal δi,fi(k) activates the fi-th MFD in the

set Fi, i.e. Gi,fi(·), if δi,fi(k) = 1 and δi,ri(k) = 0, ∀ri ∈
Fi \ {fi} (so only one δi,fi(k) = 1 at any time step, i.e.
∑

fi∈Fi
δi,fi(k) = 1). Therefore, the R-region MFDs system

(1) and (2) is modified to integrate the switching controllers, as

the term Gi(ni(k)) is changed to1
∑

fi∈Fi

δi,fi(k) ·Gi,fi(ni(k)).

The novel hybrid R-region MFDs system is formulated as:

nii(k + 1) = nii(k) + T ·
(
qii(k)

+
∑

j∈Ni

uji(k) ·Mji(k)−Mii(k)
)

(4)

nij(k + 1) = nij(k) + T ·
(
qij(k)− uij(k) ·Mij(k)

)
(5)

Mii(k) =
nii(k)

ni(k)
·

[
∑

fi∈Fi

δi,fi(k) ·Gi,fi(ni(k))

]

(6)

Mij(k) =
nij(k)

ni(k)
·

[
∑

fi∈Fi

δi,fi(k) ·Gi,fi(ni(k))

]

(7)

ni(k) = nii(k) +
∑

j∈Ni

nij(k) (8)

1Since one and only one δi,fi (k) is equal to 1 at the same time, we can
replace the binary variable δi,f ′

i
(k) with 1−

∑
fi∈Fi\{f

′

i
} δi,fi (k) and thus

get a computational benefit.
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C. Optimal Control Problem Formulation

After introducing and integrating the controllers into the

hybrid R-region MFDs system, we formulate the optimal

hybrid control problem. The scheme of the optimal control

problem is presented in Fig. 3. The aim is to minimize the

total time spent (3) by manipulating the perimeter controller

and by switching between the timing plans of the libraries.

Hybrid MFDs system

Libraries of
MFDs

Perimeter
controllers

Macroscopic
dynamics

urban intersections

Optimization

Optimal perimeter decisions

Libraries of fixed

Optimal

plans

switching

timing plans for

Fig. 3. Optimal hybrid perimeter and switching plans control scheme.

In reality, homogeneous regions have an MFD with some

scatter particularly in the congested regime as shown schemat-

ically in Fig. 1. Therefore, errors are expected between the

hybrid R-region MFD model (assuming well-defined MFDs)

and the real network. Therefore, a closed-loop optimal control

scheme is needed in order to take into account the errors

between the plant and the model and also the disturbances,

e.g. variations in the expected demands, that might affect the

system (the differences between the model and the plant will

be discussed in details later). Among these schemes is the

model predictive control (MPC) framework, which has been

widely used for different traffic control purposes [23]–[28].

The MPC controller determines the optimal control inputs in

a receding horizon manner, meaning that at each time step an

objective function is optimized over a prediction horizon of

Np steps and a sequence of optimal control inputs are derived.

Then the first sample of the control inputs is applied to the

system and the procedure is repeated with a shifted horizon.

We directly formulate the problem in the MPC framework.

Let kc (−) and Tc (s) be the control time step and the control

sample time, respectively. It is assumed that the controller time

step length is an integer multiple of the model time step length,

i.e. Tc = M · T . Then, the overall optimization problem is

formulated as follows:

min
ũij(kc),δ̃i,fi (kc),n̄ii(kc),n̄ij(kc)

T ·

M ·(kc+Np)−1
∑

k=M ·kc

R∑

i=1

ni(k) (9)

subject to:

Model equations (4)− (8) (10)

0 ≤ ni(k) ≤ ni,jam (11)

uij,min ≤ uij(k) ≤ uij,max (12)

uij(k) = uc
ij(kc) if k ∈ {M · kc, . . . ,M · (kc + 1)− 1}

(13)

δi,fi(k) = δci,fi(kc) if k ∈ {M · kc, . . . ,M · (kc + 1)− 1}
(14)

δi,fi(k) ∈ {0, 1}, ∀fi ∈ Fi (15)

for i = 1, 2, . . . , R and ∀j ∈ Ni, where ni,jam (veh) is

the jam accumulation for region i, and uij,min and uij,max

(−) are respectively the lower and upper bounds for the

perimeter control signals for regions i and j. The optimiza-

tion variables defined over the prediction horizon Np are

n̄ij(kc) = [nij(M · kc), . . . , nij(M · (kc + Np) − 1)]T,

n̄ii(kc) = [nii(M · kc), . . . , nii(M · (kc + Np) − 1)]T,

ũij(kc) = [uc
ij(kc), . . . , u

c
ij(kc + Np − 1)]T and δ̃i,fi(kc) =

[δci,fi(kc), . . . , δ
c
i,fi

(kc + Np − 1)]T, where uc
ij(kc + l) and

δci,fi(kc + l) for l = 0, . . . , Np − 1 are the perimeter and

switching control inputs at every control time step kc, respec-

tively. The current model equations do not directly consider

downstream restrictions, e.g. the boundary capacity. One more

term can be added, the boundary capacity, which is a function

of the receiving region accumulation and restricts the transfer

flow if the receiving region is highly congested. This constraint

is ignored during the optimization process. The physical

reasoning behind this assumption is that (i) the boundary

capacity decreases for accumulations that are much larger than

the critical accumulation (see [29]), and (ii) the control inputs

will not allow the system to get close to gridlock.

The problem (9)–(15) is a mixed integer nonlinear opti-

mization problem (MINLP) and it can be solved using mixed

integer nonlinear optimization algorithms [30]. However, since

here we deal with both real and binary decision variables

and also since the model equations have nonlinear terms,

the optimization problem could have multiple (local) optimal

points. Moreover, as it will be demonstrated in Section VI, the

optimization algorithm takes considerable time. This is mainly

because the MINLP algorithm is executed for several random

initial points, in order to find the lowest possible value of

the objective function. Thus, in the next section we simplify

and reformulate the problem in order to eventually establish a

mixed integer linear optimization problem.

