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Congestion Management in Motorways and

Urban Networks Through a

Bargaining-Game-Based Coordination

Mechanism

Felipe Valencia, José D. López, Alfredo Núñez, Christian Portilla, Luis G. Cortes,

Jairo Espinosa, Bart De Schutter

Abstract Road traffic networks are large-scale systems that demand distributed con-

trol strategies. Distributed model predictive control (DMPC) arises as a feasible al-

ternative for traffic control. Distributed strategies decompose the whole traffic net-

work into different subnetworks with local optimal controllers that make decisions

on actions to be taken by the actuators responsible for traffic control (traffic lights,

routing signals, variable speed limits, among others). However, subnetworks are in-

teracting elements of the whole traffic network. Hence, local control decisions made

for one sub-network affect and are influenced by the decisions taken for the other

subnetworks. Under these circumstances, the DMPC traffic problem can be treated

as a game where the rules are provided by the physical system, the players are the

local optimal controllers, their strategies are the control sequences, and the payoffs

are the local performance indices (such as the total time spent by the users in the

network). This configuration allows the achievement of a computational burden re-

duction, with a compromise between local and global performance. Since DMPC

local controllers are able to communicate with each other, the control of the traf-
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fic network corresponds to a cooperative game. In this chapter, game-theory-based

DMPC is developed and tested for control of urban and motorway networks.

Key words: Game Theory; Distributed Model Predictive Control; Large-Scale Sys-

tems; Motorway Control; Urban Traffic Control; Bargaining Games

1 Introduction

Sustainable mobility of people is a key issue in modern society. However, nowadays

many traffic networks are operating in an inefficient way, producing several negative

impacts on the environment and leading to a deterioration in quality of life for the

users. Solutions such as building new roads or improving the existing infrastructure

are not always feasible because of environmental and budgetary regulations. Thus

the development of efficient management and control systems for traffic and trans-

portation to satisfy the ever-increasing demand for mobility has become a crucial

area of research.

Several control strategies for traffic control have been reported in the literature.

Often, they are simulation based. That is, traffic models are used to determine the

impact of different control strategies and the sensitivity of the performance with

respect to the tuning parameters (e.g., the Adaptive Split Cycle Offset Optimisa-

tion Technique method). Among the different simulation-based strategies reported

in the literature, those based on model predictive control (MPC) have been quite

commonly proposed to solve traffic problems. These techniques are focused on the

optimal use of the information provided by the infrastructure already installed, and

on reducing the travel time while explicitly considering the physical and opera-

tional constraints of the system [Bellemans et al., 2006, Hegyi et al., 2005, Kot-

sialos et al., 2002a, van den Berg et al., 2003]. However, despite the advantages of

MPC over other methods, the application of this control scheme in real large-scale

systems (such as traffic networks) is rendered impractical due to the computational

burden of its centralized nature. In order to make the real-life implementation of

MPC in large-scale systems possible, distributed model predictive control (DMPC)

approaches have been proposed [Camponogara et al., 2002]. DMPC is a control

scheme in which the system is divided into a number of subsystems. Each subsys-

tem is able to share information with other subsystems in order to determine its local

control actions [Negenborn et al., 2008, Talukdar et al., 2005, Wang and Cameron,

2007]. The main goal of the DMPC approach is to achieve some degree of coordi-

nation among subsystems that are solving local MPC problems with locally relevant

variables, costs, and constraints, without solving the centralized MPC problem [Jia

and Krogh, 2001, Necoara et al., 2008].

In this chapter, the application of a new bargaining-game-theory-based DMPC

for the management of congestion in motorways and urban traffic networks is pre-

sented. Game theory is a branch of applied mathematics used in a wide range of

disciplines (see [Von Neumann et al., 1947] for a more detailed overview of game
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theory). Game theory attempts to capture behaviors in strategic situations, or games

where the outcome of a player is not only a function of his own choices but also

depends on the choices of others [Myerson, 1991]. Some DMPC schemes based on

game theory concepts have been reported in the literature. In [Du et al., 2001, Gio-

vanini and Balderud, 2006, Li et al., 2005, Trodden et al., 2009] DMPC schemes

based on Nash optimality were proposed. In such approaches, the DMPC problem

was formulated as a non-cooperative game, and the convergence of the solution to a

Nash equilibrium point of the resulting non-cooperative game was demonstrated. In

Rantzer [2006, 2008, 2009] the DMPC problem was related to game theory using a

cooperative game framework, as proposed in [Von Neumann et al., 1947]. In these

approaches, the Lagrange multipliers of the dual decomposition were conceived as

price mechanisms in a market serving to achieve mutual agreements among subsys-

tems, and dynamic price mechanisms were used for decomposing and distributing

the optimization problem associated with the original MPC problem. More specifi-

cally, the minimization problem was converted into a min-max problem, and again

the convergence of the solution to a Nash equilibrium was demonstrated. In [Maestre

et al., 2011a,b,c, Muñoz de la Peña et al., 2009] some other DMPC approaches

based on cooperative game theory were presented. In these approaches, each sub-

system computes local control actions and suggests control actions to the remaining

subsystems. The final control decisions are taken by each subsystem based on the

local information and the suggested control actions from the other subsystems.

The congestion management described in the current chapter uses the theory

of bargaining games as a mathematical framework. In previous bargaining games

based approaches [Venkat et al., 2006a,b,c], the authors demonstrated that (in some

cases) the convergence of the DMPC solution to a Nash equilibrium point could pro-

duce undesired results because it could give an undesirable closed-loop behavior in

the controlled system. Moreover, in DMPC the controllers are able to communicate

with each other. In this chapter, the communication capabilities of the controllers in

a DMPC scheme will be exploited for improving the decision-making of each con-

troller. Such improvements pertains to the knowledge each local controller has about

the preferences of the remaining controllers. In this way, local control actions can be

chosen in such a way that synergy among controllers arises as a consequence of their

cooperative behavior. Note that this is not an additional objective of the proposed

control scheme, but only an additional feature which is related to the formulation of

DMPC as a bargaining game.

In order to present the proposed congestion management system, in Section 2

non-linear DMPC is formulated as a bargaining game. Then, in Sections 3 and 4

the specific application of game theory to congestion management in motorways

and urban traffic networks is shown. Finally, in Section 5 some closing remarks are

discussed.
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2 Non-Linear Distributed Model Predictive Control: Bargaining

Game Approach

Distributed model predictive control (DMPC) is a variant of decentralized control

where some information is exchanged among subsystems in order to determine

the local control actions [Negenborn et al., 2008, Talukdar et al., 2005, Wang and

Cameron, 2007]. Compared with totally decentralized control schemes, DMPC ar-

chitectures yield better closed-loop behavior due to the communication, coopera-

tion, and perhaps negotiation between subsystems. However, these elements also

increase the computational and communication burden [Camponogara et al., 2002,

Negenborn et al., 2008]. Nevertheless, DMPC is becoming important because it is

effective in supporting the implementation of complex control systems with hard

requirements involving fault tolerance and flexibility, it has high control capabilities

and allows the implementation of optimal controllers in real-life large-scale systems

through system decomposition, reducing the computational burden associated with

the solution of one large centralized optimization problem [Pimentel and Salazar,

2002, Yang et al., 2003].

Figure 1 shows a DMPC control scheme. In this figure Process 1 and Process 2

have local MPC controllers. Since these processes interact with each other, sharing

information between controllers is required in order to allow them to compute their

own control actions. Otherwise, the system may lose performance and/or stability.

So, at each time step local controllers must decide on the control actions to be lo-

cally applied, transmit them to the other controllers, and negotiate with the other

controllers on which control actions will be applied. In the following sections this

procedure is mathematically described and discussed using control theory and game

theory as mathematical frameworks.

2.1 Problem Statement

Consider the discrete-time non-linear system given by:

x(k+1) = fdx(x(k),u(k)) (1)

where x(k) ∈ R
n and u(k) ∈ R

m denote the state and input vectors of the dynamic

system at time step k, with fdx(·) a non-linear function describing the time evolution

of the dynamical system to be controlled. The general idea of non-linear model

predictive control (NMPC) is to determine the sequence of control actions for the

system by solving an optimization problem considering the predicted trajectories

given by the non-linear discrete-time model of Eq. (1).

