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Abstract

It has been shown that max-plus linear systems are well suited for applications in synchronization and
scheduling, such as the generation of train timetables, manufacturing, or traffic. In this paper we show
that the same is true for multi-legged locomotion. In this framework, the max-plus eigenvalue of the
system matrix represents the total cycle time, whereas the max-plus eigenvector dictates the steady-state
behavior. Uniqueness of the eigenstructure also indicates uniqueness of the resulting behavior. For the
particular case of legged locomotion, the movement of each leg is abstracted to two-state circuits: swing
and stance (leg in flight and on the ground, respectively). The generation of a gait (a manner of walking)
for a multi-legged robot is then achieved by synchronizing the multiple discrete-event cycles via the max-
plus framework. By construction, different gaits and gait parameters can be safely interleaved by using
different system matrices. In this paper we address both the transient and steady-state behavior for a
class of gaits by presenting closed-form expressions for the max-plus eigenvalue and max-plus eigenvector
of the system matrix and the coupling time. The significance of this result is in showing guaranteed
stable gaits and gait switching, and also a systematic methodology for synthesizing controllers that allow
for legged robots to change rhythms fast.

Keywords: Discrete-event systems, Max-plus algebra, Coupling time, Legged locomotion, Gait generation, Robotics

1 Introduction

Synchronization of cyclic processes is important in many fields, including manufacturing (Zhou et al. 1992),
transportation (Heidergott and de Vries 2001), genomics (Shedden 2002), and neuroscience (Yamaguchi
2003; Holmes et al. 2006), etc (see references within (Dorfler and Bullo 2012)). In this paper we focus on
a class of multiple concurrent two-state cyclic systems with a direct application to legged locomotion. Our
motivation is the requirement of legged mobile robots to be able to switch between different gaits, without
losing stability, when the environmental circumstances change or the requirements on the robot change, for
example if a higher velocity is required.

Legged systems are traditionally modeled using cross-products of circles in the phase space of the set of
continuous time gaits. Holmes et al. (2006) give an extensive review of dynamic legged locomotion. The
Central pattern generator (Ijspeert 2008) approach to design motion controllers lies in assembling sets of
error functions to be minimized that cross-relate the phases of multiple legs, resulting in attractive limit
cycles for the desired gait.

Switching gaits online is typically not addressed since in the central pattern generator framework switch-
ing must be modeled as a hybrid system. Additionally, implementing “hard constraints” on the configuration
space (Haynes et al. 2009) can be quite complex mainly due to the combinatorial nature of the gait space,
and often it comes at the cost of dramatically increasing the complexity of the controller.

As an alternative to the common continuous time modeling approach, we introduce an abstraction to
represent the combinatorial nature of the gait space for multi-legged robots into ordered sets of leg index
numbers. This abstraction combined with max-plus linear equations allows for systematic synthesis and im-
plementation of motion controllers for multi-legged robots where gait switching is natural and the translation
to continuous-time motion controllers is straightforward (Lopes et al. 2014). The methodology presented is
particularly relevant for robots with four, six, or higher numbers of legs where the combinatorial nature of
the gait space plays an important role. For a large number of legs it is not obvious in which order each leg
should be in swing or in stance. Most legged animals, in particular large mammals, are known to walk and
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run with various gaits on a daily basis, depending on the terrain or how fast they need to move. The discrete-
event framework presented in this paper enables the same behavior for multi-legged robots. Mathematical
properties are derived for this framework, giving extra insight into the resulting robot motion.

The main mathematical representation employed in this paper are switching max-plus linear equations.
By defining the state variables to represent the time at which events occur, systems of linear equations in the
max-plus algebra (Cuninghame-Green 1979; Baccelli et al. 1992; Heidergott et al. 2006) can model a class
of timed discrete-event systems. Specifically, max-plus linear systems are equivalent to (timed) Petri nets
(Peterson 1981) where all places have a single incoming and a single outgoing arc. Max-plus linear systems
inherit a large set of analysis and control synthesis tools thanks to many parallels between the max-plus-linear
systems theory and the traditional linear systems theory. Discrete-event systems that enforce synchronization
can be modeled in this framework. Max-plus algebra has been successfully applied to railroads (Braker 1991;
Heidergott and de Vries 2001), queuing systems (Heidergott 2000), resource allocation (Gaubert and Mairesse
1998), and recently to image processing (Bede and Nobuhara 2009) and legged locomotion (Lopes G et al.
2009; Lopes et al. 2014).

The contributions of this paper are the following: we present a class of max-plus linear systems that
realize schedules for the touchdown and lift-off of the legs for a given class of gaits. Next, we derive
closed-form expressions for the max-plus eigenvalue and eigenvector of the system matrix, and show that
the max-plus eigen-parameters are unique, implying a unique steady-state behavior. This result is then
used to compute the coupling time, which characterizes the transient behavior. The importance of having
closed-form expressions and uniqueness of the max-plus eigenstructure is that, not only can one compute
these parameters very fast without resorting to simulations or numerical algorithms (e.g. Karp’s algorithm
Baccelli et al. (1992)), but one also has guarantees of uniqueness: the motion of the robot will always
converge in a finite number of steps to the behavior described by the current gait and its parameters, even
after gait switches or temporary disturbances. In this paper we consider disturbances to be delayed lift-off
and touchdown times, due to temporary obstructions. The class of max-plus-linear systems also ensure
kinematic stance stability, that we define to be a required minimum of legs in stance that ensure the robot
does not fall over during disturbances and gait switches. This reassurance is fundamental when designing
gait controllers for robotics. Additionally we present a low maximum number of steps needed to reach
steady-state motion after changing gaits. This paper is focused on the general mathematical properties of
a class of discrete-event systems that describe legged locomotion, and not on the actual implementation of
gait controllers for robots, as presented in Lopes et al. (2014).

In Section 2 we revisit the fundamentals of legged locomotion with special emphasis on gait generation
and show that max-plus algebra can be used in the modeling of the synchronization of multiple legs. In
Section 3 we briefly review relevant concepts from the theory of max-plus algebra and in Section 4 we present
a class of parameterizations for the gait space. Given such a class, we derive a number of properties, such
as the existence (Section 4.2) and uniqueness (Section 4.3) of the max-plus eigenstructure of the system
matrices, and the coupling time (Section 4.4). We present simulations of switching gaits and disturbance
rejection in Section 4.5 and conclude with Section 5. Figure 1 illustrates the structure of the contributions
presented in this paper.

2 Modeling legged locomotion

In literature (Raibert 1986; Raibert M et al. 1989; Full and Koditschek D 1999; Holmes et al. 2006; Grillner
S 2011), the study of legged locomotion is approached from two main directions: the signal generation side,
where emphasis is placed on the classes of signals that result in periodic locomotion behavior independent of
the physical platform; and the mechanics side, where the (hybrid) Newtonian mechanics models are analyzed
independently of the driving control signal.

