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Efficient Bi-Level Approach for Urban Rail Transit

Operation with Stop-Skipping
Yihui Wang, Bart De Schutter, Ton J.J. van den Boom, Bin Ning, and Tao Tang

Abstract—The train scheduling problem for urban rail transit
systems is considered with the aim of minimizing the total travel
time of passengers and the energy consumption of the trains.
We adopt a model-based approach where the model includes the
operation of trains at the terminus and at the stations. In order
to adapt the train schedule to the origin-destination dependent
passenger demand in the urban rail transit system, a stop-
skipping strategy is adopted to reduce the passenger travel time
and the energy consumption. An efficient bi-level optimization
approach is proposed to solve this train scheduling problem,
which actually is a mixed integer nonlinear programming prob-
lem. The performance of the new efficient bi-level approach is
compared with the existing bi-level approach. In addition, we
also compare the stop-skipping strategy with the all-stop strategy.
The comparison is performed through a case study inspired by
real data from the Beijing Yizhuang line. The simulation results
show that the efficient bi-level approach and the existing bi-level
approach have a similar performance but the computation time
of the efficient bi-level approach is around one magnitude smaller
than that of the bi-level approach.

Index Terms—train scheduling, urban rail transit, stop-
skipping, bi-level optimization, threshold, limiting search space

I. INTRODUCTION

W ITH the increasing passenger demand in large cities

(e.g., New York, Tokyo, and Beijing), urban rail transit

systems play an increasing significant role for the efficiency

and sustainability for the overall transportation process [1].

The operation of trains in several urban rail transit systems

is characterized by a high frequency, where the minimum

headway between two successive trains is usually 2 to 5

minutes, which could even be further reduced to 90 s with

the development of the advanced signaling systems [2]. When

trains are operated with such a high frequency, the scheduling

of trains based on the passenger demand becomes more

and more important for passenger satisfaction and for the

reduction of operation costs. The passenger satisfaction can be

characterized by the waiting times, in-vehicle times, and the

number of transfers, while the operation costs are determined

by the number of train services and the energy consumption

of train operations.

A. Train scheduling without stop-skipping

Many researchers have explored the train scheduling prob-

lem for urban rail transit systems. In 1980, Cury et al. [3]
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presented a methodology to generate optimal schedules for

metro lines based on a model of the train movements and

passenger behavior. The performance index includes passenger

delay, passenger comfort, and the efficiency of the operation of

trains. The resulting nonlinear scheduling problem was recast

into many sub-problems by Lagrangian relaxation and then

solved in a hierarchical manner [3]. Since the convergence

rate of the hierarchical decomposition algorithm can be quite

poor in some cases, Assis and Milani [4] proposed a model

predictive control algorithm based on linear programming to

optimize the train schedule. The algorithm proposed in [4]

can effectively generate train schedules for the whole day.

In addition, Kwan and Chang [5] applied a heuristic-based

evolutionary algorithm to solve the train scheduling problem,

where the operation costs and the passenger dissatisfaction

are included in the performance index. From the energy-

efficiency point of view, Yang et al. [6] proposed a cooperative

scheduling approach to optimize the train schedule so that

regenerative energy can be used by nearby accelerating trains.

Su et al. [7] presented an integrated timetable where the train

schedule and speed profiles for trains are optimized at the

same time. Furthermore, a demand-oriented timetable design

is proposed in [8], where the optimal train frequency and the

capacity of trains are first determined and then the schedule

of trains are optimized.

B. Train scheduling with stop-skipping

However, since the origin-destination (O-D) passenger de-

mand varies significantly along the urban rail transit line and

the time of the day, e.g., some stations (e.g., those in the

central business district) have a relatively large number of

passengers boarding and alighting and others may have few

passengers. Fixed all-stop train schedules cannot efficiently

satisfy such an O-D demand pattern. Therefore, we consider

the train scheduling problem with stop-skipping for urban rail

transit systems in this paper. As demonstrated in [9], [10], the

stop-skipping strategy can reduce the passenger travel time

and the operation cost of rail transit operators. The skip-stop

operation was first developed for the Chicago metro system

in 1947 [9]. Now, the SEPTA line in Philadelphia, Helsinki

commuter rail, and the metro system in Santiago, Chile apply

the stop-skipping train schedule in practice. They apply a static

stop-skipping strategy, i.e., the A/B skip-stop strategy, where

stations are divided into three types: A, B, and AB; A train

services stop at A stations and AB stations, while B train

services stop at B stations and AB stations. Major stations are

usually labeled with the type AB; so all trains stop there [10].
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The transit operators provide the stop-skipping information

to passengers via panels at platforms and announcements in

the trains. The Santiago metro operator stated that passengers

adapt to the stop-skipping strategy quickly [9]. In this paper,

we propose a dynamic stop-skipping strategy, where the stop-

skipping stations for each train are not fixed, but are opti-

mized according to the passenger demand. With the help of

screens and announcements at stations, on-board displays and

announcements, and personal digital assistant (PDA) devices,

passengers can obtain the required information and adapt to

the dynamic stop-skipping strategy. In the long run, both

the passengers and the rail operator will benefit from stop-

skipping. The rail operator can benefit from the shorter cycle

times, increased operating speed, and less energy consumption.

For most of the passengers, the travel time is shortened and

the on-board environment will be better, i.e., lower train

occupation. However, the passengers at the skipped stations

may experience a longer waiting time and thus possibly a

longer total travel time. Therefore, the skipping of trains at

stations should be carefully coordinated to benefit passengers.

For example, additional constraints can be considered when

scheduling the trains, such as: two successive trains should

not skip the same station. In this way, the waiting time of

passengers can be limited to an acceptable value. Therefore,

an efficient solution approach for optimizing the stop-skipping

schedule is necessary.

Elberlein [11] formulated the stop-skipping problem as

mixed integer nonlinear programming problem, but stop-

skipping strings, defined as a collection of consecutive stations,

were optimized rather than making the stop-skipping decision

for each station. Fu et al. [12] represented the stop-skipping

of trains at stations as binary variables and obtained a mixed

integer nonlinear programming problem, which was solved

using an exhaustive approach. Lee [10] obtained the optimal

train schedule using a genetic algorithm. More specifically,

first the stop-skipping schedule was predefined for the trains

in the urban transit systems. Then the genetic algorithm was

applied to find the best combination of these stop-skipping

trains and the all-stop trains. In addition, only the travel time

of the passengers was considered in [10] and the operation

cost of rail transit operation was not considered. In [13], the

stop-skipping model allow trains to skip all the stations and a

bi-level optimization approach was proposed to solve the train

scheduling problem, which is also a mixed integer nonlinear

programming problem.

C. Our contributions

The current paper extends the previous research in the

following aspects:

• Compared with our previous model in [13], the model

here is more compact and includes the operation of trains

in the terminus.