Commonly, a quadratic cost function (that may be interpreted as the total energy

of the system) is used to measure the performance of the system:
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MPC 1 MPC 2 
x1(k)
u1(k)

x2(k)

u2(k)

x1(k)
u1(k)

x2(k)

u2(k)

Negotiation

Process

u*1(k +1) u*2(k+1)

Fig. 1 Schematic diagram of a typical DMPC scheme. Here each process has a local MPC con-

troller with the ability to share information with the other MPC controllers with the purpose of

deciding on which control action to apply.

L(x̃(k), ũ(k)) =
k+Np−1

∑
h=k

[xT (h+1|k)Qx(h+1|k)]+
k+Np−1

∑
h=k

[
uT (h)Ru(h)

]
(2)

where the superscript T denotes the transpose operation, x(h|k) denotes the pre-

dicted value of x at time step h given the conditions at time step k, u(h) de-

notes the control input u at time step h, x̃(k) = [xT (k + 1|k), . . . ,xT (k + Np|k)]
T ,

ũ(k)= [uT (k), . . . ,uT (k+Nc), . . . ,u
T (k+Np−1)]T , where x(k|k)= x(k), and u(h)=

u(k+Nc − 1), for h = k+Nc, . . . ,k+Np − 1; Q and R are diagonal matrices with

positive diagonal elements, and Nc, Np are the control and prediction horizons re-

spectively, with Nc ≤ Np. Recall that x̃(k), ũ(k) are the projections of the state and

input vectors along the prediction horizon Np. Hence, L(·) is a function of x̃(k), ũ(k)
instead of being a function of x(k),u(k).

Let X ⊂ R
n and U ⊂ R

m denote the feasible sets for the states and inputs of

the system, i.e., x(k) ∈ X, u(k) ∈ U (these sets are determined by the physical and

operational constraints of the system). Then, the NMPC problem can be formulated

as the non-linear optimization problem:
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min
ũ(k)

L(x̃(k), ũ(k))

s.t.:

x(h+1) = fdx(x(h),u(h))

x(h+1) ∈ X; u(h) ∈ U;

(3)

This optimization problem corresponds to the centralized formulation of the NMPC

problem. Although widely studied, the solution of Eq. (3) is hard to compute in real-

time for large-scale systems such as traffic networks. This fact motivates the use of

distributed predictive control schemes.

For instance, following the approaches in Kotsialos et al. [2002b, 1999], Papa-

georgiou et al. [1990] for motorways and the approaches presented in Lin et al.

[2011, 2012] and the references therein for urban traffic, both traffic systems can be

modeled as Eq. (1). Since they are composed of several interacting elements (links

in the case of the motorways and intersections in the case of the urban traffic net-

works), the whole network can be decomposed into those fundamental elements and

local predictive control schemes can be used for an optimal local control of each ele-

ment. A motivation for such a decomposition is that traffic networks are large-scale

systems, therefore a centralized optimal solution is not viable due to the lack of

flexibility and vulnerability of this control structure (See Table 1 for a comparison

between centralized and distributed structures).

Table 1 Comparison between centralized and distributed MPC

Centralized Distributed

Objective Single objective Both local and global system objec-

tives

Prediction

model

Broad system prediction model Several prediction models (one per lo-

cal controller)

Communications All system information should be

transmitted to a central unit

Local information is transmitted be-

tween local controllers

Processing Centralized computation of the con-

trol actions to be applied to the system

under control

Local controllers compute the local

control actions based on the available

information

For implementing DMPC schemes the whole system must be decomposed into

several subsystems. For each subsystem a local MPC is designed, and a negotiation

strategy is provided to each controller in order to determine the local control actions

to be applied. Assume that the whole system can be decomposed into M subsystems

xr(k+1) = fdxr(x(k),ur(k),u−r(k)), for r = 1, ...,M (4)

where xr(k) ∈ R
nr and ur(k) ∈ R

mr are the local states and inputs, and u−r(k) =
[uT

1 (k), . . . ,u
T
r−1(k),u

T
r+1(k), . . . ,u

T
M(k)]T . Furthermore, assume that the sets Xr ⊂

R
nr and Ur ⊂ R

mr define the local feasible sets for xr(k) and ur(k) respectively,

where X = Π M
r Xr and U = Π M

r Ur, Π denoting the Cartesian product. From the

system decomposition of (4) the cost function L(x̃(k), ũ(k)) can be expressed as
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[Venkat et al., 2006b,c]

L(x̃(k), ũ(k)) =
M

∑
r=1

(
k+Np−1

∑
h=k

xT
r (h+1|k)Qrxr(h+1|k)+

k+Nc−1

∑
h=k

uT
r (h)Rrur(h)

)

(5)

Let φr(x̃(k), ũ(k)) denote the local cost function, and for the sake of simplicity,

φr(x̃(k), ũ(k)) is defined as the term inside the brackets in Eq. (5). Therefore, the

centralized optimization problem (3) can be equivalently solved through the solution

of (6), with r = 1, . . . ,M.

min
ũ(k)

M

∑
r=1

φr(x̃(k), ũ(k))

s.t.:

xr(h+1) = fdxr(x(h),ur(h),u−r(h))

xr(h) ∈ Xr; ur(h) ∈ Ur; yr(h) ∈ Yr

(6)

The optimization problem Eq. (6) defines the non-linear DMPC (NDMPC) formu-

lation. In this formulation, each controller determines its local control actions ũr(k)
according to its local cost function φr(x̃(k), ũ(k)). Note that from Eq. (6) a set of

M local optimization problems is derived, all coupled via the cost function and the

constraints. In this sense, Eq. (6) defines a situation in which the success of each

controller depends upon the decisions of the remaining controllers. This situation

defines a game referred to in this chapter as the NDMPC game.

Game-theory-based NDMPC has been previously studied by several authors. In

these approaches the DMPC was analyzed as a non-cooperative game [Du et al.,

2001, Giovanini and Balderud, 2006, Li et al., 2005, Trodden et al., 2009], where

local decisions were computed as the solution to the local optimization problem

(7). In those cases, the authors demonstrated the existence of at least one Nash

equilibrium point and the convergence of the distributed solution to this point.

min
ũr(k)

φr(x̃(k),ur(h),u−r(h))

s.t.:

xr(h+1) = fdxr(x(h),ur(h),u−r(h))

xr(h) ∈ Xr; ur(h) ∈ Ur

(7)

Although there exist several strategic situations where achieving a Nash equilib-

rium point is desired, this is not the case in DMPC. For instance, in [Venkat et al.,

2006a,b,c] the authors presented some examples where DMPC approaches with

assured convergence to a Nash equilibrium point exhibited an unexpected closed-

loop behavior, thereby limiting the applicability of those schemes. Alternatively,

[Rantzer, 2006, 2008, 2009] transformed the optimization problem (7) into a min-

max optimization problem. Accordingly, the solution to (7) does not require infor-

mation exchange and also converges to a Nash equilibrium point. However, depend-
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ing on the dimensions of the system the solution to the min-max problem might

not be feasible in real-time. Based on these facts, bearing in mind the work done in

[Venkat et al., 2006a,b,c] on feasible cooperation MPC (where convergence of the

distributed scheme to the centralized solution was demonstrated), and given that lo-

cal controllers are able to communicate with each other, a cooperative game frame-

work is used in this chapter for analyzing the situation arising from Eq. (6).

2.2 The Distributed Model Predictive Control Game

As it was stated in Section 2.1, in the NDMPC formulation the success of each

local controller is based upon the choices of the remaining controllers. According

to [Myerson, 1991], such situations are the object of study of game theory. In the

NDMPC case, the game is determined by the physical laws used to model the sys-

tem to be controlled, by the models locally used to predict the system’s behavior,

and by the physical and operational constraints of the whole system. Since NDMPC

is a discrete-time control strategy, it is played at each time step k, i.e., at each time

step an optimal control action is obtained (over the decision space) based on local

performance indices. Note that from Eq. (6) at each time step k each local controller

has a decision space Ur for selecting the sequence of control actions ũr(k), and this

selection obeys the minimization of the local cost function φr(x̃(k), ũ(k)) (moves,

strategies, and choices in the NDMPC game). So, based on [Nash, 1953, Von Neu-

mann et al., 1947] the NDMPC circumstance has all the elements required for being

analyzed within the game theory framework. In order to make this concept clear,

Table 2 shows a didactic comparison between Game Theory and DMPC.