We focus on the first approach, by restating the traditional view of periodic gaits for legged systems being
defined in the n-torus: Cartesian products of circles each representing an abstract phase that parameterizes
the position of each leg in the Euclidean space. Such an abstraction serves as a platform for the models of
“networks of phase oscillators” and central pattern generators, introduced in the earlier works of Grillner
(1985) and Cohen et al. (1988). These are now accepted by both biology and robotics communities as
standard modeling tools (Holmes et al. 2006).

In this paper we abstract beyond the notion of a continuous phase to consider the synchronization of
discrete events. Taking a Petri net modeling approach, during ground locomotion the places represent leg
stance (when the foot is touching the ground and supporting the body) and leg swing (when the foot and
all parts of the leg are in the air). The transitions represent leg touchdown and lift off. This labeling is
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Figure 1: Structure of the contributions of this paper. We analyze both the steady-state and the transient
behavior of a class of cyclic discrete-event systems that are well suited to model legged locomotion.

most convenient for ground locomotion, but one should be aware that the framework presented in this paper
is valid for other types of locomotion where the phases of the various limbs need to be synchronized, such
as swimming or flight. Figure 2 illustrates the conceptual difference between our approach (Fig. 2b) where
each phase is represented by a single Petri net in the discrete-event systems domain and the traditional
continuous phase central pattern generator (Fig. 2a). Here, phase synchronization is enforced on the torus
by implementing controllers that achieve stable limit cycles (Klavins and Koditschek 2002). In this paper
we translate timed event graphs1 into the equivalent representation as max-plus linear systems, and achieve
synchronization by designing the system matrices appropriately.

Consider the leg synchronization of a biped robot. In this case, only two legs need to be synchronized
during locomotion. For a typical walking motion (no aerial phase) the left leg should only lift off the ground
after the right leg has touched down, to make sure the robot does not fall due to lack of support. This
synchronization requirement can be captured by introducing state variables for the transition events defined
as follows: let Li(k) be the time instant leg i lifts off the ground and ti(k) be the time instant it touches the
ground, both for k-th iteration, where k is considered to be a global event or “step” counter.

Enforcing that the time instant when the leg touches the ground must equal the time instant it lifted off
the ground for the last time plus the time it is in swing (denoted τf ) is realized by:

ti(k) = li(k) + τf . (1)

A similar relation can be derived for the lift off time:

li(k) = ti(k − 1) + τg, (2)

where τg is the stance time and ti(k − 1) refers to the previous iteration such that (1) and (2) can be used
iteratively. For this system we have that τf > 0 and also τg > 0.

Synchronization of the cycles of two legs can be achieved by introducing a double stance time parameter,
denoted τ∆, representing that after each leg touchdown both legs must stay in stance for at least τ∆ time

1We restrict ourselves to a class of timed Petri nets called timed event graphs such that a one-to-one translation to max-plus
linear systems is possible (see Heidergott et al. (2006), chapter 7). In timed event graphs each place can have one single incoming
arc and one single outgoing arc.
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Figure 2: Modeling of legged locomotion. (a) The configuration space of two oscillators is a torus. Syn-
chronization is achieved by constructing attractive limit cycles, represented by the curve on the torus. (b)
Discrete-event representations of the phases of multiple oscillators can be modeled as multiple cyclic Petri
nets. Synchronization is achieved by adding extra places, represented by the gray circles between t2 and l1,
and between t1 and l2.

Figure 3: Illustration of a walking pattern, photos by Muybridge (1901). The solid bars, following Hilde-
brand’s diagram notation (Hildebrand, 1965), indicate that the leg is in stance (foot touching the ground)
for τg time units, and white space that the leg is in swing (foot in flight) for τf time units. The time length
when both feet are touching the ground is called the double-stance time τ∆. We use the notation t1(k − 1)
to represent the time instant when leg 1 (left leg) touches the ground, and l1(k) when it initiates a swing.
The parameter k is the “step counter”.
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units (see Fig. 3). This is captured by the following equations:

l1(k) = max (t1(k − 1) + τg, t2(k) + τ∆) (3)

l2(k) = max (t2(k − 1) + τg, t1(k − 1) + τ∆) (4)

Equation 3 enforces simultaneously that leg 1 stays at least τg time units in stance and will only lift off
at least τ∆ time units after leg 2 has touched down. When both conditions are satisfied, lift off takes place.
Equation 4 is analogous for leg 2.

Note that in this paper we analyze a class of nonlinear systems that realize schedules for the touchdown
and lift-off of the legs for a given class of gaits, and here we do not consider its physical implementation. As
such, the parameters τf , τg, and τ∆ should be considered as design parameters indicating the desired stance,
flight, and double stance time used to determine the schedule of touchdown and lift-off times.

Although the previous set of equations were designed for a walking behavior with no aerial phases, in
practice they can also be used for running by choosing the double stance time to be negative, i.e. by enforcing
that one leg lifts off τ∆ time units before the other leg touches the ground. However, the results presented
in this paper focus on the case when τ∆ ⩾ 0 such that kinematic stance stability (in the sense of ensuring a
desired minimum number of legs on the ground simultaneously) is guaranteed.

Equations 3 and 4 are non-linear, but rely only on the “max” and “plus” operations. This motivates the
use of the theory of the max-plus algebra to find parsimonious discrete-event models for legged locomotion.
The next section gives an introduction to the theory of max-plus linear algebra.

3 Max-plus algebra

In the early sixties of the 20th century the fact that certain classes of discrete-event systems can be described
by models using the operations max and + was discovered independently by a number of researchers, among
whom were Cuninghame-Green (1961, 1962) and Giffler (1960, 1963, 1968). These discrete-event systems
are called max-plus-linear systems since the model that describes their behavior becomes “linear” when
formulated in the max-plus algebra (Baccelli et al. 1992; Cuninghame-Green 1979; Heidergott et al. 2006),
which has maximization and addition as its basic operations. More specifically, discrete-event systems in
which only synchronization and no concurrency or choice occur (In a system in which choice or concurrency
occurs, the order of two or more events depends on a choice made by an outside source, some events may only
happen if certain choices are made) can be modeled using the operations maximization (corresponding to
synchronization: a new operation starts as soon as all preceding operations have been finished) and addition
(corresponding to the duration of activities: the finishing time of an operation equals the starting time plus
the duration). Some examples of max-plus linear discrete-event systems are production systems, railroad
networks, urban traffic networks, queuing systems, and array processors (Baccelli et al. 1992; Cuninghame-
Green 1979; Heidergott et al. 2006).

An account of the pioneering work of Cuninghame-Green on max-plus system theory has been given
in (Cuninghame-Green, 1979). Related work has been done by Gondran and Minoux (1976, 1984, 1987).
In the eighties of the 20th century the topic attracted new interest due to the research of Cohen, Dubois,
Moller, Quadrat, Viot (1983, 1985, 1989), Olsder (1986, 1988, 1990), and Gaubert (1990, 1992, 1993), which
resulted in the publication of Baccelli et al. (1992). Since then, several other researchers have entered the
field. For an historical overview we refer the interested reader to Gaubert and Plus (1997), Heidergott et al.
(2006), De Schutter and van den Boom (2008).