IV. APPROXIMATION OF THE R-REGION MFDS SYSTEM

Solving the nonlinear and non-convex (the non-convexity is

because of having a hybrid nonlinear model with a mixture

of continuous perimeter control inputs and binary decision

variables to switch between MFDs) optimization problem

(9)–(15) can be time-consuming and not tractable for real-

time implementation. In the following two subsections, we

will recast the problem into a mixed integer linear optimiza-

tion problem. The nonlinear model in the MPC framework

(9)–(15) is replaced by an approximated model following

piecewise affine (PWA) approximation techniques and some

mathematical simplifications. The idea of PWA approximation

of MFDs was presented in a hierarchical control framework

for intelligent vehicle highway systems in [31].

Basically, the nonlinearity in the dynamic equations is

present in: (i) the internal and transfer trip completion flows,

see Mii(k) in (6) and Mij(k) in (7), respectively, and (ii) the

product between the perimeter controllers and the transfer trip

completion flows, see (4) and (5). In the following, we address

these nonlinearities and obtain two different approximated

models. The first model is less computationally complex but

less accurate than the second one. In the case study section,
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a performance evaluation of the two methods along with the

original nonlinear approach will be presented.

A. First Approach (PWA approximation along with forward

simulation)

The multiplication of nii(k) (or nij(k)) with the other

variables in the square brackets in (6) (or (7)) results in

multiple products of real variables. In principle, each product

needs to be approximated by a PWA function [32], [33]. A

function f : Ω → R
m is PWA if there exists a polyhedral

partition {Ωi}i∈I (∪i∈IΩi = Ω, Ωi ∩ Ωj = ∅, ∀i 6= j) of

Ω ⊆ R
n such that f is affine on each polyhedron Ωi. One can

approximate a nonlinear function by PWA functions with arbi-

trary accuracy and by considering a sufficiently large number

of regions. However, for our particular case (bivariate function

of accumulations) the PWA approximation is a tedious task

as more parameters have to be introduced (see e.g. [34]). In

other words, we have to deal with a two-dimensional PWA

approximation [34], [35] and in order to get enough accuracy

in the modeling, the resulting PWA function would need a

large number of affine pieces. This may add more complexity

to the associated optimization problem. Therefore, as a main

consideration in the PWA approximation, the number of affine

functions should be kept small while providing a close match

to the original nonlinear function.

Hence, in order to simplify the approximation, we estimate

the variables nii(k) and nij(k) in the transfer flows by forward

simulation as follows: we first simulate the R-region MFDs

system according to the model presented in (4) and (5) over

a prediction horizon with control inputs and initial accumula-

tions obtained from the previous time step, and subsequently

the variables nii(k) and nij(k) in Mii(k) and Mij(k) are

replaced with the values obtained from the simulation. Hence,

we no longer deal with multiplication of variables but only

with multiplication with time-varying but known parameters.

Nevertheless, this creates errors in the optimization algorithm

and might affect the overall performance.

1) PWA approximation of the trip completion flows: The

nonlinearity in the internal trip completion flows Mii(k) is

approximated as follows (a similar procedure is applied to the

transfer flows Mij(k)). Substituting the third-order function

Gi,fi(ni(k)) = ai,fi ·n
3
i (k)+bi,fi ·n

2
i (k)+ci,fi ·ni(k) into (6),

one can re-write the internal flows Mii(k) for i = 1, 2, . . . , R
as follows:

Mii(k) =nii(k) ·

[
∑

fi∈Fi

δi,fi(k) ·
(
ai,fi · n

2
i (k)

+ bi,fi · ni(k) + ci,fi
)
]

. (16)

The function Pi,fi(ni(k)) = ai,fi · n2
i (k) + bi,fi · ni(k) +

ci,fi (inside the parentheses in (16)) defined on the interval

[ni,min, ni,max] can be approximated by a continuous PWA

function P̂i,fi(ni(k)) with three intervals as follows:

P̂i,fi(ni(k)) =







γi,fi +
ni(k)−ni,min

αi,fi
−ni,min

· (ξi,fi − γi,fi)

for ni,min ≤ ni(k) < αi,fi ,

ξi,fi +
ni(k)−αi,fi

βi,fi
−αi,fi

· (ǫi,fi − ξi,fi)

for αi,fi ≤ ni(k) < βi,fi ,

ǫi,fi +
ni(k)−βi,fi

ni,max−βi,fi

· (ζi,fi − ǫi,fi)

for βi,fi ≤ ni(k) < ni,max,

(17)

where the set of parameters θi,fi =
{γi,fi , αi,fi , βi,fi , ξi,fi , ǫi,fi , ζi,fi} can be estimated by

solving the following nonlinear least-squares optimization

problem:

min
θi,fi

ni,max∫

ni,min

(
Pi,fi(ni(k))− P̂i,fi(ni(k))

)2
dni. (18)

This optimization problem can be solved by multi-start non-

linear optimization algorithms [36].

2) Approximation of the product between the perimeter

controllers and the transfer flows: The transfer flows are

multiplied with the perimeter controller inputs in (4) and

(5). These products cannot be replaced with values obtained

from simulation as the optimal perimeter inputs should be

determined from the optimization algorithm. As discussed

before, the perimeter control inputs determine the percentage

of flows that are allowed to transfer between regions and

thus they take values in the interval [0, 1]. Considering the

practical case in which the perimeter control is going to be

implemented, the perimeter control is realized by changing

the signal settings of intersections. Consequently, the perimeter

signals take values from a finite set in the interval [0, 1]. This

means that we can make the control inputs uij(k) quantized

as follows [37]:

uij(k) = uij,0 ·
( r∑

l=0

2l · ωij,l(k)
)

, (19)

where uij,0 are a priori given constants and ωij,l(k) ∈ {0, 1}
are the optimization variables. The set of possible input

values is then finite and its cardinality is 2r+1, while the

difference between two consecutive values is determined by2

uij,0. Having a sum of weighted binary variables for each

perimeter control input, the problem with multiplication of

control inputs with transfer flow functions will be simplified,

since multiplication with binary variables can be easily han-

dled with the techniques presented in Section V.