• Compared with [10]–[12], both the passenger travel time

(including waiting time and in-vehicle time) and the op-

eration costs are taken into account. The operation costs

are determined by the number of train services during

the scheduling time period and the energy consumption

of these trains.

Fig. 1. Illustration of the urban rail transit line

• The stop-skipping model formulated in this paper allows

trains to skip the stations specified in a so called skipping

set, which could ultimately even involve all the trains and

all the stations (except the terminus).

• An efficient bi-level optimization approach is proposed to

solve the mixed integer nonlinear programming problem

and to obtain the train schedule with stop-skipping for

trains.

D. Structure of the paper

This paper is structured as follows. Section II formulates

the operation of trains at the terminus, at stations, and in

between stations, the passenger demand characteristics, and

the passenger/vehicle interaction. Section III describes the

multi-objective cost function of the train scheduling problem

with stop-skipping. Furthermore, there we also discuss how

to solve the scheduling problem in a rolling horizon way and

how to define the initial conditions for the scheduling problem.

Section IV proposes an efficient bi-level optimization approach

for the train scheduling problem with stop-skipping. Section V

illustrates the performance of the proposed solution approach

with a case study. Finally, Section VI concludes the paper.

II. MODEL FORMULATION

In this section, the operation of trains and the passenger

characteristics for the train scheduling problem with stop-

skipping will be formulated.

A. Notation for stations and trains

This paper considers an urban rail transit line as shown

in Figure 1, where the terminus and stations in the line

are numbered increasingly. Let J denote the total number of

stations (terminus not included). The index of the terminus is

set equal to 0. The track section between station j and station

j+1 is denoted as segment j. The scheduling time period for

the train scheduling problem is denoted as [t0, tend]. In order to

distinguish the different running cycles of the physical trains,

so called train services are introduced, where the train service

number in a unique way identifies a train and its current

cycle. After the arrival of a physical train at the terminus,

its service number will be augmented when the train departs.

More specifically, the transit line has I physical trains in total,

which are numbered as train 1,2, . . . , I. However, the service

number of trains increases with the cycle of the operation of
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trains. During the scheduling period, the service number of

trains is 1,2, . . . , I, I + 1, I + 2, . . . ,2I, . . . ,NcycI, where Ncyc is

number of the cycles of the operation of trains for the given

time period [t0, tend]. The service number of a train is increased

with I when it departs from the terminus. Therefore, train

service i corresponds to physical train [(i−1) mod I]+1. For

the sake of simplicity, we use “ train i” as a short-hand for “

train service i” from now on.

B. Assumptions

We make the following assumptions for the terminus and

the stations:

A.1 Multiple trains can be present at terminus 0, which has a

maximum capacity Cter
0 . In addition, the trains in terminus

0 will depart from the terminus in a first-in-first-out

manner.

A.2 Station j for j ∈ {1,2, . . .J} can only accommodate one

train at a time and no overtaking can occur at any point

of the line.

A.3 Trains can skip some stations in the urban tran-

sit line, where we define the skipping set S =
{(i, j)| train i may potentially skip station j}.

A.4 In view of pre-announcement for passengers about the

stop-skipping schedule, there is a detailed stop-skipping

information displayed in the station and/or the urban rail

transit operator provides this information to passengers

through mobile devices.

A.5 The operation of trains only consists of three phases:

the acceleration phase, the speed holding phase, and the

deceleration phase. Moreover, the acceleration and the

deceleration are taken to be fixed constants.

A.6 Each passenger only takes one train to arrive at his/her

destination, i.e., the transfer between different trains along

the line is not allowed.

Assumption A.1 can be motivated as follows: multiple trains

can present at the terminus since we assume that there are

multiple track sections in the terminus. Furthermore, a first-

in-first-out manner for trains in terminus is not difficult to

realize in practice, since it depends on the dispatching of

trains in the terminus and it is a matter of renumbering of

trains. Assumption A.2 generally holds for most urban transit

systems, which are usually operated in this way [14], [15].

Even though the stop-skipping strategy is not yet widely used

in urban rail transit networks throughout the world, there are

several lines which apply it as mentioned before, e.g., the

SEPTA line in Philadelphia. Therefore, Assumption A.3 is

possible in practice. With the development of technologies,

there are already many solutions for the mobile device to

provide transportation information for passengers. In addition,

the almost all the stations have screens to display travel

information to passengers at platforms. Hence, Assumption

A.4 is reasonable. In order to simplify the operation model

for the trains, the detailed dynamics are not included in the

model formulation, but only the three phases mentioned in

Assumption A.5 are considered. However, once the running

time between two stations are fixed, a more accurate speed

profile for the operation of trains can be calculated as a lower

level control problem (see [16], [17] for more information).

Since in Assumption A.2 we assume that no overtaking can

happen at any point of the line, the transfer between different

trains for passengers is useless. Therefore, it is reasonable to

assume that they will wait at the origin for the right train to

get to their destination in Assumption A.6.

C. Operation of a train

The aim of this section is to derive the model equations for

the operation of trains in a urban transit line. The operation of

trains is controlled through a multi-layer control framework.

This paper focus on the train scheduling. In the scheduling

layer, we use an online model-based approach; this means

the model needs to be simulated repeatedly. Hence, in order

to obtain a balanced trade-off between the accuracy and

the computation speed, we use a macroscopic model for

the scheduling. The detailed train dynamics, the position of

block signals, the detection of trains, etc. can then be taken

into account by the lower-level control layer. We will first

formulate the operation of trains at the terminus and then at

the stations.

1) Operation of trains in the terminus: A train can depart

from the terminus only after it has arrived. Moreover, the train

number is increased with I when it departs from the terminus.

So we have

di,0 ≥ ai−I,0 + τ0,min, (1)

where di,0 is the departure time of train i at terminus 0, ai−I

is the arrival time of train i− I, and τ0,min is the minimum

dwell time for the trains at terminus 0. The minimum dwell

time could be equal to the minimum turn-around time or the

minimum running time at a terminus. In addition, there is no

upper bound for the dwell time of trains at terminus. Since

there are multiple tracks in terminus to accommodate trains,

the running distance for trains between stations and the termi-

nus varies and depends on the route setting in the terminus.

However, the layout of the terminus and the scheduling of

trains in terminus are out of the scope of this paper. Here,

we assume an average distance s0 for trains running between

terminus 0 and station 1 and an average distance sJ for the

trains running between station J and terminus 0. The arrival

time of train i at terminal 0 is then be written as

ai,0 = di,J + ri,J, (2)

where ri,J is the running time on segment J.

The headway constraints in terminus 0 can be formulated

as

di,0 ≥ di−1,0 +h0,dep, (3)

where h0,dep is the minimum departure headway at terminus

0. In addition, the minimum arrival headway at terminus 0

should also be taken into account, which can be formulated

as

ai,0 ≥ ai−1,0 +h0,arr, (4)

where h0,arr is the minimum arrival headway at terminus 0.

