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Effects of water flow on energy consumption and
travel times of micro-ferries for energy-efficient
transport over water

M. Burger and B. De Schutter

Abstract Controlling the transport of water by adjusting water flows in rivers and
canals, inevitably will have an effect on the transport over water by vessels as well.
We will discuss the effect of flowing water on scheduling micro-ferries (small au-
tonomous water-taxis) using the least amount of energy, while aiming at satisfying
customer demands with respect to pick-up times. This trade-off will be made by
optimizing the assignment of micro-ferries to customers in a specific order, and by
searching for the best travel speeds.
The interplay between controlling transport of water and scheduling transport over
water will become clear by the explicit relation between the speed of the water (in-
fluenced by water management) on travel times and energy consumption, derived
in this chapter. It is shown that on average the travel times (and thereby the energy
consumption) will increase with increasing magnitudes of the current. Hence, de-
cisions made on water management have a direct effect on the performance of the
transport system, and the interests of both parties should be taken into account to
obtain a well-functioning water transport system.

M. Burger
TBA, Karrepad 2a, 2623 AP Delft, The Netherlands e-mail: mernout.burger@tba.nl

B. De Schutter
Delft University of Technology, Mekelweg 2, 2628 CD Delft, The Netherlands e-mail:
b.deschutter@tudelft.nl

1
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1 Introduction

In this chapter the problem of scheduling pick-ups and deliveries of people with
water-taxis is discussed, where –besides the common issue of scheduling within
time-windows– we take into account varying speeds of vessels and water flows and
their effects on travel times and energy consumption. As such it is a problem involv-
ing transport over water (of people using water-taxis) when influenced by transport
of water (via varying speeds of the water flows).

1.1 Micro-ferry scheduling

We consider the transport of people using small, autonomous water-taxis that travel
between several stations along a river in a city. These water-taxis will pickup cus-
tomers on-demand, and are envisioned to be powered electrically to reduce emis-
sions and noise (although fuel tanks or a hybrid system could also be used). There is
a fixed number of stations (see Figure 1) where customers can (dis)embark the ves-
sels and where the batteries can be charged. We will refer to this kind of water-taxi
as micro-ferries.

1.1.1 Work related to the micro-ferry scheduling problem

The problem consists in finding a route for each individual micro-ferry that ensures
that each transport request is handled at minimum cost, similar to the (multi-depot)
traveling salesman problem [3, 17]. Often, variants of the traveling salesman prob-
lem –such as the vehicle routing problem [16, 21] and the pick-up and delivery
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Fig. 1 The micro-ferry scheduling problem for the Rotterdam harbor: find an energy-efficient
schedule for transporting people between stations along the river. The distances (in kilometers)
of the stations along the river are indicated in the lower plot.
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problem [19]– are concerned with minimizing the travel time or distance. However,
these problems do not take into account that the vehicles will have a limited driving
range, and hence they might need to charge in between jobs.

Recently, some papers have appeared on energy consumption within scheduling
problems. An extension to the vehicle routing problem with (constant speeds and)
energy consumption (defined as the multiplication of the vehicle load and the travel
distance) is presented in [15]. In the pollution routing problem [2] a trade-off is made
between minimizing travel distances, travel times, transport costs, and greenhouse
emissions. The emissions are related to the energy consumption, which is dependent
on both the speed and the load of a vehicle. A vehicle routing problem with fuel cost
minimization is proposed in [22], where the fuel costs are defined as the product of
unit fuel costs, fuel consumption rates, and road lengths.

1.1.2 Previous results on micro-ferry scheduling by the authors

The micro-ferry scheduling problem consists in finding routes that minimize the
total energy consumption, while satisfying the desired pick-up times as much as
possible by using soft time windows [10]. By considering the vehicle speeds as op-
timization variables, both the energy consumption and travel times will be variable.

Since reducing the energy consumption is our main focus, the vessels should
be light-weight (i.e. a small vehicle load) and hence the batteries (or fuel tanks)
shall be small. Therefore, recharging of the batteries (or alternatively refueling of
the tank) will be needed during operation. These recharging times therefore take a
non-negligible amount of time with respect to the travel times, and we took them
into account in the scheduling problem in [9].

The energy consumption will be a non-linear function of the vehicle speed, but
a (computationally faster) linear function can be used by approximating the en-
ergy consumption by a piece-wise affine function1. This approach was used in the
above-mentioned work, but due to the extra decision variables that were needed to
formulate the piece-wise affine functions, only very small (in terms of fleet size and
number of requests) problems could be solved efficiently. Exploiting the fact that
the non-linear energy consumption function is convex, we proposed an alternative
formulation of the function approximation using linear constraints only [8]. This
modeling method greatly reduced the computation times.

For calm water the discussed work would be sufficient, but for flowing water
one cannot use the same formulations any more. Both the energy consumption and
travel times are dependent on the speed of the flowing water; disregarding this fact
could result in schedules where micro-ferries run out of energy while transporting
customers, and the calculated pick-up times would become incorrect. While the first
side-effect is obviously worse than the second, both can be seen as a degradation of
the service. To ensure correct pick-up times and to avoid empty batteries a reformu-

1 Actually in [8] we showed that the energy consumption is linear in the speed u and pace w (the
reciprocal of speed [13]), and there we approximated the function u = 1

w by a piece-wise affine
function.
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lation of the micro-ferry scheduling problem for flowing water was presented in [7].
Since both the pick-up times and the energy consumption are non-linear functions
in both the vehicle speed and the water flow speed, it was decided to consider the
vehicle speed as a constant in that work to reduce the complexity.

