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Estimation of the generalized traffic average speed based on

microscopic measurements: Addendum

A. Jamshidnejad∗* and B. De Schutter

Delft Center for Systems and Control

Delft University of Technology

Abstract

This addendum contains the extended proof of the tight upper and lower bounds (41) and (42) of the

manuscript “Estimation of the generalized traffic average speed based on microscopic measurements” by

A. Jamshidnejad and B. De Schutter, Oct. 2014.

A Proof

Suppose that we have the following data from the loop detector:

VA = {vA,i | i = 1,2, . . . ,nA},

vA,min = min
i=1,...,nA

(vA,i),

vA,max = max
i=1,...,nA

(vA,i),

(A.1)

hA =
1

nA

nA

∑
i=1

hA,i−1 (A.2)

where this data is according to the sampling window A with length LA and width TA. Moreover, the parameters

mA and MA could be calculated by (24) and (25). Then from (32) and (35) we obtain the lower and upper

bounds for the TSMS, so that we can write:

vlower(A)≤ TSMS(A)≤ vupper(A) (A.3)

Now we construct a new sampling window B (see Figure 1) with all speed data the same as that of A, but with

the headway a different constant, i.e.,

hB = hA +∆h (A.4)

and

LB = LA, TB = nAhB (A.5)

and we want to find ∆h such that:

vlower(B)≤ TSMS(A)≤ vupper(B) (A.6)

Note that nA = nB.

From Figure 1 we see that for ∆h > 0 some of the vehicles that are located in the second set for A, might

be located in the first set for B. Let W be the number of vehicles from the second set of A that are in the first

set for B. Then we have:

mB = mA −W (A.7)

*∗Email: a.jamshidnejad@tudelft.nl
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Figure 1: Sampling windows A and B with the same data sets (i.e., speed values, number of vehicles, and

length of the window), but different time headways (we have αi > 1 and αixi = LA)

We start with considering the upper bound of B to find the conditions under which this upper bound is also

an upper bound for TSMS(A). First from (35) for the factor multiplied by HA,1→nA−mA+1, i.e.,

f (mA) =
nA −

MA

2
+1

(nA −mA +1)+
(MA −1)

2mA

(2mA −MA)

,

with: MA =
vA,min

vA,max

mA +1

(A.8)

we can easily show that (α =
vA,min
vA,max

):

∂ f (mA)

∂mA

=
(2α2 −6α +4)nA +2α2 −4α +2

4n2
A +( f1(α)mA −4α +8)nA + f2(α)m2

A + f3(α)mA +α2 −4α +4
≥ 0

f1(α) =−4α2 +8α −8

f2(α) = α4 −4α3 +8α2 −8α +4

f3(α) = 2α −8α2 +12α −8

(A.9)

Therefore, by reducing mA to mB (i.e., by increasing hA to hB), the factor (A.8) becomes smaller and could

produce a tighter upper bound (note that the equality occurs for α = 1, i.e., for uniform speeds).

Now we should find the extreme/worst case where TSMS(A) might violate vupper(B). Thus, we will try

to strengthen TSMS(A) and to weaken vupper(B) at the same time in order to produce the worst possible case.

For the given A and B, the case where

vA, j = vA,max, for j = nA −mA +W, . . . ,nA (A.10)

makes TSMS(A) stronger with respect to vupper(B), because the speed values of the vehicles in (A.10) would

not appear in (35) for vupper(B), but will strengthen TSMS(A).
Now we consider the vehicles vA,i, i = nA −mA, . . . ,nA −mA +W − 1 where these vehicles will appear in

both the harmonic mean of the first set of B and in TSMS(A). We first introduce the following two lemmas:

Lemma 1 For fixed values of vA, j, j = 1,2, . . . ,nA −mA +1, suppose that we have

H({vA, j| j = 1,2, . . . ,nA −mA +1}∪{vA,i|i = nA −mA +2, . . . ,nA −mA +W −1})<

TSMS({vA, j| j = 1,2, . . . ,nA −mA +1}∪{vA,i|i = nA −mA +2, . . . ,nA −mA +W −1})
(A.11)

Then, the difference between the two following values

H({vA, j| j = 1,2, . . . ,nA −mA +1}∪{vA,i|i = nA −mA +2, . . . ,nA −mA +W −1})
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and

TSMS({vA, j| j = 1,2, . . . ,nA −mA +1}∪{vA,i|i = nA −mA +2, . . . ,nA −mA +W −1})

becomes maximum, if we have:

vA,i < vA, j, i = nA −mA +2, . . . ,nA −mA +W −1 (A.12)

where H(·) stands for the harmonic mean.