Remark. If the departure of trains in the terminal station

is affected by the arrival of other trains, then the minimum
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headway constraints between the arrival and departure of

trains should also be considered, which can be formulated

as:

|di,0 −ai′,0| ≥ h0,dep−arr,

for all i, i′ ∈ {1,2, . . . ,NcycI} with i 6= i′.

As mentioned in assumption A.2, the capacity of terminus

0 is Cter
0 . Therefore, at any time t the number of trains in

terminus 0 should be less than the capacity, which can be

formulated as

∑
i∈Strains

I(ai,0 ≤ t)− ∑
i∈Strains

I(t ≥ di,0)≤Cter
0 , for all t

where Strains is the set of trains considered in the scheduling

problem and the indicator function I(·) is defined as

I(x) =

{

1 if x is true,

0 if x is false.

The number of trains in the terminus only increases when a

train arrives at the terminus. Therefore, we should only check

the capacity constraint when a train arrives at a terminus; so

the constraints can be reformulated as

∑
i∈Strains

I(ai,0 ≤ aℓ,0)− ∑
i∈Strains

I(aℓ,0 ≥ di,0)≤Cter
0 , (5)

for each ℓ ∈ Strains.

Remark. This formulation of the operation of trains at a

single terminus can be easily extended for the transit lines

with multiple termini.

2) Operation of trains at stations: In assumption A.3, we

know that trains can skip some stations. If a train skips a

station, then the train passes that station without stopping and

the dwell time is then equal to zero. Therefore, passengers are

not allowed to get off or on the train. A binary variable is

introduced to indicate whether a train will stop at a station or

not.

yi, j =

{

1 if train i will stop at station j,
0 if train i will skip station j.

The departure time di, j of train i at station j should satisfy

di, j ≥ ai, j + yi, jτi, j,min (6)

and

di, j ≤ ai, j + yi, jτi, j,max, (7)

where ai, j is the arrival time of train i at station j, the minimum

dwell time τi, j,min is influenced by the number of passengers

boarding and alighting from the train (see (25) in Section

II-E for more details), and the maximum dwell time τi, j,max is

introduced to ensure passenger satisfaction. The arrival time

ai, j+1 of train i at station j+1 can be calculated by

ai, j+1 = di, j + ri, j, (8)

where ri, j is the running time of train i on segment j.

According to the assumption A.5, the running distances of

the acceleration phase, the speed holding phase, and the

deceleration can be calculated as

sacc
i, j = yi, j

v2
i, j

2aacc
i, j

, sdec
i, j = yi, j+1

v2
i, j

2adec
i, j

, shold
i, j = s j − sacc

i, j − sdec
i, j ,

where s j is the length of segment j, vi, j is the speed of the

speed holding phase, aacc
i, j and adec

i, j are the acceleration and

deceleration, respectively. Hence, the running time ri, j of train

i for segment j is equal to the sum of the acceleration time,

the holding time, and the deceleration time, i.e., ri, j = tacc
i, j +

thold
i, j + tdec

i, j , where tacc
i, j = yi, jvi, j/aacc

i, j , tdec
i, j = yi, j+1vi, j/adec

i, j , and

thold
i, j = shold

i, j /vi, j. The running time can be recast as

ri, j =
s j

vi, j
+ yi, j

vi, j

2aacc
i, j

+ yi, j+1

vi, j

2adec
i, j

. (9)

If train i skips stations j, i.e. yi, j = 0, then the acceleration

time on segment j is equal to zero. If train i skips station

j+1, i.e., yi, j+1 = 0, then the deceleration time on segment j

is equal to zero. Moreover, if train i skips both station j and

j + 1, then both the acceleration time and deceleration time

on segment j are equal to zero. Note that the speed vi, j of the

holding phase should satisfy

vi, j ∈ [vi, j,min,vi, j,max], (10)

where vi, j,min and vi, j,max are the minimal and maximal running

speed for the speed holding phase of train i at segment

j, respectively. The maximum running speed is limited by

the train characteristics and the condition of the line. The

minimum running speed is introduced to ensure the passenger

satisfaction since if trains run too slow, the passengers may

complain.

The minimum headway is the minimum time interval be-

tween two successive trains so that they can enter and depart

from a station safely [18]. Due to assumption A.1, a train

cannot enter a station until a minimum headway after the

preceding train’s departure. With the stop-skipping strategy,

the minimum headway between two consecutive trains is in

fact affected by whether trains stop at or skip a station. We

discern four different cases in our model: (1) two consecutive

trains, i.e., train i− 1 and i, stop at station j, (2) train i− 1

stops at station j and train i skips station j, (3) train i−1 skips

station j and train i stops at station j, (4) both train i−1 and

train i skip station j. Let the minimum headways between two

consecutive trains for these four cases be denoted as h j,1, h j,2,

h j,3, and h j,4, respectively. The headway constraint can then

be formulated as

ai, j −di−1, j ≥ yi−1, jyi, jh j,1 +(1− yi−1, j)yi, jh j,2

+ yi−1, j(1− yi, j)h j,3 +(1− yi−1, j)(1− yi, j)h j,4.
(11)

Remark. The nonlinear headway constraint (11) can also be

transformed into linear constraints, since the product of two

binary stopping variables yi−1, jyi, j can be rewritten as linear

constraints. Indeed, the product of two binary variables δ1δ2

can be replaced by an auxiliary binary variable δ3 = δ1δ2,
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which is equivalent to [19]






−δ1 +δ3 ≤ 0,
−δ2 +δ3 ≤ 0,

δ1 +δ2 −δ3 ≤ 1.
(12)

Furthermore, since the end of the scheduling time period is

tend, all the departure times should be less than tend, i.e.,

di, j ≤ tend, for all i ∈ {1,2, . . . ,NcycI} and j ∈ {1,2, . . . ,J}.
(13)

D. Passenger characteristics

The relationship between the variables used for describing

the passenger characteristics is illustrated in Figure 2. As we

can see from Figure 2 (a), the number of waiting passengers

wwait
i, j for train i at station j is equal to the sum of the number

of waiting passengers wwait
i, j with destination m for all m ∈

{ j+1, j+2, . . . ,m, . . . ,J}, i.e.,

wwait
i, j =

J

∑
m= j+1

wwait
i, j,m. (14)

The number of waiting passengers wwait
i, j with destination m

can be calculated by

wwait
i, j,m = wi−1, j,m +λ j,m(di, j −di−1, j), (15)

where wi−1, j,m is the number of passengers with destination

station m remaining at station j immediately after the departure

of train i−1, λ j,m(di, j −di−1, j) is the number of newly arrived

passengers in between the departures of train i and train i−1,

and λ j,m is the passenger arrival rate at station j for passengers

with destination m. Note that the passenger arrival rate at the

final station J, is assumed to be zero since we only consider

one direction of the line.