In this section we give an introduction to the max-plus algebra and some notions of graph theory. This
section is based on Baccelli et al. (1992), Cuninghame-Green (1979), where a complete overview of the
max-plus algebra can be found.

3.1 Base definitions

The basic operations of the max-plus algebra are maximization and addition, which will be represented by
⊕ and ⊗ respectively

x⊕ y := max(x, y) and x⊗ y := x+ y

for x, y ∈ Rmax := R ∪ {−∞}. The zero element for ⊕ in Rmax is ε := −∞ and the unit element for ⊗ is
e := 0.

The structure (Rmax,⊕,⊗) is called the max-plus algebra (Baccelli et al. 1992; Cuninghame-Green 1979).
The operations ⊕ and ⊗ are called the max-plus-algebraic addition and max-plus-algebraic multiplication
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respectively since many properties and concepts from linear algebra can be translated to the max-plus algebra
by replacing + by ⊕ and × by ⊗.

Throughout this paper the i, j element of a matrix A is denoted by [A]ij . The matrix Em×n is the m by
n max-plus zero matrix: [Em×n]ij = ε for all i, j. The matrix En is the n by n max-plus identity matrix:
[En]ii = e for all i and [En]ij = ε for all i, j with i ̸= j. We also define the m by n max-plus “one” matrix
1m×n such that [1]ij = e = 0 for all i, j. If the dimensions of E , E,1 are omitted in this paper, they should
be clear from the context.

The basic max-plus-algebraic operations are extended to matrices as follows. If A,B ∈ Rm×n
max , C ∈ Rn×p

max

then

[A⊕B]ij = [A]ij ⊕ [B]ij = max ([A]ij , [B]ij) (5)

[A⊗ C]ij =

n⊕
p=1

[A]ip ⊗ [C]pj = max
p=1,...,n

([A]ip + [C]pj) , (6)

for all i, j, where
⊕n

p=1 ap := maxp=1,...,n (ap). Note the analogy with the definitions of matrix sum and
product in conventional linear algebra. The max-plus product of the scalar α ∈ Rmax and the matrix
A ∈ Rm×n

max is defined by [α⊗A]ij = α⊗ [A]ij for all i, j. The max-plus matrix power of A ∈ Rn×n
max is defined

as follows: A⊗0 = En and A⊗p = A⊗A⊗p−1 for p ⩾ 1.
For A,B ∈ Rn×m

max we say that A overcomes B, written as A ⩾ B if A⊕B = A (i.e., [A]ij ⩾ [B]ij for all
i, j).

3.2 Graphs

Before the rest of the properties and definitions of max-plus algebra can be described, some definitions from
graph theory are needed. The graph theoretic concepts presented here are necessary for proving results
regarding the uniqueness of eigenvectors. Such uniqueness implies a unique and predictable behavior of the
robot gaits. First the definition of a directed graph is given:

Definition 1 (Directed graph). A directed graph G is defined as an ordered pair (V,A), where V is a set of
vertices and A is a set of ordered pairs of vertices. The elements of A are called arcs. A loop is an arc of
the form (v, v).

A directed graph may contain several paths. A path is defined as:

Definition 2 (Path in a directed graph). Let G = (V,A) be a directed graph with V = {v1, v2, . . . , vn}. A
path p of length l is a sequence of vertices vi1 , vi2 , . . . , vil+1

such that
(
vik , vik+1

)
∈ A for k = 1, 2, . . . , l. We

represent this path by vi1 → vi2 → . . . → vil+1
and we denote the length of the path by |p|1 = l. Vertex vi1 is

the initial vertex of the path and vil+1
is the final vertex of the path.

The set of all paths of length l from vertex vi1 to vil is denoted by P (vi1 , vil ; l). If for any two different
vertices vi, vj ∈ V there exists a path from vi to vj then a directed graph G = (V,A) is called strongly
connected.

Some paths may have the same initial and final vertex, such paths are called circuits:

Definition 3 (Circuit in a directed graph). Given a path vi1 → vi2 → . . . → vil+1
, if vi1 = vil+1

this path is
called a circuit.

If no vertex in the circuit appears more than once, except for the initial vertex vi1 , then this circuit is
called an elementary circuit.

If we have a directed graph G = (V,A) with V = {1, 2, . . . , n} and if we associate a real number [A]ij
with each arc (j, i) ∈ A, then we say that G is a weighted directed graph. We call [A]ij the weight of the
arc (j, i). Note that the first subscript of [A]ij corresponds to the final (and not the initial) vertex of the arc
(j, i). This leads us to our next definition:

Definition 4 (Precedence graph). Consider A ∈ Rn×n
max . The precedence graph of A, denoted by G(A), is a

weighted directed graph with vertices 1, 2, . . . , n and an arc (j, i) with weight [A]ij for each [A]ij ̸= ε.

Let A ∈ Rn×n
max and consider G(A). The weight |p|w of a path p : i1 → i2 → . . . → il+1 is defined as the

sum of the weights of the arcs that compose the path: |p|w = [A]i2i1+[A]i3i2+. . .+[A]il+1il =
⊗l

k=1[A]ik+1ik .
The average weight of a circuit is defined as the weight of the circuit divided by the length of the circuit:
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|p|w/|p|1. Furthermore the element [A⊗p]ij is the maximum of the weights of all paths in the graph G(A) of
length p from node j to node i:[

A⊗p
]
ij
=

⊕
{ρ:|ρ|1=p;i0=j;ip=i}

Aipip−1
⊗Aip−1ip−2

⊗ · · ·Ai1i0 (7)

3.3 Properties of max-plus linear systems

Using the graph theoretical definitions presented in the previous section several properties of max-plus linear
systems can be described. The important elements are the max-plus eigenvalues and eigenvectors, and the
cyclicity of a matrix. These dictate the stead-state and transient behavior, respectively, of the evolution of
max-plus linear systems that generate walking gaits.

Definition 5 (Irreducibility). A matrix A ∈ Rn×n
max is called irreducible if its precedence graph is strongly

connected.

Using the definitions of the precedence graph and circuits the following theorem can be stated:

Theorem 1 (see Baccelli et al. (1992), Theorem 3.17). Consider the following system of linear equations in
the max-plus algebra:

x = A⊗ x⊕ b (8)

with A ∈ Rn×n
max and b, x ∈ Rn×1

max . There exists a solution to this equation if there are only circuits of
nonpositive weight (or no circuits at all) in G(A) and the solution is given by

x = A∗ ⊗ b (9)

where A∗ is defined as

A∗ :=

∞⊕
p=0

A⊗p (10)

If the circuits have negative weight, or there are no circuits, this solution is unique.

