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Model Predictive Traffic Control Based on a New

Multi-Class METANET Model ⋆
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Delft Center for Systems and Control, Delft University of Technology
Mekelweg 2, 2628 CD Delft, The Netherlands

Email: {s.liu-1,b.deschutter,j.hellendoorn}@tudelft.nl

Abstract: Multi-class traffic flow models account for the heterogeneous characteristics of traffic
networks. This leads to higher accuracy when applying them for on-line model-based control. We
propose a new multi-class METANET model. The proposed model is an extension of the single-
class macroscopic traffic flow model METANET. In the new model, each vehicle class is subject
to its own single-class fundamental diagram, and is limited within an assigned space. In this paper,
model predictive control is used for on-line traffic control based on the newly proposed model. A case
study is implemented for illustrating the efficiency of the new multi-class model. More specifically, the
simulation results show that the new multi-class METANET model leads to a better performance than
single-class METANET model.

Keywords: traffic control, multi-class traffic model, METANET, on-line model-based control, model
predictive control.

1. INTRODUCTION

Due to the increasing traffic demand, traffic management has
become more and more important. On-line model-based traffic
control is one traffic management approach that can often lead
to satisfying performance, since it takes into account the
evolution of traffic flows. The models used in on-line
model-based traffic control affect the control performance
significantly. In general, the more accurate the models are, the
better the control performance will be.

Macroscopic traffic flow models are popular in on-line
model-based control, since the accuracy and the computation
speed can be balanced well. However, many macroscopic
traffic flow models do not consider the heterogeneous nature of
traffic networks. In fact, traffic networks often include multiple
classes of vehicles, such as cars, vans, and trucks etc. Although
microscopic models usually include multi-class behavior, they
are not suitable for on-line model-based control, because they
can lead to low computation speeds. Hence, the development
of multi-class macroscopic traffic flow models is necessary.

Some macroscopic multi-class traffic flow models have
already been developed. Wong and Wong (2003) proposed a
multi-class traffic flow model that is an extension of the
Lighthill-Whitham-Richards (LWR) model (Lighthill and
Whitham, 1955; Richards, 1956). In this multi-class model,
the traffic flow for each vehicle class is computed through its
own fundamental diagram by using the total density. Thus, the
essential characteristics of each vehicle class remain
unchanged. However, the total flow is considered when
estimating traffic state variables. Logghe (2003) also extended
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the LWR model to a multi-class version, with each class
described by an individual fundamental diagram. In this
extended model, three traffic regimes are considered: free flow,
semi-congestion, and congestion. Each vehicle class is limited
within an assigned space, and the space fractions are
determined according to the three traffic regimes. The
FASTLANE model proposed by van Lint et al. (2008) is a
first-order multi-class macroscopic network traffic flow model.
In this model, dynamic passenger car equivalents are used.
This means that differences in the space occupied by a vehicle
under different traffic conditions (e.g. free flow or congested
flow) are considered. Caligaris et al. (2008) developed a traffic
flow model considering two classes of vehicles on the basis of
the macroscopic model in Papageorgiou (1983). The
interference between these two vehicle classes is represented
by the steady-state relation between speed and density. Deo
et al. (2009) extended the METANET model of Messmer and
Papageorgiou (1990) into a multi-class version, using
passenger car equivalents. However, this multi-class
METANET model uses a convex combination of the desired
speeds of all vehicle classes for computing the desired speed
of each vehicle class. This reduces the heterogeneity of this
model. Note that the METANET model is a second-order
model which in general is more accurate than first-order
models since second-order models capture phenomena that
cannot be captured by first-order models (see Papageorgiou
(1998), but also the points raised by Daganzo (1995) and
Helbing and Johansson (2009)). More specifically, the
METANET model can reproduce capacity drop near on-ramps
and in shock waves, which is important for model-based traffic
control (Papageorgiou, 1998). In this paper, we develop a new
multi-class METANET model via an approach that is inspired
by the approach used by Logghe (2003) for deriving a
multi-class version of the LWR model. In this new model,
desired speeds are computed in a different way from Deo et al.