In Figure 2, the number of passengers alighting from train i

at station j is denoted as n
alight
i, j , which can be computed using

n
alight
i, j =

j−1

∑
ℓ=1

nboard
i,ℓ, j , (16)

where nboard
i,ℓ, j is the number of passengers that have station j

as their destination and have boarded train i at station ℓ, i.e.,

nboard
i,ℓ, j = wwait

i,ℓ, j −wi,ℓ, j. (17)

No passenger will get off the train if train i skips station j

because the passengers at upstream stations were informed

that train i would not stop at station j, those passengers with

station j as destination would not get on train i. The number

of passengers who want to board train i at station j and have

station m as their destination is denoted as wwant-to-board
i, j,m . The

number of passengers wwant-to-board
i, j,m depends on whether train

i stops at station j and whether train i stops at station m for

m ∈ { j+1, j+2, . . . ,J}, i.e.,

wwant-to-board
i, j,m = yi, jyi,mwwait

i, j,m. (18)

So if train i skips station j, i.e., yi, j = 0, then no passengers

want to board train i, i.e., wwant-to-board
i, j = 0. If train i stops at

station j, i.e., yi, j = 1, then the number of passengers who want

to board is decided by whether train i stops at their destination

m, i.e., yi,mwwait
i, j,m. Note that all the trains stop at terminus 0,

so yi,0 is equal to 1 for i ∈ {1,2, . . . , I}. As shown in Figure 2

(b), the number of passengers wwant-to-board
i, j who want to board

train i at station j is

wwant-to-board
i, j =

J

∑
m= j+1

wwant-to-board
i, j,m , for m∈{ j+1, j+2, . . . ,J}.

(19)

The number of passengers on train i immediately after its

departure at station j is defined as ni, j, which can be computed

as

ni, j = ni, j−1 −n
alight
i, j +nboard

i, j , (20)

where the number of boarding passengers nboard
i, j equals the

minimum of the number of passengers that want to board train

i and the remaining capacity of the train:

nboard
i, j = min(nremain

i, j ,wwant-to-board
i, j ). (21)

In addition, the number of passengers nboard
i, j boarding train i

at station j is also equal to

nboard
i, j =

J

∑
m= j+1

nboard
i, j,m .

Moreover, the remaining capacity of train i at station j

immediately after the alighting process is

nremain
i, j =Cmax −ni, j−1 +n

alight
i, j . (22)

The number of passengers wleft
i, j left by train i depends on

whether train i will stop at station j or not. We have the

following two cases:

• Train i skips station j, i.e., yi, j = 0

If train i will skip station j, then the number of boarding

passengers nboard
i, j is equal to zero. All the passengers

waiting at station j will then be left by train i.

• Train i will stop at station j, i.e., yi, j = 1

Now consider the case that train i stops at station j. If

wwant-to-board
i, j ≤ nremain

i, j , then all the passengers that want to

board can get on train i. However, there will be passengers

left by train i if wwant-to-board
i, j > nremain

i, j . The number of

passengers who want to board but cannot get on train i

at station j immediately after the departure of train i is

wleft
i, j =wwant-to-board

i, j −min(nremain
i, j ,wwant-to-board

i, j ) if yi, j = 1.

In this case, if train i stops station m for m ∈ { j+1, j+
2, . . . ,J − 1}, i.e., yi,m = 1, we assume that the number

of passengers that have station m as destination and are

left by train i is proportional to the number of passengers

who want to board. The number of passengers who have

destination m and are left by train i can be formulated as

wi, j,m = wleft
i, j

wwant-to-board
i, j,m

wwant-to-board
i, j

if yi, j = 1 and yi,m = 1.

However, if train i skips station m for m ∈ { j + 1, j +
2, . . . ,J−1}, i.e., yi,m = 0, then the number of passengers
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Fig. 2. The variables for the passenger characteristics

that have station m as destination will not board. So we

have

wi, j,m = wwait
i, j,m, if yi, j = 1 and yi,m = 0.

Hence, the number of passengers who are left by train i and

with destination m can be calculated as

wi, j,m =yi, j

(

yi,mwleft
i, j

wwant-to-board
i, j,m

wwant-to-board
i, j

+(1− yi,m)w
wait
i, j,m

)

+(1− yi, j)w
wait
i, j,m.

(23)

Furthermore, the total number of waiting passengers at station

j immediately after the departure of train i is

wi, j =
J

∑
m= j+1

wi, j,m. (24)

E. Passenger/vehicle interaction

The minimum dwell time is influenced by the number of

passengers boarding and alighting from a train. In addition, the

minimum dwell time is also affected by the number of waiting

passengers at station: if there are many passengers waiting at

the platform, then the boarding process will be slower. In [20],

a nonlinear function is given to compute the minimum dwell

time:

τi, j,min =min
(

τ̃min,α1,d +α2,dn
alight
i, j +α3,dnboard

i, j

+α4,d

(

wwait
i, j

ndoor

)3

nboard
i, j

)

,
(25)

where τ̃min is the minimum dwell time predefined by railway

operator, α1,d, α2,d, α3,d, and α4,d are coefficients that can

be estimated based on historical data, ndoor is the number of

doors of the train, and wwait
i, j /ndoor is the number of passengers

waiting at each door. Note that the passengers are assumed to

equally distribute over all doors of the train.

III. REAL-TIME TRAIN SCHEDULING PROBLEM

We first formulate the objective function of the train

scheduling problem, which involves the passenger travel time

and the energy consumption. Moreover, the waiting time of the

passengers who did not travel in the scheduling period is also

considered in the objective function. Next, the rolling horizon

approach to solve the train scheduling problem is discussed.

Furthermore, the initial conditions for the scheduling problem

is also defined in this section.

A. Performance criteria

The real-time train scheduling problem is a multi-objective

optimization problem, where the objectives could be the

energy consumption of the operation of trains, the passenger

waiting time, the passenger travel time, and the capacity usage

of each train.

The energy consumption of the trains can be calculated by

Etotal =
I

∑
i=1

J

∑
j=1

(Eacc
i, j +Ehold

i, j ), (26)

where the energy consumption for the acceleration phase Eacc
i, j

and the holding phase Ehold
i, j for train i at segment j can be

computed using

Eacc
i, j =

∫ tacc
i, j

0

(

(me +ni, jmp)(a
acc
i, j + k1 + k2v(t)+gsin(θ j))

+ k3v2(t)

)

v(t)dt,

Ehold
i, j =

∫ tacc
i, j +thold

i, j

tacc
i, j

(

(me +ni, jmp)(k1 + k2vi, j +gsin(θ j))

+ k3v2
i, j

)

vi, jdt.