Remark 1: Another way to tackle the problem with the

multiplication of perimeter control input and the transfer flow

function is to introduce a new variable M̃ji and rewrite (4) as:

nii(k + 1) = nii(k) + T ·
(

qii(k) +
∑

j∈Si

M̃ji(k)−Mii(k)
)

(20)

2Note that in this way we have equal steps of change in the value of the
control input. However, one can define proper constant coefficients in order
to get non-equal jumps in the value of uij over its domain.
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with an additional constraint:

0 ≤ M̃ji(k) ≤ Mji(k) (21)

However, if the control input uji explicitly appears in the

objective function (e.g. in the penalty term), this method

cannot be applied.

B. Second Approach (Recasting 2-dimensional PWA approxi-

mation)

In the previous section, one way to tackle the problem with

multiplication of real variables was presented: using forward

simulation. This method can deliver satisfactory results for

some cases. However, in order to achieve more accuracy one

can iterate on forward simulation and optimization inside

each MPC control step which would introduce additional

computation time. We mention that instead of using forward

simulation to estimate the multiplication terms (nii(k) and

nij(k) with the square brackets in (6) and (7)), one can directly

approximate the bilinear functions following two-dimensional

PWA approximation methods in the literature, e.g. the one

in [34]. However, there are methods to reduce this tedious

two-dimensional PWA approximation with a one-dimensional

problem. In the sequel, we treat the nonlinear terms in the

model by using these reducing methods proposed by [37] and

[38]. We give detailed descriptions only for nonlinear terms in

Mii(k) (see (16)), but a similar explanation holds for Mij(k).
According to (16), we have to deal with two nonlinear terms:

nii(k) · ni(k) and nii(k) · n
2
i (k) (note that the two nonlinear

terms in Mij(k) would be nij(k) · ni(k) and nij(k) · n
2
i (k)).

1) PWA approximation of nii(k) ·ni(k): The term nii(k) ·
ni(k) can be rewritten as [38]:

nii(k) · ni(k) =
1

4

[(
ni(k) + nii(k)

)2
−

(
ni(k)− nii(k)

)2
]

.

(22)

Defining two new auxiliary variables

y1,i(k) = ni(k) + nii(k), y2,i(k) = ni(k)− nii(k), (23)

one gets nii(k) · ni(k) = 1
4

(
y1,i(k)

2 − y2,i(k)
2
)
. Instead of

performing a two-dimensional PWA approximation, we now

have to deal with the PWA approximation of two separated

single-variable functions y1,i(k)
2 and y2,i(k)

2. The function

f(yi) = y2i can be approximated by PWA functions using

a nonlinear least-squares optimization formulation as in (17).

However, the domain of the functions should be defined prop-

erly and according to the domains of the original variables.

For instance, the domain of f(y1,i) = y21,i is [y1,i,min, y1,i,max]
with y1,i,min = min{ni+nii|ni,min ≤ ni ≤ ni,max, nii,min ≤
nii ≤ nii,max} and y1,i,max = max{ni + nii|ni,min ≤ ni ≤
ni,max, nii,min ≤ nii ≤ nii,max}.

2) PWA approximation of nii(k) · n2
i (k): We follow the

same procedure as above. Defining two variables y3,i(k) and

y4,i(k), nii(k)·n
2
i (k) can be rewritten as 1

4

(
y3,i(k)

2−y4,i(k)
2
)

with:

y3,i(k) = n2
i (k) + nii(k), y4,i(k) = n2

i (k)− nii(k). (24)

However, there is still a nonlinear term in y3,i(k) and y4,i(k).
The simple solution for that is to approximate the term n2

i (k)

with a set of affine functions determined from an identification

procedure like in (17) with an appropriate domain for ni(k)
and next replace n2

i (k) with its PWA approximation in y3,i(k)
and y4,i(k).

3) Multiplication with control inputs uij(k): As discussed

before, the transfer flows are multiplied by the perimeter

control inputs. One can use the same procedure explained

in Section IV-B1 for approximation of the multiplication of

uij(k) with nij(k) · n2
i (k) and nij(k) · ni(k). However, this

would introduce more variables and make the model more

complicated for optimization use. In this case, we assume that

the perimeter control inputs are quantized and defined as in

(19). Hence, instead of having multiplication of real variables,

we deal with multiplication of binary decision variables and

PWA approximated transfer flow functions. In the next section,

a way for dealing with this type of multiplications is presented.

As a comparison of the two approximation methods, the

second approach is expected to give results closer to those of

the original nonlinear approach. This is because in the first

method, we replace some variables with simulated data and

the values will remain unchanged during the optimization.

However, the computation time required in the second ap-

proach is expected to be higher than the first one since in the

second approach more auxiliary variables are defined. These

expectations are confirmed in the case studies section.

V. REFORMULATION AS MILP

The approximate models cannot be directly used in a linear

or piecewise affine MPC framework (9)–(15). This is due to

the fact that in the approximated models two sets of binary

variables are introduced; one set is associated with switching

between the intervals of the PWA functions, and the other set

contains the switching signals for both the timing plans and

also the perimeter control inputs (as we made them quantized).

On the other hand, due to the large number of regions that the

combination of different affine pieces in the model introduces,

the evaluation of the approximated models for several times as

a part of the optimization algorithm inside the MPC scheme,

is not efficient. Therefore, we make a conversion of the

approximated models to a system of the following form:

x(k + 1) =A · x(k) +B1 · u(k) +B2 · δ(k) +B3 · z(k) + b

y(k) =C · x(k) +D1 · u(k) +D2 · δ(k) +D3 · z(k)

E1 · x(k) + E2 · u(k) + E3 · δ(k) + E4 · z(k) ≤ d
(25)

where x(k) ∈ R
nx and y(k) ∈ R

ny respectively represent

the state and output vectors, while δ(k) ∈ {0, 1}nδ and

z(k) ∈ R
nz are auxiliary binary and real-valued variables,

resulting from a procedure explained subsequently. Further, b
and e are constant vectors that along with the system matrices

{A,Bi, C,Di, Ei} specify a mixed logical dynamic model

[37]. In this model representation, the binary (defined for

PWA function, switching between MFDs, and quantization

of perimeter control signals) and auxiliary variables required

to define the regions are directly included in model through

additional constraints. Compared with the models derived in

the previous section, one large but tractable model applies
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that is composed by stacking the individual linear and affine

equations along with auxiliary linear inequalities, and thus

resulting in a model size that grows linearly with increasing

the number of regions.