(2009), aiming to obtain better heterogeneity. In order to
investigate the advantages of this new model, it is applied in
on-line model-based traffic control. Model Predictive Control
(MPC) is selected as control approach, since it can deal with
nonlinear system, multi-criteria optimization, and constraints.
Besides, MPC is closed-loop control approach, and as such the
prediction errors that are resulted from model mismatch can be
corrected. For comparison, MPC is implemented based on two
kinds of prediction models: the single-class METANET model
and the new multi-class METANET model.

This paper is organized as follows. In Section 2, we summarize
the multi-class LWR model developed by Logghe (2003). Next,
we recapitulate the single-class METANET model in Section
3. Based on the method in Section 2 and the single-class
METANET model, we propose the new multi-class METANET
model in Section 4. Then, on-line traffic control based on this
new model is developed in Section 5. Next, a case study is
implemented in Section 6.

2. MULTI-CLASS LWR MODEL

2.1 Basic concepts

The multi-class LWR model of Logghe (2003) is an extension
of the well-known LWR model. The model describes multi-
class traffic flow, where each vehicle class is described on the
basis of a triangular fundamental diagram:

Qc(ρc) =











ρcvfree,c if ρc 6 ρcrit,c

ρcrit,cvfree,c

ρcrit,c −ρmax,c
(ρc −ρmax,c) if ρc > ρcrit,c

(1)

where Qc is the flow of vehicles of class c, ρc is the density
of vehicles of class c, vfree,c is the free-flow speed of vehicles
of class c, ρcrit,c is the critical density of vehicles of class c,
and ρmax,c is the maximum density of vehicles of class c. It
is assumed that a vehicle class constrains itself to an assigned
fraction of the whole road, being subject to its fundamental
diagram:

qc = αcQc

(

ρc

αc

)

(2)

The road fractions for different classes of vehicles are always
positive (αc > 0), and the sum of all fractions cannot exceed 1:

∑αc 6 1 (3)

Several ways have already been developed to determine αc.
Wong and Wong (2003); Logghe (2003) equated the road
fraction αc to the relative class density. Benzoni-Gavage and
Colombo (2003) obtained road fractions by assuming that the
distance gaps for all vehicles in a heterogeneous traffic flow are
identical. Chanut and Buisson (2003) computed road fractions
by setting the distance gap to be proportional to the vehicle
length. Besides, Chanut and Buisson (2003) also obtained space
fractions through equating the speeds of different classes of
vehicles. This method was also used by Logghe (2003) for
vehicles in congestion mode. Similarly, we will also use it for
obtaining space fractions for vehicles in congestion mode.

2.2 Combination of two fundamental diagrams

Assumed that there are two classes of vehicles. The
combination of the fundamental diagrams of these two vehicle

qcrit,1

rqcrit,2

qcrit,2
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classes is obtained based on the following assumptions
(Logghe, 2003):

• User optimum: no vehicle can increase its speed without
reducing the speed of slower vehicles. The drivers are only
influenced by traffic circumstance ahead of them.

• Optimal road use: it is assumed that a vehicle class never
occupies more space than is necessary.

A scale factor r for class 2 (the slower class) linking both
fundamental diagrams is defined as follows (Logghe, 2003).
The capacity point for class 2 lies on the congestion branch of
class 1 (the faster class) when class 2 is scaled by this factor r
(as shown in Fig. 1(a)):

r =
w1ρmax,1

ρcrit,2(w1 − vfree,2)
(4)

where

w1 =
ρcrit,1vfree,1

ρcrit,1 −ρmax,1
(5)

According to different densities, three traffic regimes are
distinguished (Logghe, 2003): free flow, semi-congestion, and
congestion (as shown in Fig. 1(b)). These regimes are defined
in the ensuing.