The total travel time of passengers can be described as a

weighted sum of the passenger waiting time and the passenger

in-vehicle time

ttotal =
I

∑
i=1

J−1

∑
j=1

(γwaittwait,i, j + tin-vehicle,i, j), (27)

where

twait,i, j = wi−1, j(di, j −di−1, j)+
1

2

J

∑
m= j+1

λ j,m(di, j −di−1, j)
2,

(28)

and

tin-vehicle,i, j = ni, jri, j +(ni, j −n
alight
i, j )τi, j+1. (29)

Remark. Since the passengers usually feel that time goes

slowly when they are waiting at the platform, a weight larger
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than one can be added to the passenger waiting time in the

problem formulation [21].

In order to spread trains over the entire scheduling time

period, we add a penalty term for the waiting time of the

passengers left by the last train NcycI during the scheduling

period:

fpenalty,1 = µpenalty,1

J

∑
j=1

(

wNcycI, j(tend −dNcycI, j)

+
1

2
ζ

J

∑
m= j+1

λ j,m(tend −dNcycI, j)
2

)

,

(30)

If ζ = 1, the waiting time for the newly arrived passengers

between the departure time dNcycI, j and the end time tend is

also considered. However, if ζ = 0, the waiting time of the

newly arrived passengers after the last train is not considered

(e.g., the trains coming later will pick up these passengers).

But in the latter case, we need to add a penalty term for the

arrival time of the last train NcycI at the terminus to avoid

all the trains operating close to each other at the start of the

period [t0, tend]:

fpenalty,2 = µpenalty,2|aNcycI,0 − tend|. (31)

The objective function of the train scheduling problem can

be written as

fopt = γ1
Etotal

Etotal,nom

+ γ2
ttotal

ttotal,nom

+ fpenalty,1 + fpenalty,2, (32)

where γ1 and γ2 are non-negative weights, and the normal-

ization factors Etotal,nom and ttotal,nom are “nominal” values

of the total energy consumption and the total travel time of

passengers, respectively. These nominal values can e.g. be

determined by running trains using a feasible initial schedule.

B. Rolling horizon approach and initial conditions

Since the passenger demand varies with the time in a

daily operation, the train scheduling problem can be solved

in a rolling horizon way, by solving the scheduling problem,

e.g., every half an hour, so as to adapt the train schedule to

passenger demand in real time. This works as follows. First,

the train scheduling problem is solved for some period [t0, tend]
and the trains will be run according to the resulting optimal

schedule. After some period of time h, e.g., half an hour, we

will run the optimization process again, but now for the period

[t0+h, tend+h] using the known, measured, or estimated states

of the system at time t0+h. Once the new optimal schedule is

computed, it is executed for h time units, and next the whole

process is repeated again for the period [t0 +2h, tend +2h] and

so on, until the end of the daily operation of the urban rail

transit system.

When solving the train scheduling problem in a rolling

horizon way, some of the variables will no longer free variables

but will have fixed values. Let t0 be the start time instant of

the scheduling period, we now discuss the fixed variables:

• If train i is in terminus 0 at time t0, i.e., the arrival

time ai−I,0 of train i− I at terminus 0 will be a known

time value before t0. So ai−I,0 is no longer an unknown

variable.

• If train i is running on a segment at t0, we use ji,t0 to

denote the segment at which train i is running on at t0. The

departure time di, ji,t0
of train i at station ji,t0 is a known

time value before t0. In addition, all the departure times,

arrival times, and running times before segment ji,t0 are

known. Furthermore, the running time ri, ji,t0
on segment

ji,t0 is also fixed since we assume that the schedule of

a train can only be changed at stations. Therefore, the

arrival time of train i at station ji,t0 +1 is also known.

• If train i is at station at time t0, we use ji,t0 to denote the

station at which train i is stopping at. The arrival time

ai, ji,t0
of train i at station ji,t0 is known. In addition, the

departure times, the arrival times, and the running times

before station ji,t0 are also known.

Moreover, the stopping variables are fixed for trains that are

already on their way to make sure all the passengers on the

train can arrive their destinations. The number of passengers

on the train and the number of passengers waiting at the

platform are also known at time t0.

The train scheduling model also requires the real-time

assessment of the passenger arrival rates in the O-D matrix

during the scheduling period. In the case of full state infor-

mation, the passenger arrival rates can be obtained. However,

this is not the case in practice, where we can e.g. use the

information collected by the advanced fare collection systems

and estimate the passenger arrival rates based on the historical

data and the current passenger flows [22].

IV. EFFICIENT SOLUTION APPROACH

The resulting real-time scheduling problem is a mixed

integer nonlinear programming (MINLP) problem with ob-

jective function (32) and constraints (1)-(24). In [13], we

have proposed a bi-level optimization approach to solve this

optimization problem. However, the computation time of this

bi-level optimization method is too long in practice. Therefore,

we now propose an efficient bi-level solution approach for the

MINLP problem, where the search space of the problem is

limited and a threshold method is presented to obtain a good

initial solution for the MINLP problem.

A. Bi-level optimization

The free variables in the real-time scheduling problem

are the departure time di, j, the holding speed vi, j, and the

binary variables yi, j for (i, j) ∈ S (i.e., the set of train i and

station j where skipping is possible). The other variables like

the number of passengers waiting at stations wi, j and the

number of passengers on-board the trains ni, j can be eliminated

using the model equation (13)-(23). The bi-level optimization

method proposed in [13] consists of two levels of optimization:

• The high-level optimization optimizes the binary vari-

ables yi, j for (i, j) ∈ S, where a brute force approach

can be used to explore all the combinations for the

binary variables in case the size of the problem is small.

Alternatively, integer programming approaches, such as
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genetic algorithms or branch-and-bound methods, can be

applied in the high-level optimization.

• For each combination of binary variables, the low-level

optimization solves a nonlinear non-convex problem us-

ing e.g., multi-start sequential quadratic programming

(SQP) algorithm or a pattern search method.

B. Threshold method for obtaining good initial solutions

In order to obtain a good initial solution for the train

scheduling problem, we first introduce a threshold function

to determine the value of the stopping variable as follows:

yi, j = I

(

(

wwant-to-board
i, j ≥ θ th,in

i, j

)

∧
(

n
alight
i, j ≥ θ th,out

i, j

)

)

, (33)

where θ th,in
i, j and θ th,out

i, j are the thresholds, which are free

variables and determined by the optimization procedure. In

this case, the value of the stopping variables depends on the

passenger flows in the urban rail transit line. By introducing

the threshold function, we can reformulate the MINLP prob-

lem as a real-valued nonlinear programming problem, which

can be solved by sequential quadratic programming method.

An initial solution of the stopping variables, the departure

times, and the holding speeds can be obtained by solving this

nonlinear programming problem.