In this section, we transform the approximated models

presented in the previous sections to the form of (25). Consider

an affine function f(·) defined over a bounded set X of the

input variable x, with upper and lower bounds M and m over

X . Having a binary decision variable δ ∈ {0, 1}, it can be

proved that the following statement holds [37], [38]:

[f(x) ≤ 0] ⇔ [δ = 1], iff

{

f(x) ≤ M · (1− δ)

f(x) ≥ ǫ+ (m− ǫ) · δ
(26)

with ǫ being a small tolerance used to change a strict inequality

into a non-strict inequality. Moreover, the product of two

binary variables δ1 and δ2 can be replaced by an auxiliary

binary variable δ3 , δ1 · δ2. Next, it can be verified that:

δ3 = δ1 · δ2 is equivalent to







−δ1 + δ3 ≤ 0,

−δ2 + δ3 ≤ 0,

δ1 + δ2 − δ3 ≤ 1.

(27)

Finally, multiplication of a binary variable δ with an affine

function f(x) : R
n → R can be replaced by an auxiliary

variable z , δ · f(x), meaning that z = 0 when δ = 0 and

z = f(x) in case δ = 1. It is easy to verify that:

z = δ · f(x) is equivalent to







z ≤ M · δ,

z ≥ m · δ,

z ≤ f(x)−m · (1− δ),

z ≥ f(x)−M · (1− δ),

(28)

with m and M the minimum and maximum of f(·) over the

set X , respectively.

Using the above mentioned rules, one can rewrite the

approximated models presented in the previous section into

the form of (25). For instance, the PWA function (17) can be

rewritten as:

P̂i,fi(ni(k)) =

3∑

j=1

(Aj
i,fi

· ni(k) + Bj
i,fi

) · δji,fi , (29)

where δji,fi correspond to the intervals defined in (17) (δji,fi =

1 when ni(k) is in the interval j) and Aj
i,fi

,Bj
i,fi

can be

calculated from the formulation presented in (17). Then, it

is straightforward to rewrite (29) into the form of (25) with

the help of (26) and (28).

After reformulation of the approximated models presented

in Section IV, we get a system of linear equations and linear

inequality constraints including real and integer variables.

Getting back to the optimization problem, the selected perfor-

mance index (total time spent) is already in the linear form.

However, one can add a penalty term in order to prevent

undesired fluctuations in the perimeter control inputs and the

decision switching variables. The penalty on the perimeter

control inputs can be defined as follows:

Np−1
∑

l=1

| uc
ij(kc + l)− uc

ij(kc + l − 1)
︸ ︷︷ ︸

pl

| . (30)

The above term can be transformed into a linear form by

defining auxiliary variables as follows:

Np−1
∑

l=1

ql subject to − pl ≤ ql ≤ pl. (31)

It can be easily proved that minimizing (31) over pl and

ql would result in the same optimal solution as in case of

minimizing (30) over pl.

All in all, the problem of minimizing the total time spent

in the network subject to the obtained mixed linear model of

the system and other linear constraints on the inputs and states

is formulated as a mixed integer linear optimization problem

(MILP) which is solved in the MPC framework. This problem

is tractable and can be solved using advanced solvers [39].

VI. CASE STUDIES

In this section, we implement and evaluate the performances

of the proposed hybrid schemes using simulation. We stick to

the macroscopic level to investigate and highlight the perfor-

mance of our proposed control methods. We use a simulation

model to represent the urban traffic network and a prediction

model to estimate the traffic states inside the MPC framework.

We start with low mismatch between the simulation model and

the prediction model to evaluate how the proposed control

algorithms deal with the general traffic congestion control

problem. Next, we perform several extensive tests with the

introduction of different types of uncertainties in the simu-

lation model, in order to better represent the reality and to

evaluate our control approaches under more realistic scenarios.

In Example 1, we investigate the performance of the hybrid

perimeter and switching timing plans control (the original

MINLP approach) and show that additional improvements

are obtained, compared with perimeter control or switching

timing plans only, if both control entities are coordinated

and considered in the mixed integer nonlinear optimization.

The performance of the proposed hybrid scheme is further

compared with a greedy feedback perimeter controller. In

Example 2 the two approximation methods are implemented

and their performances are compared with the mixed integer

nonlinear programming approach in terms of computation time

and total cost. Two different demand profiles are selected in

the examples to show that the proposed hybrid scheme is able

to handle different traffic scenarios. Finally, we present the

results of evaluating our proposed methods for different types

of uncertainties (in state measurements, MFDs, trip demands)

introduced in the simulation model. In the following, we

describe in full details the urban network under study and

different types of uncertainties that might exist in reality and

needed to be modeled in the network simulation model.
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A. Set-up

We consider an urban network partitioned into two homoge-

neous regions, i.e. R = 2, the periphery (region 1) and the city

center (region 2). The libraries of the signal timing plans and

MFDs are given a priori for each region. In the first example, a

set of 5 MFDs are defined for the periphery (region 1) and the

city center (region 2) as depicted in Fig. 6(a) and (b), respec-

tively. In Fig. 6(b) the set consists of MFD1,3 adopted from [5]

with maximum trip completion flow 6.3 (veh/s) corresponding

to critical accumulation 3400 (veh), jam accumulation 10000

(veh) (thus the parameters of the 3rd-order polynomial would

be a = 1.4877×10−7/3600, b = −2.9815×10−3/3600, c =
15.0912/3600) and 4 other MFDs that are obtained based on

deviation from the critical accumulation and the maximum trip

completion flow of MFD1,3. The percentages of the deviations

are ±10% and ±5% for the critical accumulation and the

maximum trip completion flow, respectively. Moreover, it is

assumed that the sizes of the two regions are different, hence

the MFDs of the city center (region 2) are the periphery MFDs

multiplied by a coefficient (1.4) as shown in Fig. 6(a). In

practice, these MFDs can be obtained by changing the signal

settings of intersections and can be estimated with [8], [9]. In

example 2, each region is assumed to have 3 MFDs (the same

MFD1,2, MFD1,3, and MFD1,4 as in Fig. 6(b)).