1.2 Contributions

This chapter will consist of a complete overview of the previous results discussed
above, extended with the introduction of variable speeds for flowing water. The
theoretical results will be provided first, followed by a discussion of the modeling
aspects of the micro-ferry scheduling problem.

1.2.1 Theory

The micro-ferry scheduling problem can be seen as an extension of the multi-depot
vehicle routing problem, where the addition of variable speeds and environmental
disturbances results in convex constraints. To the best of our knowledge, the authors’
work has introduced two topics into the field of operations research, namely

• reformulation: modeling of the multi-depot traveling salesmen/vehicle routing
problem using the same amount of decision variables as the single-depot variants

• disturbances: inclusion of environmental disturbances (e.g. water flows or wind)
in scheduling problems

Reformulation of multi-depot traveling salesman problems

The multi-depot traveling salesman problem (and its variants) can be stated using
the following mixed-integer linear program with 3-index binary variables [3, 21]:

min ∑
i∈R

∑
j∈R

∑
k∈M

ci jxi jk (1)

s.t. ∑
j∈R

∑
k∈M

xi jk = 1, ∑
h∈R

∑
k∈M

xhik = 1 ∀ i ∈ R (2)

{subtour elimination constraints} (3)

where M = {1, . . . ,M} denotes the set of M depots, N = {M+1, . . . ,M+N} de-
notes the set of N customers, and R = M ∪N = {1, . . . ,R} is the set of R=M+N
locations in the problem.

Theorem 1. The mixed-integer linear program with 2-index binary variables xi j

min ∑
i∈R

∑
j∈R

ci jxi j (4)
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Fig. 2 Assignment of new requests to micro-ferries. Each micro-ferry has a unique color, and the
requests are ordered with increasing desired pick-up times.

s.t. ∑
j∈R

xi j = 1, ∑
h∈R

xhi = 1 ∀ i ∈ R (5)

km = m ∀m ∈ M (6)
ki − k j +(M−1)(xi j + x ji)≤ (M−1) ∀ i, j ∈ R (7)
{subtour elimination constraints} (8)
xi j ∈ {0,1}, ki ∈ [1,M] ∀ i, j ∈ R (9)

is equivalent to the mixed-integer linear program (1)–(3).

A proof for this theorem can be found in [6]. In this formulation the continuous
variables ki can be seen as node currents, which are the dual to the node potentials
in the Miller-Tucker-Zemlin subtour elimination constraints [18].

Figure 2 shows an example solution to the above-mentioned formulation for
M= 5 depots (shown in the inner circle) and N= 40 customers (shown in the outer
circle). By (6) each depot gets a unique index number (represented as a unique
color). When a variable xi j = 1 it means that the trip from location i to j is part of
the selected tour, where the direction of the tour is indicated by the arrows in the fig-
ure. Along the path the index number will be assigned to the customers through (7),
resulting in exactly M cycles in the set of R =M+N nodes, each originating from
another depot.
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The mean travel time increases with increasing disturbances

In the case study that is presented later on in this chapter –where the current flows
in parallel to the riverbed– the travel times depend on the water flow. The effect of
the magnitude of the flow on the travel times can be stated as follows.

Theorem 2. The travel time for a round-trip (from one location to another and back)
will increase with increasing water flow magnitudes, and therefore both the mean
travel time and total energy consumption will increase with increasing magnitudes.

A formal proof will be provided in Section 2.1.4, after introducing the necessary
variables and equations. The difference in travel times for going one way or the other
is to be expected from experience, but the increase in times for round-trips is less
intuitive. Since the micro-ferries will be traveling in both upstream and downstream
direction, this means that the total travel time for handling all transport requests will
increase with increasing flows, and hence the mean travel times will be higher when
the current is stronger. Due to the longer travel times also the energy consumption
will increase with the water flow magnitude.

1.2.2 Application

With the extension to variable speeds for flowing water, the variant of the micro-
ferry problem as discussed in this chapter provides a complete modeling framework
for scheduling vehicles with variable speeds under environmental disturbances. The
model takes the following aspects into account:

• (soft) time windows: each customer is picked up at the desired time (if possible)
• varying speeds: the micro-ferries can travel within a given speed range
• energy consumption: the schedules are energy-efficient through minimization

of the total energy consumption of the micro-ferry fleet
• charging: empty batteries on the water are avoided by keeping track of energy

levels and by recharging
• flowing water: the effect of currents on travel times and energy consumption is

taken into account

2 Micro-Ferry Scheduling Problem for Flowing Water

The research on micro-ferry scheduling originated as a fictitious (but realizable)
case study for the city of Rotterdam, the Netherlands. With the creation of new
container terminals at Maasvlakte II the current harbor activity near the city center
is expected to partially move towards the sea. This leaves space for redesigning the
riversides and for creating new housing and offices. To avoid more traffic by car via
the already busy roads, alternative transport over the river is a viable option.
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Envisioned is a personal transport system with small, autonomous vessels, which
we will refer to as micro-ferries. Customers can embark and disembark the ferries
at specific locations along the river, and transport requests can be (pre)ordered. To
avoid empty batteries while on the river, which is inconvenient on a lake but dan-
gerous when drifting towards a harbor with large container ships and oil tankers,
the energy levels are taken into account in the scheduling and a recharge is planned
when necessary.