Table 2 Comparison between game theory and DMPC

Game Theory DMPC

Game Set of rules used to describe the cir-

cumstances.

Local and global system model rules, as well

as physical and operational constraints.

Play Every particular instance at which the

game is played.

Each time step k.

Move The occasion choosing of an alterna-

tive under the conditions of the game.

Each time step k (as shown at the end of Sec-

tion 2).

Strategy Preference and/or rule followed by

each player to select an alternative.

Minimization of the local system-wide-

control cost function (as shown at the end of

Section 2)

Choice The selected alternative in a move ac-

cording to the strategy.

Local control action to be applied to the sys-

tem, driven by the minimization of the local

system-wide-control cost function.

Mathematically, a game G can be defined in its strategic form as a tuple G =
(N ,{Ωr}r∈N , {φr}r∈N ) where N = {1, . . . ,M} is the set of players, Ωr is the

decision space (set of feasible decisions) of the r-th player; and φr : Ω1 ×ΩM → R

is the profit function of the r-th player (i.e., we must maximize instead of minimize



Congestion Management Through Bargaining Game Based Coordination 9

as in MPC). Often, φr quantifies the preferences of player r (and determines its

strategy), and gives to each player some degree of rationality [Akira, 2005]. Let

N be the set of local controllers, Ωr = Xr ∩Ur be the decision space of controller

r, and {φr(x̃(k), ũ(k))}i∈N be the set of profit functions. Then the NDMPC game

in its strategic form is a tuple GNDMPC = (N ,{Ωr}r∈N , {φr(x̃(k), ũ(k))}r∈N ). In

the light of (6), the game GNDMPC involves a group of controllers who have the

opportunity to collaborate for a mutual benefit: improving both local and whole

system performance. So, GNDMPC is a bargaining game according to the definition

provided by Nash in [Nash, 1950b,a, 1953]. Furthermore, the game GNDMPC has

a group of individuals involved in the bargaining, a mutual benefit which is the

objective of the bargaining, and a utopia point defined by the set of choices where all

the individuals involved in the bargaining achieve at the same time their maximum

benefit. Thus, the only missing element to define the game GNDMPC as a bargaining

game is the disagreement point.

According to Nash [1950b,a, 1953] the disagreement point is the benefit per-

ceived by a player when an agreement is not possible. Such benefit is associated with

an alternative plan carried out by the player in this situation, which is determined by

the information locally available. Moreover, the disagreement point should give to

the players a strong incentive to increase their demands as much as possible without

losing compatibility. Following these statements the disagreement point ηr(k) ∈ R

for each player (local controller) in the NDMPC game should be defined such that it

reflects the expected cost associated with the non-cooperative behavior. That is, the

expected value of the local cost function if the local controller “decides” not to coop-

erate. Associated with this cost, there is a local control action to be applied that acts

as an alternative plan carried out by the controller in a non-cooperative situation.

In addition, the disagreement point must be updated following a rule that provides

incentives for changing the decision of the controllers that decide not to cooperate,

and for enhancing the performance of the controllers that decide to cooperate.

For controller r, assume ηr(k) as the expected maximum loss of performance.

Then, at time step k: ηr(k)− φr(x̃(k), ũ(k)) denotes the utility of such subsystem.

Associated with the utility perceived by controller r there is a plan or sequence of

local control actions ũr(k). Thereby, as in Nash [1950b,a, 1953], controller r seeks

a feasible local control sequence that maximizes its own utility. That is, controller r

looks for a control sequence ũr(k) such that φr(x̃(k), ũ(k) is minimum and ηr(k)≥
φr(x̃(k), ũ(k)). If that control sequence exists, the plan of action is locally to apply

the first element of the control sequence ũr(k), to use a shifted control sequence

as the initial condition for making the decision again in the next time step, and to

reduce the disagreement according to the expression ηr(k+1) = ηr(k)−α(ηr(k)−
φr(x̃(k), ũ(k))), with α ∈ R, 0 < α < 1. If that control action does not exists, the

plan of action is to keep applying the current local control action, to use a shifted

control sequence from the initial condition as a condition for performing the next

decision making stage, and to make the value of the disagreement point equal to the

value of keeping the current control action, viz., ηr(k) = φr(x̃(k), ũ(k)).
Given the updating conditions of the disagreement point, decreasing its value

(which implies the controller r “decides” to cooperate) provides strong incentives
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for increasing their demand from the cooperative behavior; but, making its value

equal to the current value of the cost function (which implies the controller r “de-

cides” not to cooperate) provides incentives to controller r for changing its decision

not to cooperate. Indeed, if the expected maximum loss of performance grows the

decision space is augmented, the probability of finding a control sequence such that

φr(x̃(k), ũ(k)) is minimum, and ηr(k)≥ φr(x̃(k), ũ(k)) is increased. Mathematically,

the disagreement point is formulated as follows [Valencia, 2012]:

ηr(k+1) =

{
ηr(k)−α(ηr(k)−φr(x̃(k), ũ(k))) if ηr(k)≥ φr(x̃(k), ũ(k))
ηr(k)+(φr(x̃(k), ũ(k))−ηr(k)) if ηr(k)< φr(x̃(k), ũ(k))

(8)

Despite of the similarities between the bargaining games defined by Nash in

[Nash, 1950b,a, 1953] and the game GNDMPC (see Table 3), there are some dif-

ferences that should be accounted for in order to define a bargaining solution to the

NDMPC game (in NDMPC the solution pertains to the control actions to be locally

applied by each controller). The main difference is that since it is expected that

the system will operate over a long time period, the NDMPC game is a sequence

of infinite bargaining games which are played at each time step, in a variable-

decision environment influencing the behavior of the local controllers and their

decision-making stage. Thus, the original game theory is extended in order to have

a mathematical framework for analyzing NDMPC bargaining games. In this way

the concept of discrete-time dynamic bargaining game for DMPC (identified as GT-

NDMPC in this chapter) is introduced in [Valencia, 2012].

Table 3 Comparison between bargaining games and DMPC

Bargaining Game Theory DMPC

Players A group of individuals involved in the

bargaining.

The set of local controllers that are

able to communicate among them,

and bargain.

Decision Space The set of all choices available to the

individuals involved in the bargain-

ing.

The set of available control actions,

determined by the physical and oper-

ational constraints.

Disagreement

point

Minimum level of satisfaction ex-

pected by the individuals from the

bargaining.

Maximum expected loss of perfor-

mance by each local controller from

the bargaining.

Utopia point The set of choices where all the in-

dividuals involved in the bargaining

achieve at the same time their maxi-

mum benefit.

The set of control actions that min-

imize all the local system-wide-

control cost functions at the same

time.

A discrete-time dynamic bargaining game refers to a situation where at each time

step a bargaining game is solved depending on the dynamic evolution of the decision

environment. In this bargaining game the dynamic evolution of the decision envi-

ronment is determined by the state x(k) ∈ R
n and input u(k) ∈ R

m. Mathematically,

a discrete-time dynamic bargaining game is defined as follows:
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Definition 1. Discrete-time Dynamic Bargaining Game:

A discrete-time dynamic bargaining game for the set of players N is a sequence of

games {(Θ(k),η(k))}∞
k=0, where:

1. Θ(k) is a nonempty closed subset of RN containing the feasible values for the

profit function of each player, at k = 1,2,3, . . ..

2. η(k) is the disagreement point, η(k) ∈ int(Θ(k)).
3. ζr(Θ(k)) := min{φr(k) : (φr(k))r∈N ∈Θ(k)} exists for every r ∈ N at each time

step k.

4. There exist functions fr ∈ R
nr ,g ∈ R

z,hr ∈ R, r = 1, . . . ,N, determining the dy-

namic evolution of the decision environment and the disagreement point of player

r, and the dynamic evolution of the feasible set, such that:

xr(k+1) = fr(x(k),u(k))

ηr(k+1) = hr(x(k),u(k),η(k))

Θ(k+1) = g(x(k),u(k),Θ(k))

(9)

with xr(k) ∈ Xr, Xr ⊂ X, z the dimensions of the feasible set of values for the

profit function, and u(k) the vector of actions taken by the players affecting the

decision environment. Here, the function g(x(k),u(k),Θ(k)) is defined by the set

of time dependent constraints on x(k) and u(k), and the facts that can reduce the

size of the decision space.