In some cases the infinite max-plus sum in Eq. 10 can be limited to a finite number. This is the case if
matrix A is nilpotent:

Definition 6 (Nilpotent matrix). The matrix A ∈ Rn×n
max is called nilpotent if there exists a finite positive

integer p0 such that for all integers p ⩾ p0 we have A⊗p = E.

One can verify that if A ∈ Rn×n
max is nilpotent then p0 ⩽ n: If the precedence graph G(A) has a circuit of

length l, l ∈ N \ {0} it also has a circuits of length b× l, for b ∈ N \ {0}, this means that Ab×l also has non-ε
elements, since b goes up to infinity this proves that a matrix can only be nilpotent if its precedence graph
G(A) has no circuits. If G(A) has no circuits, the length of its longest path can be at most n− 1, as a result
no paths of length n or longer exist and therefore A⊗n = E .

Using the graph theory we can give a clear interpretation of the max-plus eigenvalue and eigenvector.
But first we need to define them:

Definition 7 (Max-plus eigenvalue and eigenvector). Let A ∈ Rn×n
max . If there exist a number λ ∈ Rmax and

a vector ν ∈ Rn
max with ν ̸= εn×1 such that A⊗ ν = λ⊗ ν, then we say that λ is a max-plus eigenvalue of A

and that ν is a corresponding max-plus eigenvector of A.

It can be shown that every square matrix with entries in Rmax has at least one max-plus eigenvalue (see
e.g. Baccelli et al. (1992)). However, in contrast to linear algebra, the number of max-plus eigenvalues of an
n by n matrix is in general less than n. If a matrix is irreducible, it has only one max-plus eigenvalue (see
e.g. Cohen et al. (1985)). Moreover, if ν is a max-plus eigenvector of A, then α ⊗ ν with α ∈ R is also a
max-plus eigenvector of A.

The max-plus eigenvalue has the following graph-theoretic interpretation. Consider A ∈ Rn×n
max . If λmax

is the maximal average weight over all elementary circuits of G(A), then λmax is a max-plus eigenvalue of
A. For formulas and algorithms to determine max-plus eigenvalues and eigenvectors the interested reader
is referred to Baccelli et al. (1992), Braker and Olsder (1993), Cohen et al. (1985), Karp (1978) and the
references cited therein. Every circuit of G(A) with an average weight that is equal to λmax is called a critical
circuit.
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Definition 8 (Critical graph and critical circuits). The critical graph Gc(A) of the matrix A is the graph
composed of all critical circuits.

Another max-plus algebraic property related to the eigenvector and eigenvalue is the cyclicity of a matrix.
The cyclicity is defined as:

Definition 9 (Cyclicity of a matrix). A matrix A is said to be cyclic if there exists an eigenvalue λ ∈ R,
integers c ∈ N and k0 ∈ N such that

∀p ⩾ k0 : A⊗p+c = λ⊗c ⊗A⊗p. (11)

The smallest c that satisfies this definition is called the cyclicity of matrix A, and k0 is called the coupling
time of A.

Theorem 2. Any irreducible matrix A is cyclic, with cyclicity c ∈ N, and coupling time k0.

Proof. See e.g. Baccelli et al. (1992), Cohen et al. (1985), Gaubert (1994).

For a system x(k) = A⊗ x(k − 1), with irreducible matrix A with cyclicity c and coupling time k0, the
evolution of the vector x(k) can be described as:

x(1) = A⊗ x(0)

x(2) = A⊗ x(1) = A⊗A⊗ x(0) = A⊗2 ⊗ x(0)

...

x (k0) = A⊗k0 ⊗ x(0)

x (k0 + 1) = Ak0+1 ⊗ x(0)

...

x (k0 + c− 1) = Ak0+c−1 ⊗ x(0)

x (k0 + c) = Ak0+c ⊗ x(0).

Using Eq. 11 x (k0 + c) can be rewritten as

x (k0 + c) = λ⊗c ⊗A⊗k0 ⊗ x(0) = λ⊗c ⊗ x (k0)

Clearly x (k0 + c) is just x (k0) (max-plus) multiplied by a constant λ⊗c. It can be concluded that starting
from iteration k0 the evolution of x(k) is determined by the vectors x (k0), . . . , x (k0 + c− 1). These vectors
are repeated every c cycles with the only difference that they are (max-plus) multiplied by a constant λ⊗c

every c cycles. When the evolution of x(k) can be described like this it is said that the system has reached a
periodic regime. The coupling time k0 of the system matrix is the number of iterations needed for the system
to reach a periodic regime from any starting vector x(0) and the cyclicity of the system matrix determines
the number of vectors in the periodic regime.

This section has introduced the concepts of max-plus linear eigenvectors, that represent the cycle time
of a gait; the max-plus eigenvalues, that represent the steady-state behavior of a gait; and the cyclicity of a
system matrix that represents the transient behavior of a gait.

4 Legged locomotion via max-plus modeling

In this section we preset a systematic procedure to generate time schedules for leg lift off and touchdown
for a robot with n ⩾ 2 number of legs. In effect, we make use of the max-plus algebra tools presented in
Section 3 to generalize the synchronization of two cyclic Petri nets Eqs. 1, 3 and 4, presented in Section 2. In
order to achieve this generalization we start by proposing a specific gait parameterization in Section 4.1 from
which a number of properties are later derived. We show how to construct the max-plus system equations
in an implicit form using the gait parameterization. Next we verify that the resulting equations are solvable
by demonstrating that the initially implicit max-plus system representation can be converted to an explicit
one of the form x(k) = A⊗x(k−1). Given this equation it is fundamental to understand whether is reaches
a unique steady state behavior. In robotics this is the equivalent of asking “does the robot walk/run as
specified? If one of the legs gets blocked by an obstacle for a short time and therefore cannot move can
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the robot recover from this?”. These questions are answered in Sections 4.2 (existence) and Section 4.3
(uniqueness) by analyzing the max-plus eigenstructure of the system matrix: a unique max-plus eigenvalue
means that the legs have a unique cycle time, and a unique (up to scaling) max-plus eigenvector means
that the legs always reach the same motion pattern, independently of the initial condition or temporary
disturbances. In Section 4.4 we address the transient behavior of the max-plus linear system by looking at
the coupling time of the system matrix. In practice this gives a number of transition steps required for a
robot to switch gaits and reach steady-state. Finally in Section 4.5 we analyze gait switching and disturbance
rejection for a quadruped robot, as an example of the applicability of the methodology presented here.

4.1 A gait parameterization

Consider the Eqs. 1, 3 and 4 described in Section 2 that describe the discrete-event dynamics of a synchronized
2 circuit Petri net. These can be rewritten in max-plus-linear algebra as:

ti(k) = li(k)⊗ τf (12)

l1(k) = t1(k − 1)⊗ τg ⊕ t2(k)⊗ τ∆ (13)

l2(k) = t2(k − 1)⊗ τg ⊕ t1(k − 1)⊗ τ∆. (14)

These equations can be extended to robots with any number of legs and for many different gaits. Consider
a general legged robot where a two-event circuit is associated to each leg. We present a parsimonious
representation of a walking gait of a robot by grouping sets of legs and specifying in what order they are
allowed to cycle.