Proof : We denote the traveled distance and the travel time of vehicle vA,k for k = 1, . . . ,nA −mA + 1 by

respectively xk and tk, and also the traveled distance and the travel time of vA,i, i = nA−mA+2, . . . ,nA−mA+
W − 1 by xi and ti. Furthermore, to ease the notations we use “ j ∈ 1st set of A” to indicate j = 1,2, . . . ,nA −
mA +1. Then we will have:

TSMS
(
{vA, j| j ∈ 1st set of A}∪ vA,i

)
=

x1 + . . .+ xnA−mA+1 + xi

t1 + . . .+ tnA−mA+1 + ti
(A.13)

H
(
{vA, j| j ∈ 1st set of A}∪ vA,i

)
=

nA −mA +2
t1

x1

+ . . .+
tnA−mA+1

xnA−mA+1

+
ti

xi

(A.14)

by a few computations and simplifications, we obtain:

H
(
{vA, j| j ∈ 1st set of A}∪ vA,i

)
< TSMS

(
{vA, j| j ∈ 1st set of A}∪ vA,i

)

⇔

(x1 − xi)
(x1ti − xit1)

xi

x2 . . .xnA−mA+1+

...

+(xnA−mA+1 − xi)
(xnA−mA+1ti − xitnA−mA+1)

xi

x1 . . .xnA−mA

+(x2 − x1)(x2t1 − x1t2)x3 . . .xnA−mA+1+

...

+(xnA−mA+1 − xnA−mA
)(xnA−mA+1tnA−mA

− xnA−mA
tnA−mA+1)x1 . . .xnA−mA−1 > 0

(A.15)

Since the following holds:

x1 = . . .= xnA−mA+1 = LA , xi ≤ LA

hence,

x j − xi ≥ 0 for j ∈ 1st set of A (A.16)

Therefore, if we have:

x jti

xi

− t j > 0 (A.17)

which is equivalent to:

vA, j > vA,i (A.18)

the boxed terms in (A.15) will definitely be positive. From (A.17) to make the boxed terms maximum, we

should have:

vA,i = vA,min

The same reasoning holds when more than one vehicle vA,i is considered, i.e., if we consider

vA,i = vA,min, for i = nA −mA +2, . . . ,nA −mA +W −1 (A.19)

then (A.11) will be satisfied and the difference between the two terms given by Lemma 1 will be maximum.

✷
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Lemma 2 For N,a ≥ 0 and D,b > 0 we will have: a
b
≥ N

D
⇔ N +a

D+b
≥ N

D
.

As explained before, we are looking for the extreme case. Hence we suppose to have the conditions given

by Lemma 1, which based on Lemma 2 and (A.10) indicate that:

TSMS(A)≥ TSMS
(
{vA, j| j ∈ 1st set of A}∪ vA,i

)
(A.20)

and hence,

TSMS(A)≥ H
(
{vA, j| j ∈ 1st set of A}∪ vA,i

)
(A.21)

Thus the worst case occurs if we have both (A.10) and (A.19).