Free flow (A) In free-flow regime, both classes of vehicles are
in free-flow. The constraint that separates the free-flow regime
with the semi-congestion regime (see below) is

ρ1

ρcrit,1
+

ρ2

ρcrit,2
6 1 (6)

In the free-flow regime, the following relation holds:

ρc

αc

6 ρcrit,c for c = 1,2 (7)

The constraint (6) is derived from (3) and (7). In this regime,
the flow of each class of vehicles is computed through

qc = ρcvfree,c for c = 1,2 (8)

Semi-congestion (B) Vehicles of class 1 are in the congestion
regime, but vehicles of class 2 are in the free-flow regime.
However, the speed of class 1 is still greater than the free-flow
speed of class 2. The constraint that distinguishes the semi-
congestion regime with the congestion regime is defined by:

ρ1

rρcrit,2
+

ρ2

ρcrit,2
6 1 (9)

The minimum fraction that the vehicles of class 2 need is

α2 =
ρ2

ρcrit,2
(10)

According to the assumption of optimal road use, this fraction
is assigned to class 2, and

α1 = 1−
ρ2

ρcrit,2
(11)



Considering v1 > vfree,2, expressions (1), (2), (10), and (11)
are substituted for this inequality. Thus the constraint (9) is
obtained. Now we have

q1 = α1

ρcrit,1vfree,1

ρcrit,1 −ρmax,1

(

ρ1

α1
−ρmax,1

)

(12)

q2 = ρ2vfree,2 (13)

Congestion (C) The traffic-flow speed is less than the free-
flow speed of class 2, and the speeds of both classes are
equal. Otherwise, the slower class could increase its speed by
taking road space from the faster class. The constraint of the
congestion regime is the maximum density restriction:

ρ1

ρmax,1
+

ρ2

ρmax,2
6 1 (14)

The speed during congestion is

v = vc = αcQc

(

ρc

αc

)

for c = 1,2 (15)

The fractions can be extracted by equating the class speeds:

α1

ρ1

ρcrit,1vfree,1

ρcrit,1 −ρmax,1

(

ρ1

α1
−ρmax,1

)

(16)

=
1−α1

ρ2

ρcrit,2vfree,2

ρcrit,2 −ρmax,2

(

ρ2

1−α1
−ρmax,2

)

The space fractions are

α1 =
A

B
(17)

α2 = 1−α1 (18)

with

A = ((ρcrit,2 −ρmax,2)ρcrit,1vfree,1

− (ρcrit,1 −ρmax,1)ρcrit,2vfree,2)ρ1ρ2

+(ρcrit,1 −ρmax,1)ρcrit,2ρmax,2vfree,2ρ1 (19)

B = (ρcrit,1 −ρmax,1)ρcrit,2ρmax,2vfree,2ρ1

+(ρcrit,2 −ρmax,2)ρcrit,1ρmax,1vfree,1ρ2 (20)

Now we have

qc = ρcv for c = 1,2 (21)

The traffic states of both classes of vehicles can be described
through these three traffic regimes. In addition, the total traffic
state is the vector addition of these two classes of vehicles. The
total fundamental diagram relation can be formulated as follows

Qtot(ρtot) = α1Q1

(

ρ1

α1

)

+α2Q2

(

ρ2

α2

)

(22)

3. SINGLE-CLASS METANET

The METANET model (Messmer and Papageorgiou, 1990) is
a macroscopic traffic flow model. In this model, freeway
stretches are represented by links (indexed by m), and each
link can be divided into several segments (indexed by i).
Besides, nodes are used to represent on-ramps, off-ramps, and
changes in geometry. Traffic states are described with segment
average values: density (ρm,i), space mean speed (vm,i), and
outflow(qm,i). These traffic states and their evolution are

described through the following equations 1 :

1 Only the basic equations are given in this paper, for the full model and for

extensions, the reader is referred to Messmer and Papageorgiou (1990); Hegyi

et al. (2005).

qm,i(k) = ρm,i(k)vm,i(k)λm (23)

ρm,i(k+1) = ρm,i(k)+
T

Lmλm

(qm,i−1(k)−qm,i(k)) (24)

vm,i(k+1) = vm,i(k)+
T

τm

(V (ρm,i(k))− vm,i(k))

+
T

Lm

vm,i(k)(vm,i−1(k)− vm,i(k))

−
T ηm

Lmτm

ρm,i+1(k)−ρm,i(k)

ρm,i(k)+κm

(25)

V (ρm,i(k)) = vfree,m exp

[

−
1

am

(

ρm,i(k)

ρcrit,m

)am
]

(26)

where k is the time step counter, T is the simulation time
step, λm is the number of lanes of link m, τm, ηm, κm, and
am are model parameters, ρcrit,m is the critical density, vfree,m

is the average free-flow speed, and V (ρ) is the desired speed
depending on density ρ .