Definition 10 (Leg partition). Let n be the number of legs of the robot and define m as a number of leg
groups. Let ℓ1, . . . , ℓm be ordered sets of integers such that

m⋃
p=1

ℓp = {1, . . . , n},∀i ̸= j, ℓi ∩ ℓj = ∅, and ∀i, ℓi ̸= ∅, (15)

i.e., the sets ℓp form a partition of {1, . . . , n}.

Definition 11 (Gait and gait space). A gait G is defined as an ordering relation of groups of legs:

G = ℓ1 ≺ ℓ2 ≺ · · · ≺ ℓm. (16)

The gait space is the set of all gaits that satisfy the previous definitions.

By considering that each ℓp contains the indices of a set of legs that are synchronized in phase, the previous
ordering relation is interpreted in the following manner: the set of legs indexed by ℓi swings synchronously.
Once all legs in ℓi touchdown and have been on the ground for at least τ∆ time units then all legs in ℓi+1

initiate their swing motion. The same is true for ℓm and ℓ1, closing the cycle. For example, a trotting gait,
where diagonal pairs of legs move synchronously, for a quadruped robot as illustrated in Fig. 4, is represented
by:

Gtrot = {1, 4} ≺ {2, 3}. (17)

The gait space defined above can represent gaits for which all legs have the same cycle time. As such,
gaits where one leg cycles twice while another cycles only once are not captured by this model. Examples
of such gaits are not common, but have been used on hexapod robots to transverse very inclined slopes
sideways (Weingarten et al. 2004).

For an n legged robot any gait in the gait space defined before can be described in max-plus algebra.
First we can generalize Eqs. 12, 13 and 14 for n-legged robots by defining the following vectors:

t(k) =
[
t1(k) · · · tn(k)

]T
(18)

l(k) =
[
l1(k) · · · ln(k)

]T
(19)

Equation 12 is then written as:
t(k) = τf ⊗ l(k) (20)

9



Figure 4: Walking robots with recirculating legs inspired by Saranli et al. (2001). Zebro robot on the left
and RQuad on the right both developed at DCSC, Delft University of Technology. The numbers represent
the leg index numbering assumed in this paper.

If one assumes that the synchronization is always enforced on the lift off time of a leg, Eqs. 13 and 14
are written jointly as:

l(k) = τg ⊗ t(k − 1)⊕ P ⊗ t(k)⊕Q⊗ t(k − 1) (21)

where the matrices P and Q encode the synchronization between lift off of a leg related to a touchdown of
the current event (as in Eq. 4) and a touchdown of the previous event (as in Eq. 3), respectively. With the
previously defined gait notation matrices P and Q can be derived:

[P ]pq =

{
τ∆ ∀j ∈ {1, . . . ,m− 1};∀p ∈ ℓj+1;∀q ∈ ℓj

ε otherwise.
(22)

[Q]pq =

{
τ∆ ∀p ∈ ℓ1;∀q ∈ ℓm

ε otherwise
(23)

Matrix P ensures that the lift-off of the legs in ℓj+1 in the current cycle is τ∆ time units after the
touchdown of the legs in ℓj in the current cycle (for all j ∈ {1, . . . ,m−1}). Matrix Q ensures that the lift-off
of the legs in ℓ1 in the current cycle is after the touchdown of ℓm in the previous cycle. These matrices
encode the synchronization between the sets of legs and ensure that only one set of legs can be in the air at
all times, even during disturbances2.

For the trotting gait Gtrot we obtain:

Ptrot =


ε ε ε ε

τ∆ ε ε τ∆

τ∆ ε ε τ∆

ε ε ε ε

 and Qtrot =


ε τ∆ τ∆ ε

ε ε ε ε

ε ε ε ε

ε τ∆ τ∆ ε

 (24)

Using Eqs. 20–23 can be written in state-space form as:[
t(k)

l(k)

]
=

[
E τf ⊗ E

P E

]
⊗

[
t(k)

l(k)

]

⊕

[
E E

τg ⊗ E ⊕Q E

]
⊗

[
t(k − 1)

l(k − 1)

]
(25)

The rationale behind this particular model is to prevent that a legged platform has too many legs in
swing while walking3 risking falling down. Synchronization constraints are always imposed on legs that are

2Disturbances are defined as time delays arising, for example, by a leg being stuck and not lifting off at the desired moment,
or by a foot not touching down at the right time due to a hole on the ground.

3As mentioned previously in this paper we do not consider running, although it can still be achieved using the same class of
models.

10



in stance and are about to enter swing: some legs should only swing if others are in stance (Eq. 21). By
doing so we can ensure that, for any disturbance at most one group of legs is in swing and therefore we can
guarantee that a minimum number of legs is always on the ground. This ensures kinematic stance stability,
i.e. no matter which group of legs is in swing, the legs in the other groups ensure the robot has a stable pose
due to its kinematics (e.g., the center of gravity lies inside the leg support polygon). Once in swing, legs are
never constrained to go into stance (Eq. 20).

Define the matrices

A0 =

[
E τf ⊗ E

P E

]
; A1 =

[
E E

τg ⊗ E ⊕Q E

]
, (26)

and consider the full state x defined as

x(k) =
[
tT (k) lT (k)

]T
.

Equation 25 can then be written in simplified notation:

x(k) = A0 ⊗ x(k)⊕A1 ⊗ x(k − 1). (27)

Note that additional max-plus identity matrices E are introduced in the diagonal of matrix A1. This
results in the extra trivial constraints ti(k) ⩾ ti(k−1) and li(k) ⩾ li(k−1), also resulting in the final system
matrix (defined in Eq. 37 on page 12) being irreducible. This is observed later on in Lemma 4.

Define the function ♭ that transforms a gait into a vector of integers:

♭ : [ℓ1]1 , . . . , [ℓ1]i1
}
≺ · · · ≺ {[ℓm]1, . . . , [ℓm]im} 7→[

[ℓ1]1 , . . . , [ℓ1]i1 . . . [ℓm]1 , . . . , [ℓm]im
]T

.
(28)

Using again the previous trotting example we get that ♭ (Gtrot) =
[
1 4 2 3

]T
(the symbol flat “♭”

is chosen since it “flattens” the ordered collection of ordered sets of a gait into a vector). Note that the gaits
{1, 4} ≺ {2, 3} and {4, 1} ≺ {2, 3} although resulting in indistinguishable motion in practice, have different
mathematical representations since ♭({1, 4} ≺ {2, 3}) ̸= ♭({4, 1} ≺ {2, 3}).

Definition 12. A gait Ḡ is called a normal gait if the elements of the vector ♭(Ḡ) are sorted increasingly.