5. There exists a tuple (φ1(x(k),u(k)), . . . ,φM(x(k),u(k)))∈Θ(k) with φr(x(k),u(k))
the profit function of the r-th player.

Let Ξr(x̃(k), ũ(k)) be the set resulting from the intersection of Ωr and the equal-

ity constraint given by the local prediction model (4). Then, the set Θ(k) in the GT-

NDMPC game is defined as Θ(k) : = {(φ1(x(k),u(k)), . . . ,φM(x(k),u(k))) ∈ R
M |

(x(k),u(k))∈Ξr(x̃(k), ũ(k))}. Here g(x(k),u(k),Θ(k)) is equal to the whole system

model (1). Then, the game GNDMPC is a discrete-time dynamic bargaining game.

Although in the definition of {(Θ(k),η(k))}∞
k=0 it is desired that η(k) ∈ int(Θ(k)),

from the definition of ηr(k) such a condition cannot be guaranteed. In that case,

the value of the disagreement point might lie on the boundary of the feasible set.

If this happens and there exists a feasible search direction to minimize the local

cost function, then a control action satisfying the constraint ηr(k) ≥ φr(x̃(k), ũ(k))
is achieved. Otherwise, there is no change in the local control actions. This allows

each local controller to decide whether or not to cooperate with the remaining sub-

systems. Note that in these statements there exists an underlying utility concept.

For GT-NDMPC game the utility of each local controller is given by the dif-

ference between the disagreement point and the local cost function, i.e., ηr(k)−
φr(x̃(k), ũ(k)). From [Nash, 1953, Harsanyi, 1963, Peters, 1992, Akira, 2005] the

solution of a bargaining game is given by the maximization of the Nash prod-

ucts, namely, the product of the utility functions Π M
r=1ηr(k)−φr(x̃(k), ũ(k)) in the

NDMPC case. Based on the axiomatic characterization proposed in [Valencia, 2012]

the outcome of the game GNDMPC is given by the solution of the optimization prob-

lem (the log(·) function arises from the transformation of the Nash products).
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max
ũ(k)

M

∑
i=r

wr log(ηr(k)−φr(x̃(k), ũ(k)))

s.t.:

xr(h+1) = fdxr(x(h),ur(h),u−r(h))

ηr(k)≥ φr(x̃(k), ũ(k))

xr(h) ∈ Xr; ur(h) ∈ Ur

(10)

Then, the maximization problem of Eq. (10) can be solved in a distributed way by

locally solving the system-wide control problem of Eq. (11).

max
ũr(k)

M

∑
i=r

wr log(ηr(k)−φr(ũi(k), ũ−i(k)))

s.t.:

xr(h+1) = fdxr(x(h),ur(h),u−r(h))

ηr(k)≥ φr(ũi(k), ũ−i(k))

xr(h) ∈ Xr; ur(h) ∈ Ur

(11)

considering ũ−r(k) to be fixed and optimizing only in the direction of ũr(k). For im-

plementing the distributed solution of the GT-NDMPC game, a negotiation model

based on the model proposed in [Nash, 1953] for two-player games is used [Valen-

cia, 2012]. In this negotiation model each local controller is:

• fully informed on the structure of the game;

• fully informed on the utility function of the remaining subsystems;

• assumed intelligent and rational, i.e., each controller has a set of preferences,

treats, and rational expectations of its future environment.

Additionally, it is assumed that the communication architecture allows each sub-

system to communicate with the remaining subsystems in order to transmit their

disagreement points and their local measurements of the states and inputs. Such a

model adapted for solving the GT-NDMPC game has the steps shown in algorithm 1.

The initial condition for solving Eq. (11) at time step k+1 is given by the shifted

control input, and ũi(k) is a feasible control action used as initial condition for the

optimization procedure of subsystem i at time step k (shifted control input from

previous time instant). As in the case of the negotiation model proposed in [Nash,

1953], the negotiation model for solving the GT-NDMPC game in a distributed way

represents a two-moves game where the decisions are taken in steps 3 and 4.

It is worth noting that the proposed negotiation model allows for the avoidance of

iterative procedures. This is the main difference of the proposed control scheme with

respect to the approaches based on Lagrange multipliers, or those schemes based

on game theory reported in the literature. Moreover, it provides each subsystem

enough elements for deciding on whether or not to cooperate, depending of the

benefit perceived to result form the cooperative behavior.
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Algorithm 1 Negotiation model for GT-NDMPC games

1: for k = 1, . . . do

2: Each subsystem sends the values of xi(k), ηi(k) to the remaining subsystems

3: for subsystem i = 1, . . . ,N do

4: Solve the local optimization problem of Eq. (11)

5: if Eq. (11) is feasible then

6: Select ui(k) as control action

7: Update its disagreement point with η(k+1) = ηi(k)−α(ηi(k)−φi(ũ(k)))
8: else

9: Select the first control action of ũi(k)
10: Update its disagreement point with η(k+1) = φi(ũ(k))
11: end if

12: end for

13: All subsystems send updated control actions and disagreement points to the others.

14: end for

The closed-loop stability of a system controlled via the proposed scheme can be

derived by combining the feasibility proof in Valencia et al. [2011] and the defini-

tion of a disagreement point (the disagreement point provides an upper boundary for

local and whole system cost functions). From Algorithm 1, the stability of the pro-

posed GT-NDMPC method depends on the decision of each subsystem on whether

or not to cooperate. In order to demonstrate the stability of the closed-loop system,

in Valencia [2012] two cases were considered: All subsystems always cooperate, or

some subsystems do not cooperate at first but a few time steps ahead they all start

to cooperate. Following the same procedure proposed in Valencia [2012] for these

cases, closed-loop stability conditions can be derived.

In Sections 3 and 4 the GT-NDMPC game formulation presented in the current

section is applied to congestion management on motorways and in urban traffic.

3 Bargaining-Game-Based Coordination for Congestion

Management on Motorways

3.1 Motorway traffic model

Let us start by introducing some concepts and notations related to the traffic model

used in this section, viz. the METANET model described in Kotsialos et al. [2002b,

1999], Papageorgiou et al. [1990]. In this model, the motorway network is repre-

sented as a directed graph in which the links represent homogeneous motorway

stretches. Each stretch has uniform characteristics, e.g., no on-/off-ramps, no major

changes in the geometry, and no metering lines. A node is placed at the locations

where a major change in the road characteristics occurs, as well as at junctions and

at the on-/off-ramps. A link is further divided into segments of equal distance. Each

segment is characterized by its length (Lm), number of lanes (λm), vehicle density
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(ρ(m,i)(k)), mean speed (v(m,i)(k)), and output flow (q(m,i)(k)), with m denoting the

link number, (m, i) denoting the segment i of the link m, and k the time step. For

each segment, the dynamic evolution of density of vehicles, mean speed, and length

of the queue at the on-ramps is determined. Let R(m,i)(k), C(m,i)(k), and A(m,i)(k) de-

note the relaxation, convection, and anticipation terms, defined as in Kotsialos et al.

[2002b, 1999], Papageorgiou et al. [1990]. Moreover, let the subscript o denote the

origin nodes (nodes allowing the access of traffic from an external road; mainstream

origin or on-ramp). For instance, do denotes the demand at the origin o. This traffic

accessing a link by on-ramp o often is limited or controlled by a traffic light (or

ramp-metering), where ro(k) denotes the ramp-metering rate, used to regulate the

vehicles accessing the motorway.

The METANET model was used here because this model provides an adequate

description of the traffic flow on a motorway with reduced complexity, which is

desirable for control purposes. For instance, in Kotsialos et al. [2002b, 1999], Papa-

georgiou et al. [1990] and the references therein, there are several control strategies

where the METANET model was used for representing the traffic flow dynamics.

Also in Kejun et al. [2008], Groot et al. [2011], Baskar et al. [2009], Hegyi et al.