This section starts with a description of the effects of flowing water on travel
times and energy consumption, followed by a mathematical formulation of the prob-
lem. This formulation is then used to compute a transport schedule in a case study
example.

2.1 Effects of flowing water

With respect to the scheduling problem for micro-ferries, the velocity of the micro-
ferry has an effect on two distinct properties; both the travel time and the energy
consumption of the micro-ferries change when changing the velocity. The travel
time will depend on the velocity relative to the land, whereas the energy consump-
tion will depend on the velocity relative to the water. For calm water these two
velocities will be equal, but for flowing water one can no longer use a single notion
of velocity.

To obtain schedules that take into account the effects of water flows within rea-
sonable computation times, some assumptions are made for modeling the problem:

A1: The water flow is uniform and time-invariant over the scheduling horizon (in
the order of a few hours),

A2: Side-slip of the micro-ferries can be neglected,
A3: The acceleration and deceleration close to the stations can be neglected, as

well as the changes of the water flows near the stations,
A4: The water flow is slower than the speed of the micro-ferries.

Assumption A1 states that the water flow will not change over time nor depends on
the location on the river, which means that the water flow is constant. Assumption
A2 will hold for reasonable speeds and accelerations (i.e. no sharp turns), which is
expected to be valid due to safety reasons. Assumption A3 is valid if the traveled
distances are long enough to neglect differences in vessel speeds and water flow
speeds at the start and end of a traveled path. Finally, assumption A4 ensures con-
trollability of the micro-vessel on the water by always being able to move forwards
relative to the water flow.



8 M. Burger and B. De Schutter

2.1.1 Velocities and paths

The flow velocity of a river will influence the perception of speed both on a vessel
and of a vessel with respect to the shore. When a vessel travels upstream, it will
travel faster relative to the water than relative to the land. This effect can conve-
niently be described by using three different velocity vectors:

vb : vessel velocity relative to the water,
vi : vessel velocity relative to the land,
vr : water velocity relative to the land.

As shown in Figure 3 these three velocities relate to each other as

vi = vr +vb. (10)

The velocities can be decomposed into the speed components in the x and y
direction of the inertial reference frame; for each ∗ ∈ {b, i,w} we have

v∗ = ẋ∗i+ ẏ∗j, (11)

where ẋ∗ and ẏ∗ denote the speeds in the xi and yi direction respectively, whereas i
and j denote the unit vector in the xi and yi direction of the inertial reference frame2

respectively. The speed u∗ associated with a velocity v∗ can be determined as

u∗ = |v∗|=
√

ẋ2
∗ + ẏ2

∗ . (12)

Paths of a micro-ferry are defined as displacements over time in a certain ref-
erence frame. Due to assumptions A1 and A3, we can model a river as a straight
waterway (i.e. like a canal), and the micro-ferries will travel in straight-line paths
from one location to another. Hence, the path of a micro-ferry can be modeled by
a vector with the same direction as its associated velocity. We define the paths pi,
pb, and pr associated with the velocities discussed above. A displacement p∗ can be
decomposed as

p∗ = x∗i+ y∗j, (13)

i

j

ẋi

ẏiẏb

ẋb

ẋr

ẏr

vr

vb

vi

Fig. 3 The velocity vi with respect to the land is the sum of the velocity vb of the micro-ferry plus
the velocity vr of the water.

2 The inertial reference frame is the reference frame that is fixed with respect to the land.
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with the associated path length

l∗ = |p∗|=
√

x2
∗ + y2

∗ . (14)

Based on these definitions of velocities and paths, we can now analyze the effects
of flowing water on the micro-ferry scheduling problem.

2.1.2 Effect on travel times

For a vessel that travels with a constant velocity relative to the water, it will take
longer to travel from some location a to another location z in upstream direction
than from z to a in downstream direction. This section explains how the currents
affect the travel times.

Calculation of travel times

The travel time of a micro-ferry equals the distance traveled divided by the travel
speed; more specifically it is the time it takes to travel from one station to the next.
The path pi from one location to the other will not change with the water flow, but
the path pb of the micro-ferry relative to the water will be dependent on the velocity
vr of the water relative to the land, and the travel time T . Note that for a micro-ferry
traveling with a velocity vi relative to the land, the travel time T and the traveled
path pi are related as

pi = T vi. (15)

Combined with the relation between the different velocities as given in (10), the
velocity of the micro-ferry relative to the water can be written as

vb =
1
T

pb =
1
T
(pi −pr) =

1
T

pi −vr. (16)

Both pi and vr are constants, and the velocity of the micro-ferry through the water
therefore only varies with the travel time T . The speed ub is related to the water flow
and the displacement by

pr pr pr

pb pb pbpi pi pi

Fig. 4 The same path pi in the inertial frame can be accomplished at different velocities, resulting
in different paths pb in the body frame.
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u2
b = |vb|2 = ẋ2

b + ẏ2
b =

( xi

T
− ẋr

)2
+
( yi

T
− ẏr

)2
(17)