1) Uncertainties in Plant: The dynamic equations of the

simulation model (plant/reality) differ from the prediction

model used in the MPC framework as they contain different

types of error explained in the following. Please note that the

presented MFDs in Fig. 6(a)-(b) are utilized for the MPC

prediction model, while the network (reality) is assumed to

include errors in the MFDs following the error formulation

in [17]. In reality, an MFD is extracted based on several data

collection experiments in the network. Based on the level of

homogeneity of the network, the MFD will exhibit scattering.

By scattering, we mean that in general corresponding to each

accumulation there exist multiple trip production points. The

level of scattering increases when the accumulation grows.

Therefore, there is no explicit mathematical equation for the

MFD. In the following, we approximate the MFD using a 3rd

order polynomial but to take into account the scattering we

assume a uniformly distributed additive noise with zero mean

and a variance that is proportional to the accumulation level.

For all simulation scenarios, we add the error ei (veh/s) to the

MFDs of the simulation model as follows:

ei(k) ∼ U
(
− Ci · ni(k), Ci · ni(k)

)
, (32)

G̃i,fi(ni(k)) = Gi,fi(ni(k)) + ei(k), (33)

with Ci = 0.2/3600. Hence, we get a model where the

scattering increases with the increase in the level of accumu-

lations. The MFDs G̃i,fi used to simulate the urban network

are depicted in Fig. 4.

In reality, there is uncertainty about the measured states

of the network, specially in the estimation of the number of

vehicles with destinations inside regions or across the regions

(nii and nij). Hence, the effects of errors in the measured

states should be taken into account. However, to be consistent

with reality, one should expect larger errors in the nij than

in the total number of vehicles inside the region, i.e. ni. This

is due to the fact that the estimation of the total number of

vehicles inside a region is easier than obtaining an estimation

of the number of vehicles with certain destinations that can

be inside a region or in other regions in the neighborhood

(for example ni can be estimated with fixed sensors in certain

locations of the network, while nij would require tracking

devices of vehicles and destination will not be fully known

until vehicles reach it). Therefore, we model the error in the

states as follows:

ñii(k) = nii(k) + ωii · nii(k) · εii(k) (34)

ñij(k) = nij(k) + ωij · nij(k) · εij(k) (35)

where the values for ωii and ωij are first set to 0.05 and then to

0.1, to simulate a 5% and a 10% error in the measurements, re-

spectively. Moreover, the error vector ε(k) =
(
εii(k), εij(k)

)T

has a normal distribution with the mean value of zero and the

covariance matrix as:

Cov(ε) =

[
1 −0.75

−0.75 1

]

. (36)

The total of number of vehicles inside the region i
(
ñi(k) =

ñii(k) + ñij(k)
)

will contain the sum of the elements of the

error vector ε(k), thus with the variance 1/2 (as the variance

of the sum of two correlated variables Var(X+Y ) is Var(X)+
Var(Y ) + 2Cov(X,Y )).

Furthermore, we also take into account the uncertainty in

trip demands. The prediction model in the MPC framework

takes the average profile as e.g. shown in Fig. 6(d), while the

network simulation model assumes noisy demand profiles to

represent uncertain variations of demands from day to day

and also to include events that temporarily affect the demand

profiles. For the first case, the unbiased demand is assumed to

have an additive white Gaussian noise, as follows:

q̃ij(k) = qij(k) +N (0, σ2
ij), (37)

with i, j = 1, 2 and σ2
ij (veh/s)2 the variance of the noise. For

the simulations, we consider a large noise with σ = 0.5 3. On

the other hand, in the biased case, the demand profile has a

sudden jump, as well as an additive nonzero mean Gaussian

noise. This jump is not known to the MPC controller and only

included in the network simulation model. In Fig. 5(a), the

demand profile corrupted with unbiased noise is shown, while

the biased demand is depicted in Fig. 5(b). These demand

profiles are used in the network model of Example 2. Note that

since we deal with aggregated regional-based trip demands,

they suffer less from the effects of fluctuations that exist in

regular OD demand estimations. Furthermore, the level of the

noise added to the trip demands is in line with the results of

practical experiments presented in the literature ( [40], [41]).

In Examples 1 and 2 we have only included the errors in

the MFDs, while in the last section (robustness evaluation)

we investigate the effects of all possible uncertainties on the

performance of the hybrid control approaches.

3The range of the noise has been chosen in such a way that the total demand
variable q̃ij is always larger than zero.
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Fig. 4. Uncertain MFDs representing the urban network under control, (a)
MFDs of the periphery, and (b) MFDs of the center.

2) Simulation Parameters: For simulation of the system, we

choose the sample time as T = 30 s. Moreover, the control

sample time is selected as Tc = 60 s for Example 1 and

Example 2, while it varies for the last section (robustness to

measurement noise). The hybrid model predictive controllers

(the MINLP approach and the PWA-MILP methods) use the

prediction horizon Np = 20 min and the control horizon

Nc = 2 min4. Moreover, the penalty term (30) is added to the

objective function with a weight of 10 (this choice is obtained

based on the nominal values of the total time spent objective

function and the penalty term. More discussions about finding

proper weights are provided in [17]). Furthermore, the lower

and upper bounds of the perimeter input are selected as

uij,min = 0.1 and uij,max = 0.9. Therefore, the flows between

regions are neither completely allowed, nor fully blocked.