[2002], Lu et al. [2010] the METANET model was used for representing the dy-

namic behavior of the traffic flow.

Let qo(k) be the flow of vehicles incoming from the origin o to the link to which

origin o is connected (1, i). The value of qo(k) is given by:

qo(k) = min

[
do +

wo(k)

Ts

,Coro(k),Co

(
ρmax,i −ρ(1,i)(k)

ρmax,i −ρcr,i

)]
(12)

where Co is the capacity of origin o under free flow conditions, ρmax,i is the maxi-

mum density of a segment, wo denotes the queue of vehicles on the origin node o, Ts

is the sample time. Discussions on the meaning of the parameters in (12) and their

selection can be found in, e.g., [Kotsialos et al., 2002b, 1999, Papageorgiou et al.,

1990].

The dynamic evolution of density, speed, and queues in a traffic segment of a

motorway is given by:

ρ(m,i)(k+1) = ρ(m,i)(k)+
Ts

Lmλm

(qin,(m,i)(k)−qout,(m,i)(k)) (13)

v(m,i)(k+1) = v(m,i)(k)+R(m,i)(k)+C(m,i)(k)

+A(m,i)(k)−
δTsqo(k)v(m,i)(k)

Lmλm(ρ(m,i)(k)−µ)
(14)

wo(k+1) = wo(k)+Ts(do(k)−qo(k)) (15)

with
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qin,(m,i)(k) = qo(k)+q(m−1,ilast )(k) (16)

qout,(m,i)(k) = λmρ(m,i)(k)v(m,1)(k) (17)

where q(m−1,ilast )
(k) is the flow from the last segment of the link m− 1, and the

term
δTsqo(k)v(m,i)(k)

Lmλm(ρ(m,i)(k)−µ) defines the reduction in the speed in the link (m, i) due to the

incoming flow from the origin o.

3.2 Bargaining-game approach to congestion management on

motorways

The idea of congestion management on motorways is to provide a control strategy

for regulating the number of vehicles entering the traffic network. In this sense, ex-

pected travel time is used as the cost function for the NMPC. The travel time is a

performance index that relates the amount of vehicles on a motorway at any one time

with the changes in the timing of the traffic lights. Let x(k)= [ρT (k),vT (k),wT (k)]T ,

and u(k) = r(k), where ρ(k), v(k), w(k), r(k) are the vectors containing the densi-

ties, mean speeds, queues, and ramp-metering rates of all links, segments and ori-

gins of the motorway respectively. Thus, the performance index of the users of the

motorway and the access roads over a prediction horizon Np is given by:

L(x̃(k), ũ(k)) = Ts

k+Np−1

∑
h=k

∑
m∈M

(

∑
i∈ψm

ρ(m,i)(h)Lmλm

+α ∑
o∈O

wo(h)+αr(∆ro(h))
2

) (18)

where M is the set of links, ψm denotes the set of segments of link m, O denotes

the set of origins, ∆ro(k) = ro(k)− ro(k− 1), and α,αr > 0 are tuning parameters

associated with the time spent by the users in the queues at the origins and with the

smoothness of the changes of the control actions. Since the traffic on a motorway is

very sensitive to changes in the ramp-metering rates in Eq. (18) the norm of those

changes over the prediction horizon is penalized instead of the value itself.

Since motorways are large-scale systems, implementation of centralized NMPC

is not advisable [Frejo and Camacho, 2012]. Assume that the whole system can be

decomposed into M subsystems r such that the local models have the form (4) for

all r.

The decomposition could be made based on the inputs, or merging different seg-

ments [Ferrara et al., 2012]. Let Mr, Ψr, and Or denote the set of links, the set of

segments, and the set of origins belonging to the subsystem r. Then, NDMPC for

congestion management on a motorway is given by:
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min
ũ(k)

M

∑
r=1

φr(x̃(k), ũ(k))

s.t.:

xr(h+1) = fdxr(x(h),ur(h), ũ−r(k))

ρmin,(m,i) ≤ ρ(m,i)(k)≤ ρmax,(m,i)

wmin,o ≤ wo(k)≤ wmax,o

vmin,(m,i) ≤ v(m,i)(k)≤ vmax,(m,i)

rmin,o ≤ ro(k)≤ rmax,o

m ∈Mr, i ∈Ψr, o ∈Or

(19)

with fdxr(x(h),ur(h), ũ−r(k)) being the local prediction model. Furthermore, the

system decomposition Xr and Ur are defined by the sets Mr, Ψr, and Or which

determine the links and segments belonging to the subsystem r.

Then, the NMPC problem for travel time reduction can be equivalently formu-

lated as in Eq. (6), with the corresponding definition for the variables and sets. Since

each subsystem model requires the information from the remaining subsystems for

making the prediction, the values of the local travel times φr(x̃(k), ũ(k)) are coupled

to each other. Thus, a situation arises belonging to the set of games GNDMPC, where

N is the set of local controllers trying to minimize their local cost function, over a

feasible set Ωr = X×U.

In addition, since the travel time of the users of the motorway can be expressed as

L(x̃(k), ũ(k)) = ∑M
r=1 φr(x̃(k), ũ(k)), and since the local controllers are able to com-

municate with each other, the game GNDMPC is a discrete-time bargaining game

{(Θ(k),η(k))}∞
k=0. The outcome of the game GNDMPC associated with the dis-

tributed congestion management scheme described in this section is obtained by

the solution to the local optimization problems previously described in Eq. (11)

considering for its implementation the algorithm 1, proposed in Section 1.

3.3 Simulation and results

Consider the motorway shown in Figure 2. It consists of a motorway with ten seg-

ments and nine on-ramps modeled as origins and it allows the entry of new vehicles

to the motorway regulated by the traffic signals ri(k), i = 1, . . . ,9. A period of 12

hours is simulated. The Matlab function fmincon is used for solving each local op-

timization problem. The solver used an interior point method. In order to test the

performance of the proposed congestion management scheme a time-varying de-

mand profile is used. Thus, the curve of demand shown in Figure 3 is simulated at

each on-ramp. The maximum number of entering cars per input is 600; and an initial

queue of 10 vehicles is considered (see Figure 3). For simulation purposes all links

are assumed to have the same characteristics. The parameters for the simulations

are taken from [Zegeye et al., 2012]. Note that in Figure 2 the current control action
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is denoted by r(k− 1) while the control action to be locally applied is denoted by

r∗i (k), i = 1, . . . ,9. In this case the prediction and control horizons are Np = 10 and

Nc = 5, respectively. For implementing the proposed scheme the whole system is

divided into ten subsystems. Each subsystem has a link and an on-ramp (Figure 2

shows the system partition). For comparison purposes a centralized NMPC is also

implemented (with Np = 10 and Nc = 5). The comparison between the proposed

GT-NDMPC and a centralized NMPC is done because the centralized solution is

the best possible. Therefore, NMPC provides the best baseline for evaluating the

loss of performance of the motorway with the GT-NDMPC scheme.

From the formulation of the GT-NDMPC for congestion management purposes

on the motorway of Figure 2, the controllers at each on-ramp must share the current

local control actions and the measurements of their local states. Based on this in-

formation, all controllers are able to identify the current operating conditions of the

remaining controllers, and they are also able to decide which control actions should

be locally applied with the purpose of minimizing their effect on the performance

of the other local controllers. It is worth pointing out that the information exchange

can be done using any full duplex communication channel.

Figures 4(a) and 4(b) show the cycle for each on-ramp light. From these figures

it is evident that the centralized and the proposed congestion management schemes

generate different sequences of control actions at times with higher demands. More-

over, in the off-peak time intervals, the same constant control actions are used for

managing the congestion at the motorway. It is noteworthy that although at peak

demand the traffic network presents a congestion scenario (600 vehicles are expect-

ing to get onto the motorway at each on-ramp), blocking actions are not required,

i.e., flow on the motorway and on the on-ramps is reduced. This is reflected in the

behavior of the speed and density of vehicles.

Figures 5(a) and 5(b) present the evolution along the simulation of the speed at

the different links when the control actions are computed by the NMPC and the

GT-NDMPC respectively. In these figures, it is clear that as the demand at the on-

ramps increases the speed at the links decreases, reaching the lowest value at the

link (1,7) when the control actions are computed by the NMPC. It is noteworthy

that the speed distribution over the motorway depends on the control scheme used

for computing the control actions. In fact, the speed distribution with the proposed

GT-NDMPC was [60, 100]; lower than the speed distribution with the NMPC (here

speed distribution is understood as the range where all the speed trajectories are

moving).