=
(
ẋ2
r + ẏ2

r
)
−2(xiẋr + yiẏr)

1
T
+
(
x2
i + y2

i
) 1

T 2

= u2
r −2(xiẋr + yiẏr)

1
T
+ l2

i
1

T 2 ,

where li is the traveled distance of the micro-ferry with respect to the land (i.e. the
distance between two locations). Since the traveled distance of the micro-ferry with
respect to the water equals lb = ubT by (12), (14) and pb = vbT , we have

l2
b = u2

b T 2 = u2
r T 2 −2(xiẋr + yiẏr)T + l2

i , (18)

which is a quadratic equation of the form αT 2 +βT + γ = 0 with

α = u2
r −u2

b , β =−2(xiẋr + yiẏr) , γ = l2
i . (19)

We have α < 0 since –by assumption A4– the speed of the micro-ferry ub will be
larger than the speed of the water ur to ensure controllability of the vessel. Further-
more, γ > 0 since it represents the distance between two stations. Therefore, using
the variables defined in (19) the discriminant of (18) satisfies

∆ = β
2 −4αγ > β

2 > 0. (20)

The second inequality shows that there are two distinct real-valued solutions for T ,
whereas the first inequality shows that

−β +
√

∆ >−β +|β |≥ 0, −β −
√

∆ <−β −|β |≤ 0. (21)

Since α < 0, positive travel times T can be found by

T =
−β −

√
β 2 −4αγ

2α
=

− 1
2 β −

√
1
4 β 2 −αγ

α

=
(xiẋr + yiẏr)−

√
(xiẋr + yiẏr)

2 − (u2
r −u2

b )l
2
i

u2
r −u2

b
. (22)

Note that the water flow-related coefficients ẋr, ẋr,ur are constant for all possible
trajectories between the stations, whereas the coefficients xi,yi, li depend on the start
and end location a and z for a certain trip. As opposed to the work in [8], here we
will treat the speed ub of the micro-ferry in the water as an optimization variable.
Therefore, the travel time Taz from location a to z will depend on the chosen speed
ub, as can be seen in the plot of (22) in Figure 5.
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Fig. 5 Travel times at different speeds. The convex function can be approximated using constraints.

Linear approximation for travel times

Equation (22) is non-linear in the micro-ferry speed ub. Analysis of the function in
(22) shows that it is a strictly decreasing, convex function in ub, for which we can
obtain an accurate approximation using a continuous piece-wise affine function

T̂a,z(ub) =


a1

a,zub +b1
a,z, u0 ≤ ub ≤ u1

...
aPa,zub +bPa,z, uP−1 ≤ ub ≤ uP

(23)

Note that by increasing the number of segment P one can increase the accuracy
of the approximation at the cost of increasing the computational effort. Since the
function Ta,z is convex in ub, we will have ai

a,z < a j
a,z for i < j, and the function can

be written as the maximum of a set of lines

T̂a,z(ub) = max
i=1,...,P

(
ai

a,zub +bi
a,z
)
. (24)

For such a function the value of T̂a,z(ub) can be found using the linear program [5]

min T (25)
s.t. ai

a,zub +bi
a,z ≤ T ∀ i ∈ {1, . . . ,P} (26)

where the optimal value T ∗ will equal the travel time approximation T̂a,z(ub). An
example of the relation (22) between the travel time and the travel speed is shown
in Figure 5 as the continuous, red line. The blue, dashed lines show the continuous
piece-wise affine approximation T̂a,z(ub) from (23), and the black, dotted lines show
the constraints used to approximate the travel time in (26).
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2.1.3 Effect on energy consumption

Due to the flowing water the micro-ferries might need more or less energy to travel
from one location to another as compared to still water, depending on whether or not
they are traveling against the current. This section explains how the currents affect
the energy consumption.

Calculation of energy consumption

The dynamics of a vessel can be modeled using the vectorial representation [14]

Mν̇ +Cν +Dν + τe = τc, (27)

where ν = [u, v, r]⊤ is the velocity vector consisting of the surge speed u, the sway
speed v, and the rotational speed r, M is a symmetric, positive definite mass matrix,
C is a skew-symmetric Coriolis and centripetal forces matrix, D is a symmetric, pos-
itive definite damping matrix, τe is a force vector representing external disturbances
(e.g. wind and currents), and τc is the control vector representing the forces exerted
by the actuators. Using the force balance (27) we can write the kinetic energy of a
surface vessel as

Ekin =
1
2

ν
⊤Mν , (28)

and the associated power (due to movement) becomes the quadratic function

Pkin =
d
dt

Ekin =
1
2
[
ν̇
⊤Mν +ν

⊤Mν̇
]
= ν

⊤Mν̇ (29)

= ν
⊤[−Cν −Dν + τc − τe] = [τc − τe]

⊤
ν −ν

⊤Dν .