C. Limiting the search space

After the initial solution is obtained using the thresh-

old method, we can limit the search space of the train

scheduling problem within a neighborhood of the initial so-

lution to reduce the computation time. For the high-level

optimization, the search space of the integer variables y =
[

y1,1y1,2, . . . ,y2,1, . . . ,yNcycI ,J
]T

can be limited by the following

1-norm constraint:

‖y− yinit‖1 ≤ χ0, (34)

which means that only a limited number, i.e., χ0, of binary

variables can change their values in the bi-level optimization

approach. If χ0 is small, the search space can be reduced

dramatically. The brute force method can be applied for the

high-level optimization if χ0 is chosen as 1 or 2. Otherwise,

the genetic algorithm can be applied.

In addition, we can also limit the search space of the

departure times and holding speeds as follows:

‖d −dinit‖ ≤ χ2 + χ3β , (35)

and

‖v− vinit‖ ≤ χ3 + χ4β , (36)

where β is flexibility variable introduced to make sure the op-

timization problem is always feasible. The objective function

(32) is revised as

f ′opt = fopt + γ4β , (37)

where γ4β introduces flexibility in the degree of goal attain-

ment.

TABLE I
PARAMETERS OF THE TRAINS AND THE PASSENGERS

Property Symbol Value

Train mass [kg] me,i 199 ·103

Mass of one passenger [kg] mp 60
Capacity of trains [passenger] Ci,max 1468

Minimum dwell time [s] τ̃min 30
Maximum dwell time [s] τmax 150

Coefficients α1,d 4.002
of the minimal α2,d 0.047
dwell time α3,d 0.051

k1i 0.012

Coefficients of resistance k2i 5.049·10−4

k3i 8.521

V. CASE STUDY

A. Set-up

In order to demonstrate the effectiveness of the proposed

model formulation and the performance of the proposed effi-

cient bi-level optimization approach, we consider a cyclic line

with 1 terminus and 12 stations following the structure shown

in Figure 1. There are 6 physical trains in the urban rail transit

line and the schedule for 10 train services will be optimized.

This means that the trains for the train services 1-4 will reach

the terminal station and then start a new train service during

the scheduling period. The new train services are numbered

from 7 to 10. The train characteristics and the line data are

inspired by the data of Beijing Yizhuang subway line, and are

given in Table I and Table II, respectively.

In Table II, station 0 represents terminus 0. The minimum

running time in Table II is calculated by taking a fixed

acceleration of 0.8 m/s2 and a fixed deceleration of −0.8 m/s2;

furthermore, the trains are assumed to run at the maximum

speed of 80 km/h during the holding phase. The maximum

running time is assumed as ri, j,max = ζ ri, j,min, where ζ is larger

than 1. We have chosen ζ as 1.2 to ensure that the passengers

do not complain that the train is too slow. The mass of the

train, the mass of one passenger, and the coefficients for the

minimum dwell time in (25) are given in Table I. The lower

bound for the dwell time predefined by the railway operator

is chosen as 30 s. The passenger arrival rates at stations are

shown in Table III.

The initial states at time t0 (chosen as 1300 s for this case

study) of the trains are as follows: train 1 and 2 are running

to station 8 and 5, respectively. Since we assume that the

schedule of a train can only be changed at stations, so the

arrival times of these two trains at station 3 and station 2 are

fixed and they are 1400 s and 1340 s, respectively. Train 3 are

stopping at station 3 and its arrival time is 1270 s. The number

of passengers on train 1, 2, and 3 at time t0 their destination

are given in Table IV.

In addition, there are 3 trains stopping at the terminus, so the

previous train services finished before t0. The communication-

based train control system (a moving block signaling system)

is implemented in Beijing Yizhuang subway line, where the

minimum headway between two successive trains is 90 s. In

addition, a maximum departure-departure headway is included

to ensure the passenger satisfaction, which is chosen as 400 s.
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TABLE II
INFORMATION OF THE CYCLIC LINE

Station number 0 1 2 3 4 5 6 7 8 9 10 11 12

Distance to next station [m] 1050 1832 1786 2086 2265 1030 1354 1280 1544 992 1975 2369 1349
Minimal running time [s] 75.0 110.2 108.2 121.7 129.7 74.1 88.7 85.4 97.3 72.4 116.7 134.4 88.5

TABLE III
THE ORIGIN-DESTINATION DEPENDENT PASSENGER ARRIVAL RATES AT STATIONS [PASSENGERS/S]

Station 1 2 3 4 5 6 7 8 9 10 11 12

1 0 0.06 0.30 0.35 0.03 0.18 0.36 0.06 0.34 0.27 0.03 0.12
2 0 0 0.05 0.06 0.02 0.01 0.04 0.02 0.02 0.01 0.02 0.03
3 0 0 0 0.2 0.03 0.27 0.18 0.02 0.25 0.17 0.03 0.36
4 0 0 0 0 0.02 0.25 0.25 0.04 0.22 0.32 0.02 0.34
5 0 0 0 0 0 0.05 0.02 0.01 0.01 0.04 0.01 0.03
6 0 0 0 0 0 0 0.21 0.08 0.24 0.27 0.05 0.39
7 0 0 0 0 0 0 0 0.02 0.35 0.23 0.03 0.34
8 0 0 0 0 0 0 0 0 0.03 0.04 0.02 0.05
9 0 0 0 0 0 0 0 0 0 0.27 0.03 0.39
10 0 0 0 0 0 0 0 0 0 0 0.03 0.35
11 0 0 0 0 0 0 0 0 0 0 0 0.06
12 0 0 0 0 0 0 0 0 0 0 0 0

TABLE IV
THE NUMBER OF PASSENGERS ON TRAIN 1, 2, AND 3 AT TIME t0 AND THEIR DESTINATIONS

Destination station 1 2 3 4 5 6 7 8 9 10 11 12 Total passengers

Train 1 0 0 0 0 0 0 0 0 131 395 263 132 921
Train 2 0 0 0 0 0 89 33 111 44 333 166 22 798
Train 3 0 0 0 106 100 20 144 216 31 103 144 21 885

Furthermore, the number of passengers waiting at the various

stations at t0 and the destination of these passengers are shown

in Table V. The nominal values for the total travel time, the

energy consumption, and the waiting time for the passengers

who did not travel in the scheduling period is calculated based

on a schedule with constant headway, which are 2.278 ·107 s,

7.013 ·109 J, and 1.387 ·107 s, respectively.

B. Simulation and results

The train scheduling problem is solved using the following

three approaches:

• All-stop approach: Trains in the scheduling period stop at

every station, i.e., there is no stop-skipping at all. In this

case, the train scheduling problem is a nonlinear program-

ming problem, which is solved here using the sequential

quadratic programming (SQP) method implemented by

the fmincon function of Matlab optimization toolbox.