Referring to Hegyi et al. (2005), the desired speed with a
dynamic speed limit is computed as follows:

V (ρm,i(k)) = min

(

vfree,m exp

[

−
1

am

(

ρm,i(k)

ρcrit,m

)am
]

,

(1+ χm)vcontrol,m,i(k)

)

(27)

where vcontrol,m,i is the dynamic speed limit in segment i of link
m, and 1+ χm is the non-compliance factor.

Origins are modeled with a simple queue model:

wo(k+1) = wo(k)+T (do(k)−qo(k)) (28)

where wo is the queue length at the origin o, do is the origin
demand, and qo is the origin outflow.

The outflow of origin o is estimated through the following
equation:

qo(k) = min

[

do(k)+
wo(k)

T
,Coro(k),Co

(

ρmax,m −ρm,1(k)

ρmax,m −ρcrit,m

)

]

(29)

in which Co is the capacity of origin o, ro is the ramp metering
rate, ρmax,m is the maximum density of the link m that the origin
is connected to, and ρm,1 is the density of the segment that the
origin is connected to.

4. NEW MULTI-CLASS METANET MODEL

On the basis of the method that is used for multi-class LWR
model (see Section 2), we develop a new multi-class
METANET model here. We assume that each vehicle class is
subject to its own fundamental diagram, and constrains itself
on an assigned space (expressed as a fraction αm,i,c of the
whole road). The traffic state variables for vehicle class c are
qm,i,c, ρm,i,c, wo,c, vm,i,c, and qo,c. The state variables qm,i,c,
ρm,i,c, and wo,c are updated through the single-class equations.
However, the speed vm,i,c and the origin flow qo,c are computed
with class-dependent parameters τm,c, ηm,c, κm,c, ρcrit,m,c,
vfree,m,c, am,c, and χm,c. The speed equation is as follows:



vm,i,c(k+1) = vm,i,c(k)+
T

τm,c

(

Vm,c

(

ρm,i,c(k)

αm,i,c(k)

)

− vm,i,c(k)

)

+
T

Lm

vm,i,c(k)(vm,i−1,c(k)− vm,i,c(k))

−
T ηm,c

Lmτm,c

ρm,i+1,c(k)−ρm,i,c(k)

ρm,i,c(k)+ρcrit,m,cκm,c
(30)

with

Vm,c

(

ρm,i,c(k)

αm,i,c(k)

)

= vfree,m,c exp

(

−1

am,c

(

ρm,i,c(k)/αm,i,c(k)

ρcrit,m,c

)am,c
)

(31)

If there is a speed limit, the desired speed becomes

Vm,c

(

ρm,i,c(k)

αm,i,c(k)

)

= min

(

vfree,m,c exp

(

−1

am,c

(

ρm,i,c(k)/αm,i,c(k)

ρcrit,m,c

)am,c
)

,

(1+ χm,c)vcontrol,m,i(k)

)

(32)

Besides, the outflow of vehicles of class c at origin o is

qo,c(k) = min

[

do,c(k)+
wo,c(k)

T
,αm,1,c(k)Co,cro(k),

αm,1,c(k)Co,c

(

ρmax,m,c −ρm,1,c(k)/αm,1,c(k)

ρmax,m,c −ρcrit,m,c

)

]

(33)

in which Co,c is the theoretical maximum capacity of origin o
if there would be only vehicles of class c, do,c is the demand
of vehicles of class c at origin o, αm,1,c is the space fraction of
vehicle class c in the segment that is connected to the origin,
ρm,1,c is the density of the segment that the origin is connected
to, and ρmax,m,c is the maximum density of the link m that the
origin is connected to.