Figures 6(a) and 6(b) show the time evolution of the density of vehicles at each

link. From these figures it is possible to infer that the centralized NMPC allows a

better use of the traffic infrastructure. Since NMPC performed a larger reduction

of speed than the GT-NDMPC, the density of vehicles in the motorway increases.

Hence, the expected length of the queues at the on-ramps decreases. It is worth

pointing out that despite the demand, the control schemes kept the density below

the critical density. Thus the traffic system remained stable along the simulation.

Although GT-NDMPC presents a loss of performance with respect to the central-

ized NMPC, the loss of performance is not significant. Let the total time spent (TTS)
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Fig. 2 Motorway used as a testbed for evaluating the performance of the proposed GT-NDMPC

approach.

by the vehicles on the motorway and the entrance ramps over the entire simulation
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Fig. 3 Simulated demand at each on-ramp in the evaluation of the proposed GT-NDMPC approach

in the case study for evaluating the performance of the proposed GT-NDMPC approach.

period be defined as:

T T S =
Nsim

∑
l=1

(

∑
m∈M

∑
i∈ψm

ρi,m(l)Lmλm + ∑
o∈O

wo(l)

)
Ts (20)

where Nsim is the number of simulation steps. Another performance index used for

evaluating control schemes with application to motorways is the Total Waiting Time

(TWT) Treiber and Kesting [2013], this index is computed as:

TWT =
Nsim

∑
i=1

(

∑
m∈ψ0

wm(l)

)
(21)

Table 4 presents the TTS and the TWT for two optimization-based control tech-

niques, namely, the centralized NMPC, the proposed GT-NDMPC, and the ALINEA

method reported in Haj-Salem et al. [2001], Papageorgiou et al. [2008] which

is a simpler approach for traffic control on motorways. In fact, the control ac-

tion in the ALINEA method is a sort of integral state-feedback where ri(k+ 1) =
ri(k)+K

(
ρcr,m −ρ(m,i)(k)

)
, with K the gain of the controller. Note that, ALINEA

is a simpler control law and the optimization-based techniques perform better (in

terms of the TTS and the TWT indexes) on the motorway presented in this chapter.

In fact, significant improvements are achieved even with the proposed GT-NDMPC,

which (due to system partition) has a poorer performance compared to the central-

ized NMPC. The TTS results shown in Table 4 also confirm the loss of performance

using GT-NDMPC; however, a distributed control scheme can be used as an al-
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(a) Control actions at each on-ramp computed using a centralized NMPC approach.
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(b) Control actions at each on-ramp computed by the proposed GT-NDMPC approach.

Fig. 4 Comparison of control actions at each on-ramp for the centralized and proposed schemes.

ternative for controlling large-scale traffic networks. Note that although the TWT

increases by about 77 % in the GT-NDMPC case with respect to the centralized

case, the difference in the TTS is just about 4 %. This means that with GT-NDMPC

there are more vehicles waiting in the queues but once they are on the motorway

they are efficiently evacuated, resulting in a reduction of their TTS.
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(b) Behavior of the speed with the proposed GT-NDMPC approach.

Fig. 5 Comparison of speed behavior between the proposed and centralized approaches.

Figures 7(a) and 7(b) show the evolution of the queues at each on-ramp. It is

evident that the centralized NMPC maintains the queues at almost all on-ramps at

the same length while in the case of the motorway controlled by the GT-NDMPC

each on-ramp has its own queue length, resulting from the negotiation among con-

trollers. Consequently, a better use of the infrastructure is achieved with the central-

ized NMPC, which is able to manage the congestion on the motorway. For instance
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(b) Time evolution of the density when the control actions are computed by the proposed GT-

NDMPC approach.

Fig. 6 Comparison of densities between centralized and proposed schemes.

Table 4 TTS and TWT for the ALINEA, NMPC, and GT-NDMPC control schemes.

Controller TTS Relative difference (%) TWT Relative difference (%)

ALINEA 3998 0 291683 0

NMPC 3677 8.03 131485 54.92

GT-NDMPC 3833 4.127 231830 20.51
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the total waiting time index for the centralized MPC is significantly lower than in

the case of the GT-NDMPC.
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(b) Time evolution of the queues when the control actions are computed by the proposed GT-

NDMPC approach.

Fig. 7 Comparison of queues between the centralized and proposed schemes.

Figure 8 presents the computational time associated with both the solution of the

centralized NMPC and that of the proposed GT-NDMPC. In Figure 8, the time in-

volved in the solution of each local controller was considered because it is assumed

that all local controllers are working at the same time. Thus the computational time
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of the proposed GT-NDMPC is determined by the slowest local controller. From

Figure 8, it is evident that (as expected) the time required by the GT-NDMPC for

computing the local control actions is lower than the time required by the central-

ized NMPC. In fact, the computational time of the centralized NMPC is higher by

an order of magnitude. Accordingly, from the point of view of the computational

time, the GT-NDMPC scales better than the NMPC. It is worth to point out that

the sample time Ts is 60 s. Assume that there is an exponential dependence of the

computational time on the number of on-ramps on the motorway. Thus with the

centralized NMPC a maximum of 28 on-ramps can be controlled, while with the

GT-NDMPC ideally up to 648 on-ramps can be controlled before requiring to in-

crease the sampling time. Previous scaling results were obtained following the rules

tNMPC = 0.02707exp(0.2n) and tNDMPC = 0.091exp(0.01n) for centralized NMPC

and GT-NDMPC respectively, with n the number of on-ramps.
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Fig. 8 Comparison of the computational time of both centralized NMPC and GT-NDMPC

schemes. Here tNMPC(k) represents the time taken by the centralized NMPC for computing the

control actions at time step k, while tNDMPCr(k), r = 1, . . . ,9 represents the time taken by each

local controller for computing the local control actions at the same time step.
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4 Bargaining-Game-Based Coordination for Urban Congestion

Management

4.1 Urban traffic model

As in Section 3, let us begin by introducing some concepts and notations related to

the traffic model used here, viz. the Macroscopic Simplified Urban Traffic Model (S

model) described in [Lin et al., 2011, 2012]. Similar to the motorway case, in urban

traffic models the concepts of links and origins are also used. In this model J denotes

the set of nodes or intersections, L denotes the set of links or roads, I(u,d) ⊂ J de-

notes the set of input nodes, and O(u,d) ⊂ J denotes the set of output nodes. Hence,

each link is defined by its input and output nodes, i.e., by the pair (u,d), u,d ∈ J

marking the starting and ending intersections respectively. The S model has the par-

ticularity that each intersection takes the corresponding cycle time as its simulation

time interval. Therefore, the simulation time intervals might be different for each

intersection. So the input and output flow rates of each link are averaged over the

cycle times (the flows leaving or entering links are described with flow rates rather

than with numbers of cars [Lin et al., 2012]). For a link (u,d)∈ L, let cd be the cycle

time with kd its corresponding time step counter. Figure 9 illustrates the concepts

previously introduced.