• Bi-level approach with stop-skipping: The train schedul-

ing problem with stop-skipping is a mixed integer non-

linear programming problem, which is solved using the

bi-level approach in [13]. A genetic algorithm is applied

for the integer optimization of the high level, where the

ga function of the global optimization toolbox of Matlab

is employed. The nonlinear optimization problem in the

lower level is solved using the SQP algorithm of the

fmincon function of the Matlab optimization toolbox.

• Efficient bi-level approach with stop-skipping: First, a

good initial solution for the mixed integer nonlinear

problem is obtained by solving the train scheduling prob-

lem with threshold function (33), which is a nonlinear

programming problem and which can be solved e.g. using

multistart SQP. Next, the resulting solution is used as

starting point for solving the full optimization problem,

but with the search space of the binary variables limited

by the 1-norm constraints (34). The size of the search

space varies with the value assigned to χ0. When χ0

is equal to 1, we apply a brute force approach for the

high-level optimization since the search space of the

binary variables is small. When χ0 is equal to 2 and 3, a

genetic algorithm is used to optimize the binary variables.

Furthermore, the SQP algorithm is employed by the low-

level optimization, where the search space can also be

limited.

The train schedules obtained by the all-stop approach, the

bi-level approach, and the efficient bi-level approach are shown

in Figures 3-8. These train schedules look similar to each

other, however, there are some differences between them.

In particular, for the all-stop approach (Figure 3) all trains

stop at all stations, while several trains skip some stations

in the train schedules obtained by the bi-level approach and

the efficient bi-level approach (see Figures 4-8). In the train

schedule obtained by the bi-level approach shown in Figure 4,

trains 4, 6, 7, 8, 9, and 10 skip some stations. More specifically,

train 4 skips stations 2, 5, 8, and 11, so the stopping variables

of train 4 for these stations are equal to 0 as shown in Table

VI1. In addition, we can observe that the travel time for trains

that skip some stations is smaller than that of the all-stop

approach, e.g., train 4 arrives earlier at the terminal station in

1Because the stopping variables for other stations are all equal to 1, we
only list the stopping variables for stations 2, 5, 8, and 11.
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TABLE V
THE NUMBER OF PASSENGERS WAITING AT STATIONS AT t0 AND THEIR DESTINATIONS

Destination 1 2 3 4 5 6 7 8 9 10 11 12 Total passengers

Station 1 0 8 75 54 65 15 26 32 15 68 33 21 421
Station 2 0 0 19 19 19 14 16 13 15 13 11 14 153
Station 3 0 0 0 29 91 15 45 32 12 41 33 14 312
Station 4 0 0 0 0 57 22 52 43 22 11 24 35 266
Station 5 0 0 0 0 0 13 22 29 26 14 26 24 154
Station 6 0 0 0 0 0 0 25 23 26 5 30 14 123
Station 7 0 0 0 0 0 0 0 23 25 13 27 29 117
Station 8 0 0 0 0 0 0 0 0 25 9 19 18 71
Station 9 0 0 0 0 0 0 0 0 0 24 20 23 67
Station 10 0 0 0 0 0 0 0 0 0 0 21 25 46
Station 11 0 0 0 0 0 0 0 0 0 0 0 27 27
Station 12 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 4 (stop-skipping approach) than in Figure 3 (all-stop

approach). Trains 1, 2, and 3 have already departed from the

terminus at time t0 and they are thus suppose to stop at all

stations. So the stopping variables for these three trains are

equal to 1. Figure 5 illustrates an initial train schedule that is

obtained by the threshold method. The values of the stopping

variables are shown in Table VI, which are different from those

obtained via the bi-level approach. For example, train 4 only

skips stations 5 and 8 but does not skip station 2 and 11. Based

on the initial train schedule shown in Figure 5, we assign the

value of χ0 in (34) as 1, 2, and 3 to vary the search space.

Figure 6 shows the train schedule obtained by the efficient

bi-level approach with χ0 = 1, which means that one binary

variable can change its value. From Figure 6 and Table VI, we

can observe that train 7 skips station 5 when χ0 = 1, which is

different from the initial schedule. Similarly, when χ0 = 2, the

values of two binary variables are changed comparing with the

initial solution. As we can observe from Figure 7 and Table

VI, train 4 skips station 11 and train 7 skips station 5, while

in the initial train schedule shown in Figure 5, train 4 stops

at station 11 and train 7 stops at station 5. Figure 8 presents

the train schedule obtained by the efficient bi-level approach

with χ0 = 3, where train 4 skips station 11 and both train 7

and train 9 skips station 5 compared with the initial schedule.

A comparison of the performance of these three approaches

is illustrated in Table VII, where the values of the objective

function, the computation time, the total passenger travel time,

the energy consumption of the train schedules, etc. are listed.

The relative improvements of the bi-level approach and the

efficient bi-level approach with respect to the all-stop approach

are given as in Table VIII, which is calculated as

xrelative-difference = 1−
xstop-skipping

xall-stop

,

where x is the value of the objective function, the computation

time, etc. in the table and the stop-skipping involves the

solution obtained by the bi-level approach and the efficient bi-

level approach. Note that in Table VII, the solution approach

has a better performance when the number of passengers

finished their trips is larger since more passengers have fin-

ished their trip during the scheduling period. For the other

terms in Table VII, the performance of the approach is better

if these terms have a smaller value. In a similar way, the

relative improvement of the number of passengers that finished

their trip is smaller means the improvement is better. For the

other terms in Table VIII, a bigger value represents better

performance.

C. Discussion

For the given case study, the overall performance improve-

ment of the stop-skipping strategy is about 8-12% better

compared with the all-stop approach. With the stop-skipping

strategy, the total travel time is reduced with 12-15% and

the total energy consumption is reduced with 10-15%. The

number of passengers that did not travel increases with 7-

11%; however, note that the trains coming later will pick

up these passengers anyway; so they will not be left at the

platform. Since we solving the train scheduling problem in

a rolling horizon way, the passengers that did not travel at

the current time period will be taken into account in the

next period (cf. Section III-B). The efficient bi-level approach

yields an acceptable performance when compared with the

bi-level approach. However, the computation time of the bi-

level approach is about 10 and 4 times longer than that of the

efficient bi-level approach with χ0 = 1 and χ0 = 3, respectively.

More specifically, the computation time of the efficient bi-level

approach (with χ0 = 1) is about half an hour using Matlab

on a 64-bit Linux operation system running on a 1.8 GHz

Intel Core2 Duo CPU. Hence, if we would use dedicated

optimization software written in object code, in combination

with a faster processors and parallel processing, the efficient

bi-level approach is tractable for real-time application.