Now we can write TSMS(A) and vupper(B) for the worst case, as follows. First for TSMS(A):

TSMS(A) =
∑A,x

+vA,min

[

W
LA

vA,min

−
W (W +1)

2
hA

]

+ vA,max

[

(mA −W −1)
LA

vA,max

−
(MA −1)(MA −2)

2
hA

]

∑A,t
+W

LA

vA,min

−
W (W +1)

2
hA +(mA −W −1)

LA

vA,max

−
(MA −1)(MA −2)

2
hA

(A.22)

where

∑A,x
=

nA−mA+1

∑
j=1

vA, jtA, j , ∑A,t
=

nA−mA+1

∑
j=1

tA, j

are the traveled distance and the travel time of the first set of vehicles in A. The second term of the denominator

corresponds to the travel time of the first W vehicles located in the second set of A, for which we have:

nA−mA+W

∑
j=nA−mA+1

tA, j =

(
LA

vA,min

−hA

)

+

(
LA

vA,min

−2hA

)

+ . . .+

(
LA

vA,min

−WhA

)

=W
LA

vA,min

−
W (W +1)

2
hA

and the second term of the numerator corresponds to the traveled distance of the first W vehicles located in

the second set of A.

The third term of the denominator corresponds to the travel time of the last mA −W − 1 vehicles located

in the second set of A, for which we have:

nA

∑
j=nA−mA+W+1

tA, j = (mA −W −1− (MA −2))
LA

vA,max

+

(MA −2)

[(
LA

vA,max

−hA

)

+

(
LA

vA,max

−2hA

)

+ . . .+hA

]

= (mA −W −1)
LA

vA,max

−
(MA −1)(MA −2)

2
hA

(A.23)

and the third term of the numerator corresponds to the traveled distance of the last mA−W −1 vehicles located

in the second set of A.

Now we consider the upper bound for the sampling window B. Here we know that the first W vehicles in

the second set of A are located in the first set of B. Extension of the headway (or the width of the sampling

window) might also have an effect on the number of vehicles in the second subset of B (i.e., the last MB − 2

vehicles in the second set). Therefore, in general we consider W ′ number of vehicles that were in the second

subset of A are now out of this subset for B. Consequently we will have:

MB = MA −W ′

For the upper bound for B from (34) we can write:

vupper(B) =
∑x

+vA,min

WLA

vA,min

+ vA,max

[
(mA −W −1)LA

vA,max

−
(MA −W ′−1)(MA −W ′−2)

2
(hA −∆hA)

]

∑A,t
+

WLA

vA,min

+
(mA −W −1)LA

vA,max

−
(MA −W ′−1)(MA −W ′−2)

2
(hA −∆h)

(A.24)
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where the following summations in the numerator and denominator of vupper(B) represent the traveled distance

and the travel time of the first set of the sampling window B respectively:

Traveled distance of the 1st set of B :

∑A,x
+vA,min

WLA

vA,min

Travel time of the 1st set of B :

∑A,t
+

WLA

vA,min

(A.25)

Also the following two terms are the traveled distance and the travel time of the second set of the sampling

window B:

Traveled distance of the 2nd set of B :

vA,max

[
(mA −W −1)LA

vA,max

−
(MA −W ′−1)(MA −W ′−2)

2
(hA −∆h)

]

Travel time of the 2nd set of B :

(mA −W −1)LA

vA,max

−
(MA −W ′−1)(MA −W ′−2)

2
(hA −∆h)

Now we apply Lemma 3 (see Appendix B) to see what conditions are needed for (A.57) to be applicable

to (A.22) and (A.24). Equations (A.22) and (A.24) could be rewritten as:

TSMS(A) =
TSMS

(
{vA, j| j ∈ 1st set of A}

)

∑A,t
+c′1 · vA,max + c′2 · vA,min

∑A,t
+c′1 + c′2

(A.26)

where

c′1 =
(mA −W −1)LA

vA,max

−
(MA −1)(MA −2)

2
hA (A.27)

and

c′2 =
WLA

vA,min

−
W (W +1)

2
hA (A.28)

normalizing the coefficients with respect to ∑A,t
,

TSMS(A) =

TSMS
(
{vA, j| j ∈ 1st set of A}

)
+

c′1

∑A,t

· vA,max +
c′2

∑A,t

· vA,min

1+
c′1

∑A,t
︸ ︷︷ ︸

w′
1

+
c′2

∑A,t
︸ ︷︷ ︸

w′
2

(A.29)

Similarly,

vupper(B) =

TSMS
(
{vA, j| j ∈ 1st set of A}

)
+

c1

∑A,t

· vA,max +
c2

∑A,t

· vA,min

1+
c1

∑A,t
︸ ︷︷ ︸

w1

+
c2

∑A,t
︸ ︷︷ ︸

w2

(A.30)

with

c1 =
(mA −W −1)LA

vA,max

−
(MA −W ′−1)(MA −W ′−2)