Let α leave
(u,d,o)(kd) denote the leaving flow rate of link (u,d) turning to the output

link o. Let g(u,d,o)(kd) be the green time signal duration allowing the vehicles to flow

from link (u,d) to output link o. Then, α leave
(u,d,o)(kd) can be computed as the minimum

value out of the capacity of the intersection, the number of cars waiting or arriving

to the next intersection, and the available space in the downstream link:

α leave
(u,d,o)(kd) = min

{
β(u,d,o)(kd)µ(u,d)

g(u,d,o)(kd)

cd

,
g(u,d,o)(kd)

cd

+αarrive
(u,d,o)(kd),

β(u,d,o)(kd)

∑u∈I(d,o)
β(u,d,o)(kd)

C(d,o)−n(d,o)

cd

} (22)

where β(u,d,o)(kd) is the relative fraction of the traffic at link (u,d) turning towards

output link o at time step kd , µ(u,d) is the saturated flow rate leaving link (u,d),

αarrive
(u,d,o)(kd) is the arriving average flow rate of the substream going towards o,

C(d,o) is the storage capacity of the link (d,o) expressed in number of vehicles, and

n(d,o)(kd) is the number of vehicles at link (d,o) at time step kd . In (22) αarrive
(u,d,o)(kd)

is calculated as the fraction of the input flow rate of link (u,d) the destination of

which is the output link o. Let αarrive
(u,d) (kd) be the average flow rate arriving at the end

of the queue at link (u,d) at time step kd . Thus:

αarrive
(u,d,o)(kd) = β(u,d,o)(kd)α

arrive
(u,d) (kd) (23)
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Fig. 9 Two interconnected intersections in an urban traffic network.

with αarrive
(u,d) (kd) defined as:

αarrive
(u,d) (kd) =

cd − γ(kd)

cd

αenter
(u,d)(kd −δ (kd))+

γ(kd)

cd

αenter
(u,d)(kd −δ (kd)−1) (24)
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where αenter
(u,d)(kd) is the average flow rate entering to the link (u,d) at time step

kd γ(kd), and δ (kd) being functions depending on the vehicles that arrived at the

queues of the link (u,d) (see Appendix A of [Lin et al., 2012] for details). Note that

αenter
(u,d)(kd) = ∑i∈I(i,u,d)

α leave
(i,u,d)(kd).

In order to derive a model for a traffic network, a balance between entering and

leaving vehicles is performed. Taking the definitions for αarrive
(u,d) (kd) and α leave

(u,d)(kd)

into account, and assuming that the vehicles are in the queue corresponding to their

output destination o, the dynamic evolution of the number of vehicles and queues at

link (u,d) is given by:

n(u,d)(kd +1) = n(u,d)(kd)+
(

αenter
(u,d)(kd)−α leave

(u,d)(kd)
)

cd (25)

q(u,d,o)(kd +1) = q(u,d,o)(kd)+
(

αarrive
(u,d,o)(kd)−α leave

(u,d,o)(kd)
)

cd (26)

where the number of vehicles waiting in the queue is given by the sum of the vehicles

waiting in each individual queue, viz., q(u,o)(kd) = ∑o∈O(u,d)
q(u,d,o)(kd).

4.2 Bargaining-game approach to congestion management in

urban traffic

For an urban traffic network, let x(k) = [nT (k),qT (k)]T be the state vector, where

n(k) and q(k) are vectors whose components are the number of vehicles and the

queues at each link of the network. Moreover, let u(k) = g(k) be the input vector,

with g(k) a vector whose components are the green signal time durations of each

traffic light in the network. Furthermore, assume that all intersections in the network

have the same cycle time cd with k its corresponding time step counter. Then, the

urban traffic model of (25)-(26) can be written as Eq. (1).

Thus, this urban traffic model can be used as prediction model for implementing

NDMPC. Again, the idea of this traffic network is to provide a control strategy

for congestion management. Hence, the performance index (travel time) is used as

the cost function. From Eqs. (25)-(26) the expected travel time inside a prediction

horizon Np is determined by Eq. (27) [Lin et al., 2011, 2012]:

L(x̃(k), ũ(k)) = cd

k+Np−1

∑
h=k

(

∑
(u,d)∈L

n(u,d)(h)

)
(27)

As in the case of motorways, urban traffic networks are large-scale systems and

therefore solving the optimization problem (3) is not feasible in real-time. Assume

that the whole urban traffic network can be decomposed into M subsystems r such

that each local model can be expressed as Eq. (4).

Let Lr denote the set of links (u,d) belonging to subsystem r. Let P= {p1,p2, ...,pT}
be the set of intersections in the urban traffic network, where pi, i = 1, . . . ,T are its
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elements. Let Pr ⊂ P be the set of intersections belonging to subsystem r. Then,

from Eq. (27) and the system decomposition, the NMPC for congestion manage-

ment in an urban traffic network is given by:

min
ũ(k)

M

∑
r=1

φr(x̃(k), ũ(k))

s.t.:

xr(h+1) = fdxr(x(h),ur(h), ũ−r(k))

0 ≤ n(u,d)(k)≤C(u,d)

q(u,d,o)(k)≥ 0

0 ≤ g(u,d,o)(k)≤ cd

∑
(u,d)∈pi

g(u,d,o)(k) = cd

(u,d) ∈ Lr, pi ∈Pr

(28)

with fdxr(x(h),ur(h), ũ−r(k)) being the local prediction model. Also, from the sys-

tem decomposition, the sets Xr and Ur are determined by the sets Lr and Pr defining

the links and intersections belonging to each subsystem. Note that the optimiza-

tion problem (28) has the same form as the optimization problem (6). Therefore, a

calculated circumstance belonging to the discrete-time dynamic bargaining games

{(Θ(k),η(k))}∞
k=0 arises.

In this circumstance or game each local controller has to make a trade-off be-

tween its local control objective φr(x̃(k), ũ(k)) and the common goal L(x̃(k), ũ(k)).
It is worth pointing out that subsystems are able to achieve a mutual benefit be-

cause the common goal L(x̃(k), ũ(k)) provides them with the opportunity to col-

laborate. Moreover, in the resulting game {(Θ(k),η(k))}∞
k=0 for the traffic network

decomposition N is the set of local controllers, their preferences are determined

by the minimization of the local cost φr(x̃(k), ũ(k)), and the decision space is given

by Ωr = Xr ×Ur. Furthermore, the decision environment evolves according to the

model of the traffic network and the local model used for predicting the trajecto-

ries of the local states. Let Ξr(x̃(k), ũ(k)) be the set resulting from the intersection

of Ωr with the space defined by the local prediction model. Then, in the game as-

sociated with the distributed congestion management in urban networks Θ(k) : =
{(φ1(x̃(k), ũ(k)), . . . ,φM(x̃(k), ũ(k))) ∈ R

M | (x̃(k), ũ(k))r ∈ Ξr(x̃(k), ũ(k))}, with

(x̃(k), ũ(k))r the tuple defining the value of φr(x̃(k), ũ(k)). Finally, a solution to the

game GNDMPC resulting from the urban traffic network decomposition can be ob-

tained by solving the same local optimization problems of (11), implemented with

the negotiation model proposed in Section 1.
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4.3 Simulation and results

For evaluating the performance of the proposed congestion management scheme

an urban traffic network with three intersections is proposed. Each intersection has

four links with three lanes, where each lane has a length of 452 m, and a capacity

of 192 vehicles per lane. For simulation purposes, it is assumed that the vehicles

have a length of 7 m and a free flow speed of 50 km/h. Moreover, a cycle time

of 50 s and initial queues of 5 vehicles in each link are also considered. As in the

case of the motorway, the Matlab function fmincon is used for solving each local

optimization problem. The solver uses a interior point algorithm. Figure 10 shows

the urban network used as a case study. Moreover, for implementing the proposed

distributed congestion management scheme the urban traffic network is divided into

three subsystems as illustrated in Figure 10. Each subsystem is composed of the

four links at interacting in the intersections.

In the network of Figure 10 (and according to the notation used in that figure)

the output flow rate for origins o1 to o6 is assumed constant and equal to 460 veh/h;

the flow of vehicles entering through links (1,a) and (6,a) is assumed constant

and equal to 705 veh/h; through links (2,b) and (7,b) 903 veh/h; through links

(3,c) and (8,c) 902 veh/h; through link (5,c) 300 veh/h; and through link (4,a) it

is assumed to be time-varying with the trapezoidal shape shown in Figure 11(b).

Furthermore, in order to reduce the complexity of the optimization problems, two

operational modes for the traffic lights are considered. As shown in Figure 11(a),

in each operational mode several destinations at each link in an intersection are

allowed. As a consequence, one decision variable is required for assigning the green

light time to each flow rate at each intersection [Lin, 2011, Lin et al., 2011, 2012]

(the sum of the times assigned to each operational mode must be equal to the cycle

time).

As in the case of the motorways, in the distributed congestion management

scheme for urban traffic the local controllers should exchange their measurements

of the local states as well as their current local control actions. This allows each

local controller deciding on the control action to be locally applied following the

focusing on others criteria. That is, each local controller selects the feasible control

action that minimizes the effect of the local decisions on the performance of the

remaining controllers.