We show next that normal gaits result in well defined structures in the relevant max-plus matrices which
facilitates the analysis. Since legs can be renamed without loss of generality, we introduce a leg relabeling
procedure. For a gait G , define the similarity matrix C̄ ∈ Rn×n

max as:

[C̄]ij =

{
e if [♭(G)]i = j

ε otherwise
,∀i, j ∈ {1, . . . , n}. (29)

The similarity matrix C̄ is such that

C̄ ⊗ C̄T = C̄T ⊗ C̄ = E.

The similarity matrix associated with the trotting gait Gtrot is:

C̄trot =


e ε ε ε

ε ε ε e

ε e ε ε

ε ε e ε

 =


0 −∞ −∞ −∞

−∞ −∞ −∞ 0

−∞ 0 −∞ −∞
−∞ −∞ 0 −∞

 , (30)

here written in both max-plus and traditional algebra notation for legibility purposes. The similarity matrix
C̄ has the property of “normalizing” the P and Q matrices to a max-plus algebraic lower block triangular
form P̄ and a max-plus algebraic upper block triangular form Q̄ respectively:

P̄ = C̄ ⊗ P ⊗ C̄T (31)

Q̄ = C̄ ⊗Q⊗ C̄T (32)
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Taking the previous example of the trotting gait, the normalized matrices take the form

P̄trot =


ε ε ε ε

ε ε ε ε

τ∆ τ∆ ε ε

τ∆ τ∆ ε ε

 and Q̄trot =


ε ε τ∆ τ∆

ε ε τ∆ τ∆

ε ε ε ε

ε ε ε ε

 , (33)

which are generated by the normal gait {1, 2} ≺ {3, 4}. Let #ℓi represent the number of elements of the set
ℓi. For a general normal gait

Ḡ = ℓ1 ≺ ℓ2 ≺ · · · ≺ ℓm (34)

with 1̄i,j = 1#ℓ−i×#ℓj the structure of the matrices P̄ and Q̄ is:

P̄ =



E · · · E

τ∆ ⊗ 1̄2,1 E
...

E τ∆ ⊗ 1̄3,2 E
...

. . .

E · · · τ∆ ⊗ 1̄m,m−1 E


(35)

Q̄ =

[
E τ∆ ⊗ 1̄1,m

E E

]
. (36)

From Eq. 35 it is clear that the matrix P̄ is always max-plus nilpotent, since the upper triangle is max-plus
zero.

Lemma 1. Max-plus nilpotency is invariant to max-plus similarity transformations (e.g. as defined in Eqs.
31, 32).

Proof. See Appendix A.1 on page 17.

Given an arbitrary gait G with associated matrices P , Q, A0, and A1 one can find the normal matrix P̄
which is max-plus nilpotent. From Lemma 1 then P is also max-plus nilpotent.

Lemma 2. A sufficient condition for A∗
0 to exist is that the matrix P is nilpotent in the max-plus sense.

Proof. See Appendix A.2 on page 17.

Since P is always max-plus nilpotent for gaits generated by expressions (22) and (23), we conclude that A∗
0

is well defined. In the beginning of Section 4 we have presented the synchronization (27) implicitly. However,
if A∗

0 exists then using Eqs. 8 and 9, system (27) can be transformed into an explicit set of equations. Let
A, which we call system matrix, be defined by:

A = A∗
0 ⊗A1. (37)

Using Theorem 1 Eq. 27 can be rewritten as:

x(k) = A∗
0 ⊗A1 ⊗ x(k − 1)

= A⊗ x(k − 1). (38)

With the system matrix A defined we can use the max-plus theory from Section 3 to analyze the behavior
of the system described in Eq. 38.

4.2 Existence of max-plus eigenstructure

The results obtained below use various analysis techniques available for max-plus linear systems. This is
necessary due to the intrinsic time structure associated with the problem. Petri net tools (e.g., incidence
matrices) can be used to understand structural properties of the system, such as irreducibility, but temporal
properties are better analyzed using max-plus linear tools. In Section 4.3 we show that for a fixed structure
(i.e., a single Petri net) unique or non-unique eigenvectors are found by changing the holding time parameters.
This result could not be captured by the Petri net structure alone. The analysis steps presented from here
on are summarized in Fig. 1.

Consider the following assumption (which is always satisfied in practice since the leg swing and stance
times are always positive numbers):

12



Assumption A1. τg, τf > 0.

Furthermore let:
τδ = τf ⊗ τ∆ and τγ = τf ⊗ τg (39)

Then the following lemma defines an eigenvalue and eigenvector for the system matrix A.

Lemma 3. If Assumption A1 is satisfied then

λ := τ⊗m
δ ⊗ τγ (40)

is a max-plus eigenvalue of the system matrix A (and Ā) defined by Eq. 38 (and Eqs. 90–93), and ν ∈ R2n
max

defined by

∀j ∈ {1, . . . ,m},∀q ∈ lj : [ν]q := τf ⊗ τ⊗j−1
δ (41)

[ν]q+n := τ⊗j−1
δ (42)

is a max-plus eigenvector of A.

Proof. See Appendix A.3 on page 18.

Consider again the trotting gait for a quadruped Gtrot defined in Eq. 17. For this gait m = 2, resulting
in:

νtrot =



τf

τ∆ ⊗ τ⊗2
f

τ∆ ⊗ τ⊗2
f

τf

0

τ∆ ⊗ τf

τ∆ ⊗ τf

0


; λtrot = (τf ⊗ τ∆)

⊗2 ⊕ τf ⊗ τg. (43)

4.3 Uniqueness of max-plus eigenstructure

Lemma 4. Matrix A is irreducible.

Proof. See Appendix A.4 on page 19.

Corollary 1. The max-plus eigenvalue λ of A is given by Eq. 40 is unique.

The max-plus eigenvector ν defined by Eqs. 41–42 is not necessarily unique, given assumption A1 alone.
To the authors’ best knowledge, there exists only a graphical test to prove the uniqueness of the max-plus
eigenvector in general (no algebraic method exist). As such we take advantage of the critical graph of A to
further investigate this property. If the critical graph of an irreducible max-plus system matrix has a single
strongly connected subgraph, then its max-plus eigenvector is unique up to a max-plus scaling factor (see
Baccelli et al. (1992), Theorem 3.101). We proceed by computing the critical graph(s) of Ā.

Before we look at the critical graph of A we first use a similarity transformation on A to get Ā and then
we look at the critical graph of Ā. The critical graphs of A and Ā are equivalent up to a label renaming.
Therefore properties derived from the critical graph of Ā are also valid for A. For more details on the
similarity transformation of A into Ā the reader is referred to Appendix B.

The critical graph of Ā is given in Fig. 5 for the three different possibilities of the eigenvalue: λ = τγ =
τ⊗m
δ , λ = τ⊗m

δ > τγ , and λ = τγ > τ⊗m
δ . The critical graph has been derived from the precedence graph of

Ā, this process has been described in Appendix C.
Consider the following assumption:

Assumption A2. τγ ⩽ τ⊗m
δ .

Lemma 5. If Assumption A2 is verified then the critical graph of Gc(A) (and Gc(Ā)) has a single strongly
connected subgraph.