B. Example 1

The demand profiles for trips inside each region and be-

tween them are illustrated in Fig. 6(d). There is a high

demand for trips inside the periphery, see q11(·) in the

figure. Further, both regions are initially congested, i.e. the

initial accumulations are larger than the critical accumulations
(
n11(0) = 3700 (veh), n12(0) = 2300 (veh), n21(0) = 2000

(veh), n22(0) = 2000 (veh)
)
.

The hybrid controller finds the optimal perimeter control

inputs along with the optimal timing plan, as shown in

Fig. 6(e) and (f), for each region using mixed integer nonlin-

ear optimization. The values of MFDs calculated during the

optimization are shown in the black curve, e.g. the calculated

values of MFD for region 1 belong to MFD1,5, which is the

optimal MFD (or signal timing plan) during the whole time

period as switching of plans does not occur.

In the absence of control or having only the perimeter

control on the borders, one or both regions would get to a

gridlock situation. But with optimal switching between timing

4The current choice for these parameters are based on the tuning procedure
in [17].
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Fig. 5. Noisy demand profiles used in the simulation model (plant/network);
(a) high unbiased noise in demand, and (b) biased noise (sudden jump in q22).

plans and assisted by perimeter control, both regions will

escape from high-level congestion and they will be eventually

uncongested by the end of the simulation interval, as depicted

in Fig. 6(c).

In order to evaluate the MPC hybrid controller results, the

total time spent for the whole period of simulation (1 hour) is

compared for several control schemes as shown in Table I: (i)

only perimeter control with different combinations of MFDs

(the MFDs for both regions are fixed during the simulation

period. Since there exist 5 MFDs in each of the libraries,

25 combinations would be possible to choose), (ii) switching

timing plans control only, and (iii) a greedy feedback perimeter

controller. The greedy perimeter controller is a simple state-

feedback perimeter controller with the policy of protecting

regions with high accumulations and high trip destinations.

The control laws of the greedy controller are as follows: if

both regions are uncongested, the perimeter control inputs are

maximized and if both regions are congested, the perimeter

control inputs ui,j and uj,i are respectively set to the maximum

and minimum values, if region j is more congested than

region i and vice versa. Note that the greedy control has been

tested for all 25 combinations of MFDs.

The results shown in Table I imply that the MPC hybrid

controller is superior for all control schemes in the sense that

at least 17% improvement in total time spent is achieved when

both controllers are applied instead of only perimeter control.

Also note that applying only the switching timing plan control

or using the greedy feedback control still leads to gridlock

situations in the regions.
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TABLE I
PERFORMANCE EVALUATION FOR DIFFERENT CONTROL SCHEMES IN

EXAMPLE 1.

Control scheme Total time spent
(veh · s)

Uncontrolled Gridlock

Greedy feedback controller Gridlock

Perimeter control with MFD1,5 and MFD2,1 3.47× 107

Perimeter control with MFD1,5 and MFD2,2 3.42× 107

Perimeter control with MFD1,5 and MFD2,3 3.38× 107

Perimeter control with MFD1,5 and MFD2,4 3.37× 107

Perimeter control with MFD1,5 and MFD2,5 3.36× 107

Perimeter control with other MFD combinations Gridlock

Switching timing plans Gridlock

Hybrid controller (MINLP approach) 2.78× 107

C. Example 2

In this example, we provide a scenario to evaluate the

performance of the proposed approximated methods and the

original mixed integer nonlinear optimization approach. More-

over, in order to have a better performance evaluation of the

approximation approaches, the results are compared with the

greedy perimeter controller as well.

The demand profile simulates a peak morning hour with

high demand q12(·) for trips from region 1 (the periphery) to

region 2 (the city center), as shown in Fig. 7(l). The closed-

loop system is simulated for a period of 1 hour. The initial

accumulations are n11(0) = 2700 (veh), n12(0) = 2700
(veh), n21(0) = 2000 (veh), n22(0) = 2000 (veh). The

accumulations of the regions are measured and fed to the

MPC controller. There are 3 cases of MPC controllers; one

with embedded MINLP optimization based on the nonlinear

prediction model, one with MILP optimization based on the

first approximated model as prediction model (we call it PWA-

MILP1), and one with MILP optimization based on the second

approximated model as prediction model (we call it PWA-

MILP2). The quantized perimeter input is formulated as:

uij(k) = uij,0 ·
(
0.5 + 20 · ωij,1(k) + 21 · ωij,2(k)

)
(38)

with uij,0 = 0.26. Therefore, in the PWA-MILP cases,

the perimeter control input takes values from the set

{0.13, 0.4, 0.65, 0.9}.

The evolution of accumulations over time corresponding to

the MINLP approach, the first approximation method PWA-

MILP1, the second approximation method PWA-MILP2, and

the greedy controller are depicted in Fig. 7(a), 7(d), 7(g), and

7(j), respectively. These figures demonstrate the effectiveness

of the control measures as they show that the control inputs

prevent the two regions from moving forward towards gridlock

(as all accumulations are less than the jam accumulations).

In the absence of control, the gridlock circumstance would

occur. The MINLP approach results in a better performance

compared to both PWA-MILP approaches, in particular for the

accumulations of region 2. For the PWA-MILP1 approach, this

can be explained by the fact that we have approximated the

second-order polynomials with two affine functions, see (17),

and also because of the forward simulation method that has

been introduced to overcome the multiplication of variables.

Hence, the performance of the PWA-MILP1 method can be
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Fig. 6. Example 1: Performance overview of the nonlinear hybrid scheme,
a,b) MFDs used in the prediction model together with schematic optimal
switching between MFDs, c) accumulations, d) average demand profiles used
in MPC, e) optimal perimeter control input, e) optimal switching signals for
region 2 (the controller always chooses MFD1,5 for region 1 in this case).

improved by approximating the polynomials with a larger

number of affine functions and by using more iterations in

each control time step.