In order to take the energy consumption of the micro-ferries into account, we
use a simplified expression for the power based on the along-path speed u only.
Besides the quadratic and linear terms of (29) due to the kinetic energy, we also add
a constant term to include the energy losses due to a running motor when the micro-
ferries are not moving. Therefore, the power of the micro-ferries will be a quadratic
function of the speed, written as [10]

P = π2u2 +π1u+π0. (30)

The energy consumption will depend on the speed ub relative to the water, and it is
kept constant during a trip but used as a variable in the optimization problem. Then,
the energy consumption from a to z becomes

Ea,z(ub) = P(ub)Ta,z(ub) =
(
π2u2

b +π1ub +π0
)

Ta,z(ub) (31)

which is a non-linear equation in the variables ub representing vessel speed; the
travel time Taz is a non-linear function in the vessel speed ub as given by (22).
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Fig. 6 Energy consumption at different speeds. The energy consumption is a convex function of
the speed, and can efficiently be approximated using linear constraints.

Linear approximation of the energy consumption

Equation (31) is non-linear in the micro-ferry speed ub. Analysis of the function
shows that it is a convex function in ub; hence also this function can be approximated
accurately using a continuous piece-wise affine function3

Êa,z(ub) =


c1

a,zub +d1
a,z, u0 ≤ ub ≤ u1

...
cPa,zub +dPa,z, uP−1 ≤ ub ≤ uP

(32)

Since the function Ea,z is convex in ub, the value of Êa,z(ub) can be found using [5]

min E (33)
s.t. ci

a,zub +di
a,z ≤ E ∀ i ∈ {1, . . . ,P} (34)

where the optimal value E∗ will equal the energy consumption approximation
Êa,z(ub). An example of the relation (31) between the energy consumption and the
travel speed is shown in Figure 6 as the continuous, red line. The blue, dashed lines
show the continuous piece-wise affine approximation Êa,z(ub) from (32), and the
black, dotted lines show the constraints used to approximate the travel time in (34).

2.1.4 Proof of Theorem 2

With the equations for the travel times and energy consumption derived above,
we can now prove the statement of Theorem 2. We consider a uniform and time-
invariant current, which –without loss of generality4– flows along the x-axis of the
inertial reference frame. Hence, the relative velocity becomes vr = (ẋr, ẏr) = (ur,0)

3 Actually, neither the number of partitions P nor the speeds u0, . . . ,uP need to be the same for the
travel time approximation (23) and the energy consumption approximation (32).
4 The inertial reference frame can always be chosen to be aligned with the water flow.



14 M. Burger and B. De Schutter

such that the travel time defined in (22) becomes

T =

√
(xiẋr)

2 +(u2
b −u2

r )l2
i − xiẋr

u2
b −u2

r
.

The travel time Taz from location a to z can be found by considering the displacement
pi,az = (xi,az,yi,az) in the inertial reference frame. Then the return trip from z to a is
given by pi,za =−pi,az = (−xi,az,−yi,az), such that by (14) we have li,az = li,za. When5

u2
b −u2

r > 0 the difference in travel time ∆T = Taz−Tza of going one way or the other
between arbitrary locations a and z is

∆T =

√
(xiẋr)

2 +(u2
b −u2

r )l2
i − xiẋr

(u2
b −u2

r )
−

√
(−xiẋr)

2 +(u2
b −u2

r )l2
i + xiẋr

(u2
b −u2

r )

=
−2xiẋr√
u2

b −u2
r

. (35)

This shows that the travel times are different if there is a current (that is for ẋr ̸= 0),
as could be expected; if we travel against the current from a to z (such that xi > 0
and ẋr < 0) then Taz > Tza and indeed ∆T > 0.

Perhaps less obvious is the fact that the travel time ΣT = Taz+Tza for a round trip
(from a to z and back to a) has a larger travel time when the current’s magnitude
ur = |ẋr| increases:

ΣT =

√
(xiẋr)

2 +(u2
b −u2

r )l2
i − xiẋr

(u2
b −u2

r )
+

√
(−xiẋr)

2 +(u2
b −u2

r )l2
i + xiẋr

(u2
b −u2

r )

=
2
√
(xiẋr)

2 +
(
u2

b −u2
r
)

l2
i

u2
b −u2

r
, (36)

which has a minimum
ΣT,min = 2

li√
u2

b −u2
r

, (37)

for ẋr = 0, and ΣT increases for larger currents. Hence, the larger |ẋr|, the larger the
travel times within the micro-ferry network, and —by (31)— the larger the energy
consumption needed to handle the requests.

5 This holds for |ub|> |ur|, which is a necessary condition to be able to move forwards under all
circumstances, as desired under normal operations and stated as assumption A4.
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2.2 Problem definition

To formulate the micro-ferry scheduling problem, several optimization variables
will be used. First, an overview of these variables is given, followed by a detailed
explanation of the relations between them. This will lead to a mixed-integer linear
program for finding the transport schedule of the micro-ferries, as shown in the
example provided at the end of this section.

2.2.1 Optimization variables

The optimization variables used for the micro-ferry scheduling problem are summa-
rized next, separated by type. The variables are defined per request, which consists
of the transport of a customer from one location to another within a certain time
window, and the possible relocation, charging and waiting that are associated to the
specific transport. The set of non-negative scalars is defined as R+.