2
(hA −∆hA) (A.31)
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and

c2 =
WLA

vA,min

(A.32)

Therefore, case C2 of the lemma 3 holds for (A.29) and (A.30) if we have:

(mA −W −1)
LA

vA,max

−
(MA −W ′−1)(MA −W ′−2)

2
hA +(nA −mA +1)(MA −1)hA

N′

+
(MA −W ′−1)(MA −W ′−2)

2
∆h

W
LA

vA,min

−
W (W +1)

2
hA

D

+
W (W +1)

2
hA

≥

(mA −W −1)
LA

vA,max

−
(MA −1)(MA −2)

2
hA +(nA −mA +1)(MA −1)hA

N

W
LA

vA,min

−
W (W +1)

2
hA

D

(A.33)

Note that from lemma 3 the extreme case where the inequality given by (A.57) might be violated takes place

for X = Xmax or equivalently

TSMS
(
{vA, j| j ∈ 1st set of A}

)
= vA,max ⇒ ∑A,t

= (nA −mA +1)(MA −1)hA

Next we use Lemma 2, where for (A.33),

a =
(MA −W ′−1)(M−W ′−2)

2
∆h+

W ′(2MA −W ′−3)

2
hA

b =
W (W +1)

2
h

Since W ′ < MA −2, then W ′ = MA −3 makes a minimum. Now, if the following holds:

(MA − (MA −3)−1)(MA − (MA −3)−2)

2
∆h+

(MA −3)(2MA − (MA −3)−3)

2
hA

✚✚W (W +1)

2 ��hA

≥

(mA −W −1)(MA −1)hA −
(MA −1)(MA −2)

2
hA +(nA −mA +1)(MA −1)hA

✚✚WmA��hA −
✚✚W (W +1)

2 ��hA

(A.34)

which can be simplified to the following expression:

∆h ≥
nAMAW −MAW 2 −nAW 2 −nAW −M2

AmA −
1

2
MAW

2mA −W −1
hA (A.35)

In addition we have:

(mA −W )(hA +∆h) = mAhA ⇒ ∆hA =
W

mA −W
hA (A.36)

Substituting (A.36) in (A.35) we will finally get:

W ≥
nA(MA −1)

nA +MA

(A.37)

and if we also have:

(mA −W −1)(MA −1)hA −
(MA −1)(MA −2)

2
hA +(nA −mA +1)(MA −1)hA ≥ 0 ⇔

W ≤ nA −
MA

2
+1

(A.38)
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then based on lemma 2 (A.24) will be an upper bound for (A.22).

In addition, we know that in (A.24), the vehicles in the second subset of B compensate for the reduction

of vupper(B) due to the W last vehicles in the first set that move with vA,min. Therefore, we need to make sure

that

hB ≤ (MA −1)hA (A.39)

Then for the extreme case we will have:

mA −W ≥
mAhA

(MA −1)hA

⇒W ≤ mA

(MA −2)

MA −1

and finally we should have:

W ≤ min

{

mA

MA −2

MA −1
,nA −

MA

2
+1

}

(A.40)

Finally, we need to select W such that both (A.37) and (A.40) are satisfied at the same time. Afterwards,

from W we can obtain mB using (40), and then from (24) we will have hB. Hence, we can obtain MB from

(25). Then using mB and MB, TSMSupper(B) is calculated by (35), while we can make sure that the obtained

value is an upper bound for TSMS(A).