VI. CONCLUSIONS

We have considered the train scheduling problem with stop-

skipping, where the operation of trains at both the stations

and the terminus are included in the model. The passenger

characteristics are described based on the origin-destination

demands for passengers. Since the resulting train scheduling

problem is a mixed integer nonlinear programming problem,

an efficient bi-level approach has been proposed, where a

threshold method is applied to obtain a good initial solution for

2These remaining passengers, i.e., the passengers that did not travel, will
be picked up by the trains that arrive later on. The waiting time of those
passengers is also included in the objective function. So here the number
and the waiting time of these passengers are also given for comparing the
performance of these three approaches.
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TABLE VI
THE STOPPING VARIABLES OF THE ALL-STOP APPROACH, THE BI-LEVEL APPROACH, AND THE EFFICIENT BI-LEVEL APPROACH AT STATION 2, 5, 8, AND

11 (IF THE STOPPING VARIABLE EQUALS 1, THEN THE TRAIN STOPS AT THE STATION; OTHERWISE, THE TRAIN WILL SKIP THE STATION)

Solution approaches Solution options Train 1 2 3 4 5 6 7 8 9 10

Bi-level –

Station 2 1 1 1 0 1 1 0 0 1 1
Station 5 1 1 1 0 1 0 0 0 0 0
Station 8 1 1 1 0 1 0 0 0 1 0

Station 11 1 1 1 0 1 0 0 0 0 1

Efficient bi-level

Solution (threshold)

Station 2 1 1 1 1 0 0 1 0 0 1
Station 5 1 1 1 0 0 1 1 0 1 0
Station 8 1 1 1 0 1 0 1 1 1 1

Station 11 1 1 1 1 1 0 1 0 1 0

Solution (χ0 = 1)

Station 2 1 1 1 1 0 0 1 0 0 1
Station 5 1 1 1 0 0 1 0 0 1 0
Station 8 1 1 1 0 1 0 1 1 1 1

Station 11 1 1 1 1 1 0 1 0 1 0

Solution (χ0 = 2)

Station 2 1 1 1 1 0 0 1 0 0 1
Station 5 1 1 1 0 0 1 0 0 1 0
Station 8 1 1 1 0 1 0 1 1 1 1

Station 11 1 1 1 0 1 0 1 0 1 0

Solution (χ0 = 3)

Station 2 1 1 1 1 0 0 1 0 0 1
Station 5 1 1 1 0 0 1 0 0 0 0
Station 8 1 1 1 0 1 0 1 1 1 1

Station 11 1 1 1 0 1 0 1 0 1 0

TABLE VII
PERFORMANCE COMPARISON OF THE ALL-STOP APPROACH, THE BI-LEVEL APPROACH, AND THE EFFICIENT BI-LEVEL APPROACH (χ0 IS THE NUMBER OF

BINARY VARIABLES, THE VALUE OF WHICH CAN BE MODIFIED)

Solution approach
All-stop Bi-level

Efficient bi-level
Initial solution Solution Solution Solution

(threshold) (χ0 = 1) (χ0 = 2) (χ0 = 3)

Objective value 2.917 2.617 2.708 2.681 2.661 2.653

Computation time [s] 4.464 ·102 1.672 ·104 1.194 ·103 1.705 ·103 2.352 ·103 4.567 ·103

Energy consumption [J] 5.888 ·109 4.994 ·109 5.369 ·109 5.301 ·109 5.220 ·109 5.111 ·109

Number of passengers finished their trips [passenger] 2.603 ·104 2.451 ·104 2.500 ·104 2.505 ·104 2.482 ·104 2.473 ·104

Number of passengers that did not travel [passenger] 1.324 ·104 1.476 ·104 1.427 ·104 1.422 ·104 1.445 ·104 1.455 ·104

Travel time for passengers finished their trips [s] 1.944 ·107 1.648 ·107 1.724 ·107 1.706 ·107 1.680 ·107 1.683 ·107

Waiting time of passengers that did not travel 2 [s] 1.031 ·107 1.270 ·107 1.192 ·107 1.188 ·106 1.227 ·106 1.240 ·106

TABLE VIII
RELATIVE IMPROVEMENT WITH RESPECT TO THE ALL-STOP APPROACH OF THE BI-LEVEL APPROACH, AND THE EFFICIENT BI-LEVEL APPROACH (χ0 IS

THE NUMBER OF BINARY VARIABLES, THE VALUE OF WHICH CAN BE MODIFIED)

Solution approach
Bi-level

Efficient bi-level
Initial solution Solution Solution Solution

(threshold) (χ0 = 1) (χ0 = 2) (χ0 = 3)

Objective value 12.01% 7.16% 8.08% 8.77% 9.05%
Computation time [s] −36.46 −1.68 −2.82 −4.27 −9.23
Energy consumption [J] 15.18% 8.81% 9.97% 11.35% 13.20%

Number of passengers finished their trips [passenger] 5.83% 3.94% 3.77% 4.64% 5.01%
Number of passengers that did not travel [passenger] −11.46% −7.75% −7.41% −9.12% −9.85%

Travel time for passengers finished their trips [s] 15.19% 11.32% 12.24% 13.55% 13.41%
Waiting time of passengers that did not travel [s] −23.26% −15.64% −15.29% −19.04% −20.35%

the full problem and where the search space for the variables

can be limited to enhance the efficiency. For a case study, the

efficient bi-level approach with a limited search space provided

the best solution within the time that is typically available for

the computations (e.g., half an hour). In particular, the overall

performance improved with about 8-12% compared to the all-

stop approach.

The approaches proposed in this paper can be easily ex-

tended to other urban rail transit lines. The parameters for

train dynamics are usually available for the rail operators.

The origin-destination-dependent (OD-dependent) passenger

arrival rates can be estimated from the data obtained by the

automatic fare collection system. The initial states of the

system can be obtained by detection equipments at stations

and on-board trains. In our future work, we will perform addi-

tional case studies for larger real-life networks where we will

also include real-life measurements (e.g., demand profiles).

Furthermore, we will investigate other solution approaches

to solve the mixed integer nonlinear programming problem

efficiently, especially for cases with a large number of trains

and stations. In addition, we will investigate the effect of

more detailed models (including short turns, the distribution
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Fig. 3. The train schedule obtained by the all-stop approach
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Fig. 4. The train schedule obtained by the bi-level approach

of on-board passengers and waiting passengers at platforms,

etc.) on the trade-off between performance and computational

complexity. Moreover, robust train scheduling is important

in practice since there are stochastic disturbances during the

operation of trains [23], [24]. In future work, we will consider

the travel time uncertainty, dwell time uncertainty, etc. in the

train scheduling and investigate robust train scheduling.
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Fig. 5. The train schedule obtained by the threshold method
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Fig. 6. The train schedule obtained by the efficient bi-level approach with
χ0 = 1
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Fig. 7. The train schedule obtained by the efficient bi-level approach with
χ0 = 2
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Fig. 8. The train schedule obtained by the efficient bi-level approach with
χ0 = 3
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