Proof. This can be seen in Fig. 5 and is formally proven in Appendix A.5, page 19.
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Figure 5: Critical graphs of the system matrix Ā highlighted in black. a) Case 1: τγ = τ⊗m
δ = λ. b) Case

2: τγ < τ⊗m
δ = λ. c) Case 3: τ⊗m

δ < τγ = λ.
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In Fig. 5 the critical graph of Ā is given by the black nodes and vertices, the gray nodes and vertices
are the nodes and vertices of the precedence graph that do not belong to the critical graph. For the case
that τγ = τ⊗m

δ = λ (Fig. 5a) and τγ < τ⊗m
δ = λ (Fig. 5b) there is a path from all nodes of the critical

graph to the other nodes, this means the critical graph consists of a single strongly connected subgraph and
therefore the eigenvector is unique. For the case that τ⊗m

δ < τγ = λ (Fig. 5c), there are only paths from the
nodes to themselves and therefore the critical graph consists of several strongly connected subgraphs and
the eigenvector is not unique.

The previous lemma leads to the following theorem about the uniqueness of the eigenvalue and eigenvec-
tor:

Theorem 3. Given Assumptions A1 and A2, the max-plus eigenvalue λ of the system matrix A (and Ā),
defined by Eq. 40, is unique, and the max-plus eigenvector ν of A (and Ā), defined by Eqs. 41–42 is unique
up to a max-plus scaling factor.

Proof. See Appendix A.6 on page 22.

4.4 Coupling time

Theorem 2 on page 8 describes an important property of max-plus-linear systems when the system matrix
A is irreducible: it guarantees the existence of an autonomous steady-state regime that is achieved in a
number of finite steps k0, called the coupling time. Computing the coupling time is very important for the
application of legged locomotion since it provides the number of steps a robot needs to take to reach steady
state after a gait transition or a perturbation.

Lemma 6. Given Assumptions A1, A2, the coupling time for the max-plus-linear system defined by Eq. 25
is k0 = 2 with cyclicity c = 1.

Proof. See Appendix A.7 on page 22.

Next we show how these properties affect the transient behavior of the system when switching gaits.

4.5 Switching gaits and disturbance rejection

Due to the event-driven nature of the models used in this paper and the use of the max operator for
enforcing synchronization between circuits, certain events are only allowed to fire if a set of other events
has fired previously. This enforces by construction that, for example, if a leg is swinging and its foot does
not touch the ground at the desired time, then all the other connected leg lift off events that succeed this
touchdown event are not allowed to fire. In practice there cannot be a situation where the robot falls down
from lack of support. This applies in general to every sequence of connected events via a holding time.
As such, gait switching and disturbances by means of event firing delays are safe by construction. In this
section we present two simulations of the proposed switching max-plus-linear system for a quadruped robot
to illustrate this safety by construction properties in practice.

The first simulation address switching from a trot to a walking gait. The trotting gait has already been
described in Eq. 17 and its eigenvector and eigenvalue in Eq. 43. The walking gait is represented by

Gwalk = {1} ≺ {4} ≺ {2} ≺ {3}.

With the gait given we can use Eqs. 40, 41, and 42 to determine the eigenvalue and eigenvector of the
gait:

vwalk =



τf

(τ∆ ⊗ τf)
⊗2 ⊗ τf

(τ∆ ⊗ τf)
⊗3 ⊗ τf

τ∆ ⊗ τ⊗2
f

0

(τ∆ ⊗ τf)
⊗2

(τ∆ ⊗ τf)
⊗3

τ∆ ⊗ τf


; λwalk = (τf ⊗ τ∆)

⊗4 ⊕ τf ⊗ τg. (44)

For the simulation of the gait switch we use the parameters described in the following table:
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Figure 6: Simulation of gait patterns for a quadruped robot. A safe transition occurs between a walk and
trot gaits.

Figure 7: Simulation of a trotting gait pattern for a quadruped robot. At t = 2 s a disturbance is introduced
in the first leg. The remaining legs stay in stance until the disturbance subsides and leg 1 returns to stance.

Parameter Walk Trot

τg 1 0.3

τf 0.5 0.2

τ∆ 0.25 0.1

In the simulation the system is initialized by assuming all legs are on the ground, therefore the starting
vector is set to

x(0) =
[
0 0 0 0 ε ε ε ε

]T
.

The simulation, illustrated in Fig. 6, starts with the walking gait. After 3 cycles it switches to the trotting
gait and continue for 3 more cycles.

It is clear from the simulation that the switching max-plus-linear system reaches the steady state behavior
of the walking gait, as described above, at the end of the first cycle. After the gait switch at the end of cycle
three the robot only needs one cycle (typically two) to reach the steady state behavior of the trotting gait,
and during the transition the only legs that are in the air at the same time are legs of a single group of legs
of the trotting gait.

In the next simulation we show the result of one of the legs when disturbed by being forced to stay longer
in the air. Once more, the system uses the trotting gait as described in Eq. 17. The results of this simulation
are shown in Fig. 7.

It is visible from the simulation that the lift-off of the undisturbed set of legs is postponed until the leg
that is stuck in the air touches down plus an extra τδ time units. This shows that the proposed system can
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ensure that a minimal number of legs remain on the ground even during disturbances.

5 Conclusions

This paper addresses the generation of leg lift off and touchdown time schedules for legged robots with many
legs. We propose a different approach from the standard CPG methods by abstracting and using discrete-
event circuits to model the phases of a leg while walking: swing and stance. The models are written as a
set of max-plus linear systems where the state variables represent the leg lift off and touchdown times. The
result of the evolution of the discrete-event dynamical system is a time schedule for the legs.

We proposed a gait parameterization that generates a gait space, where each gait represents an ordered
sequence of swing actions for the legs. The combinatorial nature of this gait space (also present in any
other gait spaces), arising from all the possible arrangements in which multiple legs can be synchronized, is
captured by a compact representation as an ordered set of ordered sets. Using this gait parameterization
important structural properties of the max-plus system matrix are obtained in closed-form. We demonstrate
using algebraic and graph theoretic arguments that the max-plus eigenvectors and eigenvalues of the system
matrix exist and are unique. The implication of this fact is a unique steady state behavior for the time
schedule associated with each gait. In practice this means that a legged robot controlled by the max-plus
generated time schedule follows a consistent and predictable gait pattern.

The coupling time is computed in closed form, revealing the transient response to gait switching or
disturbances. Since the coupling time was found to be two, we have shown that legged robots can switch
gaits (or rhythms), without having to stop the robot, in at most two leg cycles. Moreover, gait switching is
kinematic stance stable, an important property to prevent robots falling down while switching gaits.

In the derivation process we have found that similarity transformations can facilitate the algebraic manip-
ulations by exposing the structure of the system matrices. This was important to find closed-form expressions
to the eigenstructure of the system and the coupling time, that typically need to be computed via simula-
tions or using numerical procedures. On the graph side, the node-reduction procedure has allowed depicting
graphs that can have an arbitrary large number of nodes. A graph-theoretic proof is needed for proving the
uniqueness of the max-plus eigenvector. Our results are valid for robots with an arbitrary number of legs.