Nevertheless, a more accurate way to tackle the problem

with multiplication of variables was proposed in the second ap-

proximation method PWA-MILP2. Therefore, the performance

of the PWA-MILP2 method is closer to MINLP approach in

terms of the sum of accumulations over the whole simulation

period. Moreover, in order to further verify the advantage of

the MILP formulation of the problem, the greedy perimeter

controller results are compared with the results of the hybrid

approaches. Comparing with Fig. 7(j), the greedy perimeter

controller’s performance is much worse than all 3 hybrid

approaches. With the greedy controller, the accumulations of

both regions will exceed 7000 vehicles at the end of the
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simulation time, and the total time spent is much higher.

The optimal perimeter control inputs for the MINLP, PWA-

MILP1, PWA-MILP2 approaches, and the greedy controller

are shown in Fig. 7(b), 7(e), 7(h), and 7(k), respectively. The

perimeter inputs u12(k) of the MINLP approach are close to

the maximum to allow more vehicles to leave region 1 while

u21 varies more over time. Moreover, the optimal switching

timing plans for the MINLP, PWA-MILP1, and PWA-MILP2

approaches are respectively illustrated in Fig. 7(c), 7(f), and

7(i), for both regions 1 and 2. It can be observed in this

scenario that the optimization algorithms mostly take the

envelope of the 3 MFDs for each region. This is more clear in

the MINLP and PWA-MILP2 approaches while in the PWA-

MILP1 case, the switching between MFDs occurs more often.

The computation time and total time spent are compared

for different proposed algorithms and for different values

of prediction horizon in Table II. The average computation

time for the scenario Np = 20 is 51.52 (s) for one run of

the MINLP algorithm5, while it is 1.143 (s) and 5.3934 (s)
for the PWA-MILP1 and PWA-MILP2 approaches. Note that

the MINLP algorithm has been executed 10 times in each

control time step for different random initial points in order to

prevent reaching local optimal solution. Therefore, the actual

computation time of the MINLP method is multiple of the

aforementioned number.

It can be inferred from Table II that the PWA-MILP2

method has a better performance in terms of the total time

spent (veh · s) compared to the PWA-MILP1 approach but

slightly worse than the MINLP case. The computation time

of the PWA-MILP2 approach is larger than PWA-MILP1

approach but much smaller than nonlinear case. Furthermore,

using each of the two PWA-MILP approaches result in less to-

tal time spent than the greedy perimeter controller (3.75×107

(veh·s)). Only in the case Np = 10, the first approximation

method gives a slightly larger time spent compared to the one

achieved from the greedy controller.

Moreover, as mentioned before in Remark 1, the quanti-

zation of the perimeter control input can be prevented by

introducing an auxiliary variable M̃ and by adding some extra

inequality constraints, provided that the perimeter control input

is not penalized. Results of using this technique are presented

in Table II, under the name PWA-MILP3. In fact, we follow

the same approach as in PWA-MILP2, but without quantizing

the perimeter input and without considering the penalty term

on the perimeter input. The obtained results show a slight

decrease in the computation time and an improvement in the

total objective function (compared to the other approximation

methods). So if one prefers to penalize the control input

(e.g. to prevent instability or other undesired behaviors due to

oscillations in the control input), PWA-MILP1 or PWA-MILP2

are suggested. However, if penalizing the control input is not

deemed necessary, clearly PWA-MILP3 is the best choice.

5These CPU times were obtained adopting the functions minlpBB and
CPLEX inside the Tomlab toolbox of Matlab 7.12.0 (R2011a), on a 64-bit
Windows PC with a 2.8GHz Intel Core i7 processor and 8Gb RAM.

D. Robustness to Measurement Errors and Uncertain De-

mands

In this section, we first study the effects of measurement

errors on the performance of the proposed schemes and

propose a solution for the drawbacks caused by these errors.

Next, we study the impacts of the unbiased and biased noise in

trip demands. The selected scenario is identical to Example 2

with addition of the two new types of uncertainties introduced

in the simulation model. The prediction horizon is Np = 20
min, the control horizon is Nc = 2 min, simulation sample

time 30 s and the total simulation time is 1 hour.

By adding the measurement errors to the plant, as in (34)–

(35), the performance of the hybrid controller gets affected by

introducing fluctuations in the perimeter control inputs and by

slightly increasing the number of switching between MFDs.

Simulation results in case of having 10% error in the measured

nij are depicted in Fig. 8(a). The perimeter control inputs

have considerable jumps, and therefore not useful for practical

situations. Traffic operators expect more stable control profiles

with smaller changes in the pattern. In order to overcome this

problem, we propose, in addition to penalizing the control

input variations, to select a control sample time larger than

the simulation sample time while keeping the obtained control

inputs constant between two consecutive control time steps.

By performing this, the perimeter control inputs will have a

smoother behavior over time, as can be observed in Fig. 8(b),

while the total time spent in the network might not be altered

significantly.

Results for simulation with different Tc are presented in

Table III. Note that due to the addition of errors in the system,

we expect different total time spent values for different runs

with the same set of control inputs. Thus, the values presented

in the table are the average over 10 runs for each case of

control sample time. It can be observed that for less frequent

calls of the controller, we achieve around the same results

but with less oscillations in the control inputs. However, for

the ratio Tc/T = 6 and higher the performance will get

worse. Furthermore, the obtained results show that the PWA-

MILP1 approach has worse results compared to the other two

approaches due to the forward simulation technique.

Now we study the effects of adding noise in the trip

demands in the simulation model (note that the prediction

model still takes the average demand profile). In the first case

the demand profile depicted in Fig. 5(a) is selected. Simulation

results are presented in Fig. 9(a)-(b) for two control strategies

MINLP and PWA-MILP1. The numerical results for other

cases are presented in Table III. As can be observed, the hybrid

control strategies are able to handle the unbiased noise in the

demands. Only small size fluctuations in the control inputs

occur which can be prevented by penalizing the control inputs

and also by increasing the control sample time. It should be

noted that increasing the control sample time more than 3

times the simulation sample time affects the performance.