Now, we consider the lower bound of B and we seek for conditions under which this bound is also a lower

bound for TSMS(A). With a similar reasoning as we had for the upper bound, here the extreme case where

TSMS(A) might become equal to or less than vlower(B) is when we have:

vA, j = vA,min, for j = nA −mA +W, . . . ,nA (A.41)

Additionally, the worst case corresponds to the situation where all the W vehicles (that are located in the

second set of A, but in the first set of B) move with vA,max, i.e.,

vA, j = vA,max, for j = nA −mA, . . . ,nA −mA +W −1 (A.42)

Finally, for TSMS(A) and vlower(B) (from (29)) we will have:

TSMS(A) =
∑A,x

+vA,max

[
WLA

vA,max

−
(W −mA +MA −1)(W −mA +MA)hA

2

]

+ vA,min

(mA −W −1)(mA −W )hA

2

∑A,t
+

WLA

vA,max

−
(W −mA +MA −1)(W −mA +MA)hA

2
+

(mA −W −1)(mA −W )hA

2

(A.43)

vlower(B) =
∑A,x

+vA,max
WLA

vA,max

+ vA,min

(mA −W −1)(mA −W )

2
(hA +∆h)

∑A,t
+

WLA

vA,max

+
(mA −W −1)(mA −W )

2
(hA +∆h)

(A.44)

The second term of the numerator of (A.43) corresponds to the first W vehicles in the second set of A. From

(A.42) these move with vA,max. Hence, the travel time of the first W vehicles in the 2nd set of A is:

LA

vA,max

(mA −MA +1)

︸ ︷︷ ︸

vehicles in set 2, but outside of subset 2 of A

+

[(
LA

vA,max

−hA

)

+ . . .+

(
LA

vA,max

− (W −mA +MA −1)hA

)]

︸ ︷︷ ︸

vehicles in subset 2 of A

(A.45)

For (A.43) the third term of the numerator is corresponding to the last mA −W −1 vehicles in the second set

of A, i.e., the vehicles given by (A.41). We know that the travel time of vA,nA
is hA, for vA,nA−1 it is 2hA, and so

on. Therefore:

Travel time of the last mA −W −1 vehicles in the 2nd set of A:

hA +2hA + . . .+(mA −W −1)hA =
(mA −W −1)(mA −W )hA

2

(A.46)
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For (A.44) the second term corresponds to the W vehicles that are in the second set of A, but in the first

set of B. The third term corresponds to the vehicles in the second set of B, where:

Travel time of the vehicles in the 2nd set of B:

(hA +∆h)+2(hA +∆h)+ . . .+(mA −W −1)(hA +∆h)
(A.47)

At the end, comparing (A.43) and (A.44) with the cases given in Lemma A.1., case C3 is applicable here.
Therefore, if we have:

WLA

vA,max

−
(W −mA +MA −1)(W −mA +MA)

2
hA

(mA −W −1)(mA −W )

2
hA +(nA −mA +1)mAhA

≥

WLA

vA,max

−
(W −mA +MA −1)(W −mA +MA)

2
hA +

(W −mA +MA −1)(W −mA +MA)

2
hA

(mA −W −1)(mA −W )

2
hA +(nA −mA +1)mAhA +

(mA −W −1)(mA −W )

2
∆h

(A.48)

Now we apply Lemma 2 (the contrapositive of the conditional statement). We obtain:

WLA

vA,max

−
(W −mA +MA −1)(W −mA +MA)

2
hA

(mA −W −1)(mA −W )

2
hA +(nA −mA +1)mAhA

≥

(W −mA +MA −1)(W −mA +MA)

2
hA

(mA −W −1)(mA −W )

2
∆h

(A.49)

which reduces to

∆h ≥
(W −mA +MA −1)(W −mA +MA) [(W +mA)(W −mA +1)+2mA(nA −W )]

(mA −W −1)(mA −W )[−W 2 +(2m−1)W +(M2 −2mM+M2 −M+m)]
hA (A.50)

and if in addition to (A.50) we have:

2W (MA −1)− (W −mA +MA −1)(W −mA +MA)≥ 0 (A.51)

which reduces to

W ≤ mA +
√

(2mA −MA)(MA −1)−
1

2
(A.52)

then we can make sure that based on case C3 of Lemma 3:

TSMSlower(B)≤ TSMS(A)

Then similar to what we explained for the upper bound before, we will have mB and MB and correspondingly

TSMSlower(B) from (32), which could be used as a lower bound for TSMS(A).
Note that a simple choice for W from (A.50) and (A.52) is the following which indeed satisfies both conditions:

W ≤ mA −MA +1 (A.53)

B Weighted-average lemma

Lemma 3 If for w1,w
′
1,w2,w

′
2 ≥ 0 we have either of:

C1.

w1 > w′
1 and w2 < w′

2 and
w1

w2

≥
w′

1

w′
2

, (A.54)

C2.

w1 > w′
1 and w2 > w′

2 and
w1 +1

w2

≥
w′

1 +1

w′
2

, (A.55)
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C3.

w1 < w′
1 and w2 < w′

2 and
w1

w2 +1
≥

w′
1

w′
2 +1

, (A.56)

then we will have
X +w1Xmax +w2Xmin

1+w1 +w2

≥
X +w′

1Xmax +w′
2Xmin

1+w′
1 +w′

2

(A.57)

Proof : First, we will consider the following definition:

D = (Xmax −Xmin)(w1w′
2 −w′

1w2)
︸ ︷︷ ︸

F1

+(Xmax −X)(w1 −w′
1)

︸ ︷︷ ︸

F2

+(X −Xmin)(w
′
2 −w2)

︸ ︷︷ ︸

F3

(A.58)

At this step we reduce the problem to the proof of D ≥ 0. The equivalency of (A.57) and (A.58) being positive

is as follows:

D ≥ 0 ⇔

(Xmax −Xmin)(w1w′
2 −w′

1w2)+(Xmax −X)(w1 −w′
1)+(X −Xmin)(w

′
2 −w2)≥ 0 ⇔

w1w′
2Xmax −w1w′

2Xmin −w′
1w2Xmax +w′

1w2Xmin+

w1Xmax −w1X −w′
1Xmax +w′

1X+

w′
2X −w′

2Xmin −w2X +w2Xmin ≥ 0 ⇔

w1w′
2Xmax +w′

1w2Xmin +w1Xmax +w′
1X +w′

2X +w2Xmin +X +w′
1w1Xmax +w′

2w2Xmin

≥w′
1w2Xmax +w1X +w′

1Xmax +w′
2Xmin +w2X +X +w′

1w1Xmax +w′
2w2Xmin ⇔

(X +w1Xmax +w2Xmin)(1+w′
1 +w′

2)≥ (X +w′
1Xmax +w′

2Xmin)(1+w′
1 +w′

2)

since w1,w
′
1,w2,w

′
2 ≥ 0

⇐============⇒
X +w1Xmax +w2Xmin

1+w1 +w2

≥
X +w′

1Xmax +w′
2Xmin

1+w′
1 +w′

2

(A.59)

All the terms Xmax −Xmin, Xmax −X , and X −Xmin in (A.58) are non-negative. Now we study three cases:

1. Suppose that we have (A.54). Hence, we already know that F1, F2, and F3 in (A.58) are positive. Then

we will know definitely that D is non-negative.

2. Suppose that we have (A.55). Considering (A.58) the minimum value of D is obtained when X = Xmax

and hence the value that is multiplied by the negative factor F3 adopts its maximum value. Therefore

(A.58) will reduce to:

DC2 = (Xmax −Xmin)(w1w′
2 −w′

1w2 +w′
2 −w2) (A.60)

Then from (A.55) we could write:

w1 +1

w2

≥
w′

1 +1

w′
2

⇔

(w1 +1)w′
2 ≥ (w′

1 +1)w2 ⇔ w1w′
2 −w′

1w2 +w′
2 −w2 ≥ 0

(A.61)

Hence DC2 will definitely be non-negative and so will D.

3. Suppose that we have (A.56). Then the minimum value of D is obtained when X = Xmin and the value

multiplied by the negative factor F2 adopts its maximum value. Therefore (A.58) will reduce to:

DC3 = (Xmax −Xmin)(w1w′
2 −w′

1w2 +w1 −w′
1) (A.62)

Then from (A.56) we could write:

w1

w2 +1
≥

w′
1

w′
2 +1

⇔

w1(w
′
2 +1)≥ w′

1(w2 +1)⇔ w1w′
2 −w′

1w2 +w1 −w′
1 ≥ 0

(A.63)

Then DC3 will definitely be non-negative.

✷
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