Three traffic regimes are considered: free flow, congestion, and
semi-congestion. In the description of the three traffic regimes,
the speed means the above-mentioned desired speed Vm,c.

Free-flow All classes of vehicles are in free-flow regime.
Here the free flow means that the density of each class of
vehicles in the assigned space is less than or equal to the critical
density of that class. The constraint distinguishing free-flow
regime with semi-congestion regime is

nc

∑
c=1

ρm,i,c(k)

ρcrit,m,c
6 1 (34)

where nc is the number of vehicle classes. Expression (34) is
derived from (3) and the following sufficient and necessary
condition of free-flow regime:

ρm,i,c(k)

αm,i,c(k)
6 ρcrit,m,c (35)

In order to keep both classes of vehicles in free-flow regime, the
relation (35) has to hold. According to (34) and (35), the space
fraction of vehicle class c is taken as

αm,i,c(k) =
ρm,i,c(k)/ρcrit,m,c

∑
nc
j=1 ρm,i, j(k)/ρcrit,m, j

(36)

Semi-congestion Not all classes of vehicles are in free flow,
and not all classes of vehicles are in congested mode. The

constraint that distinguishes semi-congestion with congestion
is

nc

∑
c=1

ρm,i,c(k)

ρ∗
crit,m,c

6 1 (37)

where ρ∗
crit,m,c is a parameter for vehicle class c defined as

ρ∗
crit,m,c = ρcrit,m,c

[

−am,c ln

(

vfree,m,c∗m

vfree,m,c
exp

(

−1

am,c∗m

))]
1

am,c

(38)

in which c∗m = argmin
c=1,...,nc

{vfree,m,c exp(−1/am,c)} is the vehicle

class with the slowest speed in free flow. The constraint (37)
is constructed as follows. Class c∗m is at the verge of getting
in congested mode, and all the other classes are congested. In
addition, the speed of the vehicles of class c∗m in free flow is
less than or equal to the speed of other congested classes of
vehicles:

Vc∗m

(

ρm,i,c∗m(k)

αm,i,c∗m(k)

)

6Vc

(

ρm,i,c(k)

αm,i,c(k)

)

for c = 1, . . . ,nc with c 6= c∗m (39)

According to the assumption of optimal road use, the space
fraction of vehicle class c∗m is

αm,i,c∗m(k) =
ρm,i,c∗m(k)

ρcrit,m,c∗m

(40)

Considering (3), (39), and (40), we obtain the constraint (37).
Suppose that Sm,i,cong(k) is the set of all vehicle classes that are
in congested mode in segment i of link m at time step k, and
Sm,i,free(k) is the set of all vehicle classes that are in free flow in
segment i of link m at time step k. Then the space fractions for
those vehicle classes in free flow are

αm,i,c =
ρm,i,c(k)

ρcrit,m,c
for c ∈ Sm,i,free(k) (41)

Let lm,i(k) be in the set Sm,i,cong(k). The space fractions for
the congested vehicle classes are obtained through solving the
following equation set:







































Vm,c

(

ρm,i,c(k)

αm,i,c(k)

)

=Vm,lm,i(k)

(

ρm,i,lm,i(k)

αm,i,lm,i(k)

)

for c ∈ Sm,i,cong(k)/{lm,i(k)}

∑
c∈Sm,i,cong(k)

αm,i,c(k) = 1− ∑
j∈Sm,i,free(k)

αm,i, j(k)

(42)

Congestion All classes of vehicles are congested, and the
speeds of all classes of vehicles are equal. The constraint of
the congestion regime is the maximum density restriction:

nc

∑
c=1

ρm,i,c

ρmax,m,c
6 1 (43)

The fractions can be extracted by equating the speeds of all
classes of vehicles:































V1(ρm,i,1/αm,i,1) =V2(ρm,i,2/αm,i,2)

...