Decision variables:

• xi j ∈ {0,1}: binary variable representing whether (xi j = 1) or not (xi j = 0) re-
quest j succeeds request i,

• y j ∈ {0,1}: binary variable representing whether (y j = 1) or not (y j = 0) the
micro-ferry is recharged after request j,

• k j ∈ [1,M]: continuous variable6 representing the index number of the micro-
ferry that handles the request.

Energy variables:

• e j ∈ [0,E]: energy level after completion of transport j,
• f j ∈ R+: energy increase (by recharging or refueling) during request j,
• g j ∈ R+: energy consumed during the relocation phase of request j,
• h j ∈ R+: energy consumed during the transportation phase of request j.

Time variables:

• p j ∈ R+: pick-up time for the passengers of request j,
• q j ∈ R+: charging time after handling request j,
• r j ∈ R+: relocation time for request j,
• s j ∈ R+: time window mismatch for request j,
• t j ∈ R+: transportation time for request j.

Speed variables:

• u j ∈ [u,u]: speed of the micro-ferry during the relocation phase of request j,
• v j ∈ [v,v]: speed of the micro-ferry during the transportation phase of request j.

6 Although this variable is continuous, due to the constraints it will always attain an integer value.
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Fig. 7 The four phases of a request consist of relocating, transporting, charging, and waiting. The
associated energy (top) and time (bottom) variables show the relations between energy levels e and
pick-up times p for successive requests.

2.2.2 Phases of a request

A transportation of passengers associated with request j (preceded by request i)
consists of the following phases (see Figure 7):

• a micro-ferry should (optionally) relocate from delivery location δi towards the
pick-up location π j for request j,

• the micro-ferry will transport the customer(s) from pick-up location π j to the
delivery location δ j,

• the micro-ferry will (optionally) charge after the transportation at location δ j,
• when charged the micro-ferry will (optionally) wait until it can handle the next

request.

Each of these four steps takes time and alters the energy level, which should be
accounted for in the scheduling of the pick-up times p j and the charging actions for
increasing the energy levels e j.

Time variables

For embarking and disembarking the micro-ferries a (combined) duration td can
be chosen by the operator, which will be a trade-off between giving the customers
enough time to safely enter and exit the micro-ferry, and not wasting time at the
station. Furthermore, the time it takes to couple and decouple the ferry to the power
source when charging is represented by tc, and the rate at which the batteries are
charged is given by rc.

The duration for the relocation of the micro-ferry from the delivery station of re-
quest i towards the pick-up location of station j is given by the travel time T (δi,π j)
calculated using (22), where δi and π j denote the index number of the delivery sta-
tion of request i and the index number of the pick-up station of request j respectively.
The duration for the transportation of the customers from pick-up station π j to de-
livery station δ j is given by the travel time T (π j,δ j) in (22), where π j and δ j denote
the index number of the pick-up and delivery station of request j respectively.

Let T̂ (a,z) denote the continuous piece-wise affine approximation travel time
T (a,z) from location a to z, given by (23). Using the parameters ap

a,z and bp
a,z (which

can be determined a priori) the relocation time r j of request j from location a = δi
to location z = π j can be determined by the linear program
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min r j (38)
s.t. ap

δi,π j
u j +bp

δi,π j
≤ r j ∀ p ∈ {1, . . . ,P} (39)

where ub = u j is the travel speed during the relocation. Similarly, the transportation
time t j of request j from location a = π j to location z = δ j can be determined using

min t j (40)
s.t. ap

π j ,δ j
v j +bp

π j ,δ j
≤ t j ∀ p ∈ {1, . . . ,P} (41)

where ub = v j is the travel speed during the transportation. Note that these con-
straints are defined on the entire domain of u j and v j; due to convexity of the original
function the optimal value r∗j / t∗j will always lie on the line segment associated to
the speed domain in the piece-wise affine approximation associated with the optimal
speed u∗j / v∗j (see Figure 5).

Energy variables

For the energy consumption during the relocation phase and the transportation phase
we will use the continuous piece-wise affine approximation (32). The relocation
energy g j can then be found by solving the linear program

min g j (42)
s.t. cp

δi,π j
u j +dp

δi,π j
≤ g j ∀ p ∈ {1, . . . ,P} (43)

where ub = u j is the travel speed during the relocation. Similarly, the transportation
energy h j of request j from location a = π j to location z = δ j can be determined by
the linear program

min h j (44)
s.t. cp

π j ,δ j
v j +dp

π j ,δ j
≤ h j ∀ p ∈ {1, . . . ,P} (45)

where ub = v j is the travel speed during the transportation. Note that these con-
straints are defined on the entire domain of u j and v j; due to convexity of the original
function the optimal value g∗j / h∗j will always lie on the line segment associated to
the speed domain in the piece-wise affine approximation associated with the optimal
speed u∗j / v∗j (see Figure 6).

2.2.3 Micro-ferries and requests

Consider a fleet of M micro-ferries that could be either traveling or waiting at a
station. These ferries will already have a pick-up time po, j, an energy level eo, j, and
a micro-ferry index number ko, j. Besides the M current requests (which might be
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handled when a micro-ferry is docked at a station) there will be N new requests to
schedule, resulting in a total of R=M+N requests. The sets

M = {1, . . . ,M}, N = {M+1, . . . ,R}, R = M ∪N (46)

denote the set of current requests, new requests, and all requests respectively. These
sets can be seen as the set of depots M , the set of customers N , and the total set of
locations R, as used in vehicle routing problems.