Figure 12(a) shows the evolution of the number of vehicles waiting in the queues

of the urban traffic network. In this figure the centralized scheme for congestion

management exhibits longer queues than the distributed scheme. However, the du-

ration of the queues with NMPC is not longer than the duration with GT-NDMPC.

Recall that centralized NMPC takes all interactions into account in its predictions.

Therefore, this control scheme is able to manage the increasing size of the queues

more efficiently than the distributed scheme. There is a concept associated with the

length of the queues that measures the time spent by the vehicles running with free

flow speed from the beginning of a link until reaching the tail of the queue corre-

sponding to its destination o. Figure 12(b) shows the aggregate behavior of the total

time of vehicles at free flow speed (delay time) along the network. Note that when
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Fig. 10 Urban traffic network used as a testbed for the proposed congestion management scheme.
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(a) Operational modes for the traffic lights considered in the simulations.
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(b) Flow rate of link (4,a) used in the simulations.

Fig. 11 Parameters of the simulation.

the length of the queues increases, the total time of vehicles traveling in free flow

speed decreases, as expected.

For performing congestion management, the green light time must be assigned

to each flow rate. Figures 13(a) and 13(b) show the green time for phases 1 and 2 at

the intersection a (see Figure 10). Note that the total time of the operative modes is

equal to 50 s, which is the cycle time. In addition, from Figures 13(a) and 13(b) it

is evident that the GT-NDMPC approach uses more aggressive control actions than

the centralized approach, viz. the changes of the control actions of the GT-NDMPC

are bigger than the changes of the control actions in the centralized NMPC. This
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Fig. 12 Comparison of the total number of vehicles in the queue and at free flow speed for both

centralized and proposed approaches.

allows the distributed congestion management scheme to have queues that are not

longer than the queues with the centralized NMPC approach.

A comparison of the total time spent by the users of the traffic network, the vehi-

cles waiting in the queues, and the total delay time for several congestion manage-

ment schemes is presented in Table 5. The adaptive SCOOT method was included
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Fig. 13 Green time signal assigned by the controllers in intersection a.

because it is one of the optimization-based alternatives for traffic control in urban

networks. Moreover, the SCOOT method proposed the concept of the green wave in

order to reduce the complexity of the resulting optimization problem. In this table

it is evident that the performance of centralized and GT-NDMPC schemes imple-

mented for congestion management in urban networks is almost the same, while

other schemes severely increased the TVQ, keeping a similar TTS. This validates
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the possibility of using distributed schemes based on game theory for congestion

management in urban traffic networks.

Table 5 Comparison of total time spent (TTS) for a vehicle, and total vehicles in the queues (TVQ)

for centralized, distributed, adaptive SCOOT, and fixed time schemes.

Configuration TTS [veh · h] TVQ [veh]

Centralized NMPC 3498 7744

GT-NDMPC 3522 9369

State-Feedback 3769 25612

SCOOT 3961 38857

Fixed Time 5142 124125

Table 6 presents a comparison of the computational times in the urban traffic

network for the centralized NMPC, the proposed GT-NDMPC, and the adaptive

SCOOT method. As shown in Table 6, despite the simplifications involved in the

SCOOT method, the proposed GT-NDMPC requires a lower computation time. Fur-

thermore, with the GT-NDMPC the heuristics behind the SCOOT method (which

may hinder the application of this method in large urban networks) are avoided.

Configuration Computational time [s]

Centralized NMPC 390.6207

Subsystem 1 60.2311

Subsystem 2 95.2946

Subsystem 3 88.4602

SCOOT 164.6238

Table 6 Comparison between computational times for centralized NMPC, for each subsystem in

the proposed GT-NDMPC, and for the adaptive SCOOT method.

4.4 Disagreement point analysis

From a game theory point of view, in both the motorway and urban traffic models

it was observed that each local controller behaved according to its own desires and

preferences. Figures 14(a) and 14(b) show the evolution of the disagreement point

in each case (motorway and urban network respectively).

Note that in Figure 14(a) and 14(b) the evolution of the disagreement point is

almost the same for all controllers in the case of the motorway. This is because

the similarities of the subsystems in this case (recall that all segment parameters

and on-ramp demands are the same). Thus, this game is close to being a symmetric

game. However, in the case of the urban traffic network the behavior of the dis-

agreement points is different for each subsystem. This is in accordance with the

flow rate specifications for the links (recall that the flow rates at the boundary of the
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Fig. 14 Evolution of the disagreement point in the congestion management.

network are different). Thus, this game is clearly non-symmetric. Note that the dis-

agreement point trajectories present some oscillations along the simulation, which

are more evident in the case of the urban traffic network. Such behavior is due to the

decision making each controller performs. When they decide to cooperate the dis-

agreement point decreases, but when they decide not to cooperate the disagreement

point increases. The decision regarding cooperation is defined by the perceived ben-

efit from the cooperative behavior. So, if there are no alternatives such that the local
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performance index is less than the disagreement point, the controller decides not to

cooperate.

5 Conclusion

In this chapter, bargaining game theory was used as a mathematical framework for

analyzing the game arising from the distributed model predictive control formula-

tion. In this way, the non-linear model predictive control –NMPC– problem was

initially presented. Then the system was decomposed; motivated by the fact that

implementation of NMPC in real large-scale systems is not advisable. As a conse-

quence of the system decomposition, the NMPC problem became a set of coupled

optimization problems. Since each optimization problem was locally solved, a trade-

off between local and global system performance was required. Moreover, since the

controllers solving the local optimization problems were able to communicate with

each other, bargaining among controllers was possible. Hence, the distributed model

predictive control –DMPC– formulation resulting from system decomposition can

be characterized as a bargaining game (GT-NDMPC).

Once the similarities between bargaining games and GT-NDMPC were estab-

lished, some extensions to the original theory were performed. Specifically, the

discrete-time dynamic bargaining game concept was defined. Such a concept was

required because original bargaining game theory does not consider the time evo-

lution of the decision environment, of the decision space, and of the disagreement

point. Finally, based on the concepts of a discrete-time dynamic bargaining game

and a disagreement point, a solution to the GT-NDMPC game and an algorithm for

computing such a solution in a distributed way were proposed.

Despite of game theory often presenting selfish procedures for strategic deci-

sion making, in this chapter the bargaining game theory afforded conditions for

solving the DMPC problem inside a focusing on others frame, without implying

that the subsystems have to solve more than one optimization problem at each time

step, which would prevent the convergence of the solution on a Nash equilibrium

point. This non selfish bargaining game approach is the main difference with the

schemes based on game theory previously reported in the literature (see e.g., Trod-

den et al. [2009], Muñoz de la Peña et al. [2009]). Additionally, a reduction of the

computational burden associated with the communications between subsystems is

achieved, and avoiding the solution of more than one optimization problem. Further-

more, only local functions that depend on decisions made by the other subsystems

were required. This makes the proposed bargaining approach (GT-NDMPC) to the

DMPC problem more flexible than almost all the DMPC schemes presented in the

literature. This statement has also been validated in Portilla et al. [2012].

The bargaining-game-based formulation for distributed model predictive control

–GT-NDMPC– was applied in this chapter for congestion management in motor-

ways and urban traffic networks. To this end, macroscopic models were used to rep-

resent the dynamic behavior of the vehicles in the network. Since these models are
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discrete-time, they were used by the controllers as prediction models. Moreover, an

expression for the travel time was derived from these models. Travel time was used

as the cost function in both centralized and distributed NMPC approaches. With the

models, the cost function, and the constraints defined, the centralized NMPC was

formulated. After that, the whole system was decomposed into several subsystems.

Also, local models and their corresponding constraints were defined. Furthermore,

the bargaining situation associated with the system decomposition was analyzed. At

the end, the elements defining the corresponding discrete-time dynamic bargaining

games were introduced.

Finally, the proposed scheme for congestion management was tested on a motor-

way with ten on-ramps, and in an urban traffic network with three intersections. The

performance of the GT-NDMPC approach was compared with the performance of a

centralized NMPC approach. In conclusion, the distributed congestion management

scheme based on game theory presented a performance similar to the one obtained

using a centralized scheme.

Acknowledgements Research supported by: COLCIENCIAS project Modelamiento y control de
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