Vnc−1(ρm,i,nc−1/αm,i,nc−1) =Vnc(ρm,i,nc/αm,i,nc)
nc

∑
c=1

αm,i,c = 1

(44)



The total fundamental diagram relation is obtained through the
following equation:

Qm,i =
nc

∑
c=1

ρm,i,cVm,c

(

ρm,i,c

αm,i,c

)

(45)

where Qm,i is the total flow. This total flow Qm,i depends on the
densities of all classes of vehicles. More specifically, in this new
multi-class METANET model, the total flow Qm,i is uniquely
determined, when the densities of all classes of vehicles are
given.

5. MODEL PREDICTIVE CONTROL BASED ON NEW
MULTI-CLASS METANET MODEL

Model Predictive Control (MPC) (Camacho and Bordons,
1995) is an on-line control approach based on dynamic model
prediction and receding horizon. The objective function of
MPC captures the predicted performance of the controlled
systems over a given prediction horizon. The controller finds
the optimal control input sequence, and only the first element
of the input sequence is applied to the controlled system. In
addition, MPC can be used for nonlinear system, multi-criteria
optimization, and constraints handling. Hence, MPC is
selected for on-line model-based traffic control here.

The newly proposed multi-class METANET model is used as
prediction model. Here we denote the prediction horizon by Np,
and denote the control horizon by Nc. We also distinguish the
simulation time step length T and the controller time step length
Tc, and M = T/Tc is assumed to be a positive integer.

The Total Time Spent (TTS) is considered as the main term to
be optimized. Here it is estimated as follows:

TTS(kc) = T

(kc+Np)M−1

∑
j=kcM

nc

∑
c=1

(

∑
(m,i)∈Iall

Lmλmρm,i,c( j)

+ ∑
o∈Oall

wo,c( j)

)

(46)

in which kc is the controller time step counter, Iall is the set of
all link-segment pairs (m, i) in the network, Oall is the set of all
origins, and wo,c is the queue length of vehicles of class c at the
origin o.

The objective function at controller time step kc is defined as

J(kc) = ξTTS
TTS(kc)

TTSnom
+ξramp

kc+Nc−1

∑
l=kc

∑
o∈Oramp

(rctrl,o(l)− rctrl,o(l −1))2

+ξspeed

kc+Nc−1

∑
l=kc

∑
(m,i)∈Ispeed

(

vctrl,m,i(l)− vctrl,m,i(l −1)

vfree,m,max

)2

(47)

in which ξTTS, ξramp, and ξspeed are nonnegative weights,
TTSnom is the ’nominal’ TTS for some nominal control profile
(here we take the TTS in no control case), Oramp is the set of
all metered origins, Ispeed is the set of all link-segment pairs
(m, i) where speed limit is present, vfree,m,max = maxc vfree,m,c,
rctrl,o is the ramp metering rate of origin o at controller time
step, and vctrl,m,i is the speed limit in segment i of link m at
controller time step. For a given simulation time step k, we
have
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ramp metering

  d
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Fig. 1. The benchmark network

vcontrol,m,i(k) = vctrl,m,i

(⌊

k

M

⌋)

(48)

ro(k) = rctrl,o

(⌊

k

M

⌋)

(49)

6. CASE STUDY

6.1 Benchmark Network

We select a benchmark network (Hegyi et al., 2005) for the
case study. The network consists of two double-lane links, one
single-lane on-ramp, one origin, and one destination with
unrestricted outflow. The first link is divided into four
homogeneous segments, and the second link is divided into
two homogeneous segments. Fig. 1 presents a sketch of this
network.

It is assumed that there are two classes of vehicles in this
network, and the parameters are selected according to Hegyi
et al. (2005); Logghe (2003): vfree,m,1 = 106.34 km/h,
am,1 = 1.6761, χ1 = 0.12, ρcrit,m,1 = 34.7349 veh/km/lane,
ρmax,1 = 175 veh/km/lane, Cmainstream,1 = 2034 veh/h/lane;
vfree,2 = 82.80 km/h, am,2 = 2.1774, χ2 = 0.0533,
ρcrit,m,2 = 18.9261 veh/km/lane, ρmax,2 = 75 veh/km/lane,
Cmainstream,2 = 990 veh/h/lane. The capacity of the on-ramp is
Conramp = Cmainstream − 100 veh. Other parameters are: L = 1

km. τ = 18 s, κ = 40 veh/h/km, η = 60 km2/h, δ = 0.0122.