2.2.4 Mixed-integer linear programming formulation

The micro-ferry scheduling problem for flowing water and variable speeds can be
solved using the following mixed-integer linear program.

min ∑
i∈R

(gi +αhi + γsi −ηei +ρri +θ ti) (47)

s.t. ∑
i∈R

xi j = 1; ∑
i∈R

x ji = 1 ∀ j∈R (48)

ki − k j ≤ (M−1)(1− xi j − x ji) ∀ i, j∈R (49)

ak
δi,π j

u j +bk
δi,π j

≤ r j +T(1− xi j) ∀ i∈R, j∈N ,k∈P (50)

ak
π j ,δ j

v j +bk
π j ,δ j

≤ t j +T(1− xi j) ∀ i∈R, j∈N ,k∈P (51)

pi + ti +qi + r j + td ≤ p j +T(1− xi j) ∀ i∈R, j∈N (52)

pa, j − p j ≤ s j; p j −pb, j ≤ s j ∀ j∈R (53)

tcy j ≤ q j ∀ j∈R (54)

f j = rc (q j − tcy j) ∀ j∈R (55)

f j ≤ Ey j ∀ j∈R (56)

e j + f j ≤ E ∀ j∈R (57)

ck
δi,π j

u j +dk
π j ,δ j

≤ g j +E(1− xi j) ∀ i∈R, j∈N ,k∈P (58)

ck
π j ,δ j

v j +dk
π j ,δ j

≤ h j +E(1− xi j) ∀ i∈R, j∈N ,k∈P (59)∣∣ei −hi + fi −g j − e j
∣∣≤ E(1− xi j) ∀ i∈R, j∈N (60)

p j = po, j; e j = eo, j; k j = ko, j ∀ j∈M (61)

xi j ∈ {0,1}, y j ∈ {0,1} ∀ i, j∈R (62)
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where E is the upper bound on the energy levels e j, and T should be chosen larger
than the latest expected pick-up time (conform to the big-M method [20]).

The objective function (47) consists of the total energy consumption during re-
location (first term) and transportation (second term), the total time window misfit
(third term), it puts a penalty on low energy levels (fourth term), and ensures correct
estimation of the travel times (fifth term). A trade-off between using less energy,
assigning less pick-up times outside the desired time windows, and keeping the bat-
teries charged can be made by changing the weights α > 0, γ > 0, and η > 0. The
weights ρ > 0 and θ > 0 can be used to reduce travel times, but when chosen small
the energy consumption is minimized while ensuring correct travel times.

Equalities (48) are the assignment constraints ensuring that every request is han-
dled once and only once, and (49) assigns the micro-ferry index numbers to the
requests. Relocation times and transportation times are determined using (50) and
(51) respectively; variables r j and t j are minimized indirectly through (52). When
request j proceeds i, inequality (52) ensures that the pick-up time for request j is
later than the pick-up time for request i, plus the transportation time, charging time,
and relocation time (see Figure 7). The time window mismatch s j will be zero if
the pick-up time p j is scheduled within the desired time window [pa, j,pb, j] through
inequalities (53); otherwise, it will be equal to the time outside the time window.

With (54) we ensure that when the micro-ferry will charge, the charging time is
at least equal to the (dis)connection time tc. Furthermore, (55) couples the charged
energy to the charging time, (56) ensures that the energy level will not increase when
the micro-ferry will not charge, and (57) avoids overcharging of the batteries.

The energy consumed during the relocation phase and transportation phase are
set using inequalities (58) and (59) respectively; the variables g j and h j are mini-
mized directly through (47). Unlike the pick-up times (where time can pass while
waiting), the energy level of request j is exactly equal to the energy level of request
i minus the transportation and relocation energy consumption plus the charged en-
ergy, when request i precedes j (see Figure 7). This conditional equality is enforced
using the inequality constraints (60).

Finally, constraints (61) will set the initial conditions for the pick-up times, en-
ergy levels, and index numbers of the micro-ferries, and (62) are the integrality
constraints for the binary variables used in this formulation.

2.2.5 Case study example

As a case study we use the Rotterdam harbor example as shown in Figure 1, with
M = 5 micro-ferries and N = 40 new requests. The water flow has a speed of 3
[m/s], and the micro-ferries are allowed to travel at speed between 4 and 16 [m/s].

The energy levels are given in percentages, with E = 100[%] indicating a fully
charged battery. The coefficients in expression (30) for the power are chosen as
p0 = 0.1,p1 = −0.02,p2 = 0.002, resulting in a minimum power consumption of
0.05 [%/s] at the optimal speed of 5 [m/s], resulting in a radius of 10 [km]. The time
for (dis)embarking the micro-ferries is set to td = 60 [s], and charging can be done
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Fig. 8 Energy levels over time. Micro-ferries will charge when possible (dash-dotted green lines)
to avoid empty batteries.

with a fixed setup time tc = 60 [s] at a rate of rc = 0.1 [%/s]. At the optimal speed
it will take 22 minutes to travel the largest distance of 6.6 [km] (from the station at
Schiedam to the station at Rijnhaven).