Next, we use the biased noise in the demand profile of the

simulation model. We have added Gaussian noise a mean of

10% of the average profile and a variance σ2
ij = 0.22, and

a jump in q22 as depicted in Fig. 5(b). Simulation result for
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Fig. 7. Example 2: The results obtained from the MINLP approach, PWA-MILP1, PWA-MILP2 methods, and the greedy perimeter controller for a two-region
urban network: accumulations are presented in 7(a), 7(d), 7(g), and 7(j); perimeter control inputs are presented 7(b), 7(e), 7(h), and 7(k); and switching timing
plans inputs are presented in 7(c), 7(f), and 7(i), respectively. The average demand profiles for trips inside each region and between them are illustrated in 7(l).

TABLE II
PERFORMANCE EVALUATION FOR EXAMPLE 2

Prediction
Total time spent (veh · s) Average computation time (s)

horizon MINLP PWA-MILP 1 PWA-MILP 2 PWA-MILP 3 MINLP PWA-MILP 1 PWA-MILP 2 PWA-MILP 3

10 3.35× 107 3.91× 107 3.47× 107 3.42× 107 20.33× 10 0.527 1.1323 1.0165

20 2.85× 107 3.31× 107 2.87× 107 2.85× 107 51.52× 10 1.143 5.3934 3.5341

30 2.79× 107 3.18× 107 2.84× 107 2.80× 107 164.12× 10 4.103 9.3129 7.8275

the PWA-MILP2 approach is illustrated in Fig. 9(c), while

numerical results for all approaches are presented in Table III.

Overall, it can be inferred that the proposed hybrid control

strategies are robust to different types of uncertainties in

the urban network (reality). When comparing all modeling

errors, we notice that the approaches are most sensitive to

measurement errors in the states since such an error changes

the initial condition and subsequently, also the predicted state

evolution in a significant way. However, note that the 10%
error in the measurements, in the order of 0.1 × 5000 = 500

vehicles, is consistent with recent findings in the literature

on the estimation of accumulations and MFDs ( [41], [42]).

As can be inferred from Table III, the PWA-MILP1 approach

has poor performance when combined MFD, measurement

and demand noise exist in the simulation model (plant). The

MINLP approach has impressive and robust performance un-

der different conditions, only it suffers from high computation

time for large scale problems. Hence, for cases in which

the computation time is not crucial, the multi-start MINLP

approach is suggested, while for larger problems, the three
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Fig. 8. (a) Effect of measurement errors on states and perimeter control inputs, and (b) smoothing the perimeter control inputs (MINLP approach).

TABLE III
TTS VALUES (×107(veh · s)) FOR EXAMPLE 2, IN PRESENCE OF MEASUREMENT ERROR AND NOISE IN DEMANDS (IN ADDITION TO ERROR IN MFDS).

Noise in Tc

T

No measurement error Measurement error (5%) Measurement error (10%)
trip demands MINLP PWA-MILP 1 PWA-MILP 2 MINLP PWA-MILP 1 PWA-MILP 2 MINLP PWA-MILP 1 PWA-MILP 2

no noise
2 2.85 3.31 2.87 2.87 3.42 2.92 3.26 3.76 3.28
3 - - - 2.90 3.46 2.99 3.28 3.78 3.29
6 - - - 3.43 3.86 3.48 3.62 3.97 3.66

unbiased
2 2.88 3.22 2.86 2.94 3.45 3.01 3.15 3.81 3.18
3 - - - 2.97 3.53 3.13 3.19 4.01 3.21
6 - - - 3.56 3.78 3.64 3.73 gridlock 3.91

biased
2 3.14 3.97 3.20 3.32 4.21 3.30 3.45 gridlock 3.55
3 - - - 3.36 4.35 3.38 3.56 gridlock 3.61
6 - - - 3.74 gridlock 3.86 3.88 gridlock 4.02

approximation methods can be chosen based on the structure

of the network, the type and level of uncertainties exist, and

the acceptable level of oscillation in the control inputs.

VII. CONCLUSIONS

Within the hierarchical multi-level approach for control of

large-scale urban traffic networks, we introduced a new control

scheme, the switching timing plans together with the perimeter

controllers to manage and control a large-scale urban network.

The optimal control solutions are obtained in a model

predictive control scheme for two different open-loop opti-

mization problems; mixed integer nonlinear and mixed integer

linear programming. The mixed integer linear programming

problem is obtained after approximation of the nonlinear

model using some techniques along with the piecewise affine

approximation. The results of the case studies show the

importance of the approximated model regarding the required

computation time. The computation times for solving the

MILP problems were much lower than the MINLP for the two

regions example. This is very crucial for real-time implementa-

tion in networks with a large number of regions, as the MINLP

might not be tractable. Furthermore, it should be noted that

the MILP results have some very small deviations (specially

the second approach) compared to the MINLP results.

The effectiveness of hybrid (perimeter and switching) con-

trol has been compared quantitatively with perimeter control

only, i.e. the results in [17]. It is apparent that the switching

timing plans controllers can enhance the network performance

when they collaborate with the perimeter controllers, as they

can utilize more efficiently the network capacity to decrease

the total time spent in the network. However, several research

questions are still open in this direction, e.g. investigation of

other approximation methods that might enhance the MILP

approach. Formulating the control problem using the optimal

control theories and numerical methods such as solving a

two point boundary value problem would also be interesting

to investigate. Simulation of the closed-loop system using

micro-simulation software packages and field implementation

of the proposed methods would shed more light on how these

controllers can change the spatial distribution of congestion.

In the hierarchical framework, lower level local controllers

must be properly designed in order to realize the optimal

control inputs determined by the high-level schemes. The

effect of control decisions in the route choice of users is also

a research direction. Monitoring techniques ( [40]–[42]) for

different types of sensors and penetration rates to decrease the

measurement errors in the state variables and in the demands

should be studied as well.
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Fig. 9. Robustness to noise in demand: (a) unbiased noise, control using MINLP approach, (b) unbiased noise, control using PWA-MILP2 method, (c) biased
noise (peak in q22), control using PWA-MILP2.
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