The single-class parameters are generated as follows:

Parametersnom = θ 1
nomParameters1 +(1−θ 1

nom)Parameters2.

with θ 1
nom = 0.7.

The control parameters are ξTTS = 1, ξramp = ξspeed = 0.01,
T = 10 s, Tc = 60 s, Np = 7, Nc = 5.

6.2 Scenarios

The demand scenario shown in Fig. 2 is used for the case study
(see also Hegyi et al. (2005)). Here we aim to examine the
performance of the newly proposed multi-class METANET
model with the same demand scenario and for several
proportions of vehicles of different classes. Hence, the total
demand scenario is represented in passenger car equivalents.
Here passenger car equivalents mean that the number of
vehicles of class 2 is transformed to the number of vehicles of
class 1, using the vehicle length ratio Lveh

1 = 3/7Lveh
2 . The

proportions of vehicles of class 1 are (computed in pce):
θ1 ∈ {0.1,0.3,0.5,0.7,0.9}. Besides, we assume that the
queue length at O2 cannot exceed 100 pce.

Multi-class METANET is used as simulation model. For
comparison, the following control scenarios are implemented:
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Fig. 2. The total demand scenario for two vehicle classes

• No control: here no control is applied for the given
benchmark network.

• Single-class MPC: here the single-class METANET is
used as the prediction model.

• Multi-class MPC: here the multi-class METANET is used
as the prediction model.

6.3 Results

The simulation results are shown in Table 1. The J values listed
in Table 1 are calculated for the entire simulation period of
2.5 h.

Table 1 Simulation results

Scenario J(0.1) J(0.3) J(0.5) J(0.7) J(0.9)

No control 23.4048 26.8020 32.1822 36.9166 41.8598

Single-class MPC 23.4148 26.4550 25.7570 31.6012 39.0200

Multi-class MPC 20.7174 21.6241 24.2127 32.4786 38.6585

The results show that multi-class MPC leads to a better
performance (smaller J) than single-class MPC. For θ1 = 0.1,
single-class MPC leads to a worse result in comparison with
no control case. This is probably due to that single-class MPC
generates optimal inputs based on single-class METANET,
which is different from the multi-class network. However, we
noticed that the single-class MPC obtains a smaller J than the
multi-class MPC for θ1 = 0.7. On reason may be that the
single-class parameters have been selected using θ1 = 0.7, so
the multi-class and single-class models are close to each other
in this case. Another reason is probably that in the receding
horizon approach in MPC sometimes earlier more optimal
decisions may result in negative effects later on. In fact, our
numerical experiments confirm that when the prediction
horizon is increased (e.g. Np = 30), multi-class MPC actually
leads to a smaller J than single-class MPC for θ1 = 0.7.

7. CONCLUSIONS AND FUTURE TOPICS

In this paper, we have developed a new multi-class METANET
model, using an approach that is similar to the one that Logghe
(2003) used for developing multi-class LWR model. In this
newly proposed model, each vehicle class constrains itself on
an assigned space, being subject to its own fundamental
diagram. We developed equations for computing the space
fractions for different classes of vehicles based on three traffic
regimes: free flow, semi-congestion, and congestion. Next, we
used the newly proposed multi-class METANET model as
prediction model in an on-line traffic control approach that is
based on model predictive control. A case study was
implemented to illustrate the efficiency of the new multi-class
METANET model. For the given set-up and demand scenarios,
the simulation results show that on-line traffic control based on

the new multi-class METANET model leads to a better
performance.

In the future, a comparison with other multi-class traffic flow
models will be considered. We will also search for suitable
emission models, and aim to realize a balance between total
time spent and total emissions.
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