An example schedule resulting from a randomly generated test case is shown in
Figures 2 and 8. Pick-up times are determined such that on average there will be 5
minutes in between consecutive requests per micro-ferry, and pick-up and delivery
locations are chosen randomly (but not equal to each other). All micro-ferries start
at a (randomly chosen) station with an energy level between 0 and 100 %.

Figure 2 shows the assignment of the N = 40 new requests to the M = 5 micro-
ferries. Starting from the micro-ferry node, the arrows indicate the order in which
the requests will be handled. The requests are sorted based on their desired pick-up
time pa, and all time windows [pa, j,pb, j] are 60 [s] long. As can be seen the order of
the pick-ups is not always consistent with the desired pick-up times, indicating that
it was more efficient (in terms of the objective function (47)) to change the order.

In Figure 8 the energy levels are shown over time. The different phases of a
request are indicated using different line types: red-dashed lines are relocations,
continuous blue lines are transportations, dash-dotted green lines indicates charging,
and the black-dotted are associated with waiting. The blue stars indicate the pick-up
times of the requests. As can be seen the micro-ferries will charge when possible.

3 Linking Transport of Water and Transport over Water

Transport over water

The micro-ferry scheduling problem discussed in this chapter is an example of trans-
port over water. Based on transport requests of customers along a river, the proposed
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optimization problem (47)–(62) provides an energy-efficient schedule for transport-
ing customers over the flowing water. The formulation ensures that the micro-ferries
will not run out of energy while traveling on the water; the energy level is not al-
lowed to become too low, and charging of the micro-ferries is taken into account
in the schedule. Taking into account the velocity of the current is crucial to ensure
punctuality and correct predictions of energy levels.

Transport of water

As discussed in this chapter –and formalized in Theorem 2– the influence of flowing
water on the travel times and energy consumption is important for transport over
water. Stronger currents result in larger mean travel times, and overall the energy
consumption will increase. Since the transport of water will influence the strength of
the currents in the rivers and canals, this effect should be considered when managing
the water network.

Contribution to a unified framework

The micro-ferry scheduling problem can be seen as a transportation problem over
water, which is influenced by the transport of water via the strength of the currents in
the water network. For the short time-horizon of this problem (a few hours at most)
the current can be seen as a constant, and due to the narrow time windows for the
pick-up times there is little flexibility in handling the requests during more suitable
water flow conditions. Nonetheless, the analysis of this problem shows that there is
a direct relation between the strength of the current and the energy consumption.

This work could be extended to transport over water on a larger scale (e.g. be-
tween a harbor and the hinter land), such that people or freight will be transported
within a large water network with distances of several hundred kilometers, and the
time-scale will be in days. In this case the expected water flows –due to transport of
water– can be taken into account in the scheduling of the transport of goods. With
freight the time windows are usually much larger, thereby creating more flexibility
in planning the barges at times that the energy consumption would be low (i.e. when
the current is relatively weak).

On the other hand, when given a freight transportation schedule, one can de-
termine how the water network should be managed such that the objectives for
the transport of water are met while also reducing the energy consumption for the
barges. Eventually, this might lead to a combined optimization problem for both
transport of and over water.
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Global performance measurement

The performance measures for the transport over water as presented here are the
total energy consumption of the vessels, and the time window misfit for picking
up the customers. Both values should be as small as possible. When combining
this problem with transport over water, performance measures such as minimum
deviations from target water levels (combined with constraints on minimum and
maximum levels) and energy consumption (e.g. for pumping water) can be taken
into account in one large optimization problem.

4 Open Topics

The mixed-integer linear program (47)–(62) can be solved with standard hardware
and software for small instances, but when considering many requests at once the
computation times become too large to be useful in practice. To reduce computation
times one could solve the problem over a limited time horizon, and recompute the
optimal schedule periodically, hence using a rolling horizon approach. Furthermore
decomposition methods [12] can be used to exploit the structure of the problem.

5 Conclusions and Future Research

5.1 Conclusions

In this chapter we have discussed a modeling framework for transport over water.
Autonomous micro-ferries are used to transport customers over the water between
different stations. A trade-off is made between energy consumption and picking up
the customers on time, and charging of the micro-ferries is scheduled to avoid empty
batteries. The speeds of the micro-ferries are also taken as optimization variables to
increase the flexibility in scheduling the transport requests.

The micro-ferry scheduling problem can be seen as a variant of the multi-depot
vehicle routing problem, and a mixed-integer linear program with 2-index decision
variables has been presented to find appropriate schedules. This scheduling problem
contains soft time windows, variable speeds, energy levels, and takes into account
the effect of water flows. The effect of water flow speeds on both travel times and
energy consumption is derived, and we conclude that the mean travel times and total
energy consumption will increase with increasing magnitudes of the water flow.
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5.2 Future research

The micro-ferry scheduling problem consists in finding a transport schedule with
times in the order of minutes, and with travel distances within a city. On this time-
scale the water flow is expected to be almost constant. For future research one could
consider long-distance transport over water (e.g. from the harbor to the hinterland)
where both distances and time scales will be larger. In this case the water flow can
no longer be considered a constant, and the influence of the (planned) transport of
water becomes even more important.
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