Further research will look towards relaxing the structure of the system matrix to address the synchro-
nization of general cyclic systems and towards the modeling of more general gaits.

A Proofs

A.1 Proof of Lemma 1

Proof. Let P̄ be nilpotent and C̄ be a similarity matrix. Let P = C̄T ⊗ P̄ ⊗ C̄. As such

P⊗p =
(
C̄T ⊗ P̄ ⊗ C̄

)⊗p
=

= C̄T ⊗ P̄ ⊗ C̄ ⊗ C̄T ⊗ P̄ ⊗ C̄ ⊗ · · · ⊗ C̄T ⊗ P̄ ⊗ C̄

= C̄T ⊗ P̄⊗p ⊗ C̄

and,
∃p0 > 0,∀p ⩾ p0 : P⊗p = C̄T ⊗ P̄⊗p ⊗ C̄ = E

A.2 Proof of Lemma 2

Proof. By direct computation, the repetitive products of A0 can be found to be

A⊗p
0 =



 E τ
⊗ p+1

2

f ⊗ P⊗ p−1
2

τ
⊗ p−1

2

f ⊕ P⊗ p+1
2 E

 if p is odd

[
τ
⊗ p

2

f ⊗ P⊗ p
2 E

E τ
⊗ p

2

f ⊗ P⊗ p
2

]
if p is even

(45)
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If P is max-plus nilpotent, then there exists a finite positive integer p0 such that ∀p ⩾ p0 : P⊗p = E ⇒
A

⊗(2p+1)
0 = E , and therefore the max-plus sum for the computation of A0 is finite:

A∗
0 =

∞⊕
q=0

A⊗q
0 =

2p⊕
q=0

A⊗q
0 . (46)

A.3 Proof of Lemma 3

Proof. With ν ∈ Rn
max, let [ν̄]q = [ν]q+n for all j and q ∈ ℓj . Then ν =

[
(τf ⊗ ν̄)

T
ν̄T

]T
. Recall Eqs. 8 and

9 with new variables z and B such that z = B⊗ z⊕ b with solution z = B∗ ⊗ b. Now let z = λ⊗ ν, B = A0,
and b = A1 ⊗ ν. We obtain

λ⊗ ν = A0 ⊗ λ⊗ ν ⊕A1 ⊗ ν = A0 ⊗A1 ⊗ ν = A⊗ ν

Given the previous result, it is sufficient to show that if λ and ν are a max-plus eigenvalue and eigenvector
of A respectively, then replacing the state variable x(k − 1) by ν and x(k) by λ⊗ ν in Eq. 25 holds true:

λ⊗ ν = λ⊗

[
τf ⊗ ν̄

ν̄

]
= λ⊗

[
E τf ⊗ E

P E

]
⊗ ν ⊕

[
E E

τg ⊗ E ⊕Q | E

]
⊗ ν

=

[
E λ⊗ τf ⊗ E

λ⊗ P ⊕ τg ⊗ E ⊕Q E

]
⊗

[
τf ⊗ ν̄

ν̄

]
.

The previous expression is equivalent to the following two equations:

λ⊗ τf ⊗ ν̄ = τf ⊗ ν̄ ⊕ λ⊗ τf ⊗ ν̄ (47)

λ⊗ ν̄ = τf ⊗ (λ⊗ P ⊕ τg ⊗ E ⊕Q)⊗ ν̄ ⊕ ν̄. (48)

Since λ > 0 (by Assumption A1), (47) is always verified. Thus we focus on Eq. 48, which can be simplified
due to τf ⊗ τg > 0:

λ⊗ ν̄ = (τf ⊗ τg)⊗ ν̄ ⊕ τf ⊗ (λ⊗ P ⊕Q)⊗ ν̄. (49)

Let τ∆ ⊗ P0 = P and τ∆ ⊗ Q0 = Q, i.e., all entries of matrices P0 and Q0 are either e or ε to obtain
(recall that τδ = τf ⊗ τ∆ and τγ = τf ⊗ τg):

λ⊗ ν̄ = τγ ⊗ ν̄ ⊕ τδ ⊗ (λ⊗ P0 ⊕Q0)⊗ ν̄. (50)

We now consider two cases:

i) First we analyze the row indices of Eq. 50 that are elements of the sets ℓ2, . . . , ℓm. For each j ∈
{1, . . . ,m− 1} and for each row p ∈ ℓj+1 we obtain (notice that according to Eq. 23) all the elements

of [Q0]p,. are ε since p /∈ ℓ1, and that [ν̄]p = τ⊗j
δ for p ∈ ℓj+1):

[λ⊗ ν̄]p = [τγ ⊗ ν̄]p ⊕ τδ ⊗ [λ⊗ P0 ⊕Q0 ⊗ ν̄]p ⇔ (51)

λ⊗ [ν̄]p = τγ ⊗ [ν̄]p ⊕ τδ ⊗ [λ⊗ P0]p,. ⊗ ν̄ ⊕ [Q0]p,.︸ ︷︷ ︸
ε

⊗ν̄ ⇔ (52)

λ⊗ τ⊗j
δ = τγ ⊗ τδj ⊕ τδ ⊗

⊕
q∈ℓj

λ⊗ [P0]p,q︸ ︷︷ ︸
ε

⊗[ν̄]q ⇔ (53)

λ⊗ τ⊗j
δ = τγ ⊗ τ⊗j

δ ⊕ τδ ⊗ λ⊗ τ⊗j−1
δ ⇔ (54)

λ⊗ τ⊗j
δ = τγ ⊗ τ⊗j

δ ⊕ λ⊗ τ⊗j
δ . (55)

The last term always holds true since λ ⩾ τγ . Thus for rows p ∈ ℓ2, . . . , ℓm Eq. 50 holds true.
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ii) We now look at all the remaining rows p such that p ∈ ℓ1 (noticing now that according to (22) all the
elements of [P0]p,. are ε and that [ν̄]p = e since p ∈ ℓ1):

[λ⊗ ν̄]p = [τγ ⊗ ν̄]p ⊕ τδ ⊗ [λ⊗ P0 ⊕Q0]p,. ⊗ ν̄ ⇔ (56)

λ⊗ [ν̄]p = τγ ⊕ τδ ⊗ [λ⊗ P0]p,.︸ ︷︷ ︸
ε

⊗ν̄ ⊕ τδ ⊗ [Q0]p,. ⊗ ν̄ ⇔ (57)

λ = τγ ⊕ τ − δ ⊗
⊕
q∈ℓm

[Q0]p,q︸ ︷︷ ︸
e

⊗[ν̄]q ⇔ (58)

λ = τγ ⊕ τδ ⊗ τ⊗m−1
δ ⇔ (59)

λ = τγ ⊕ τ⊗m
δ . (60)

Combining i) and ii) we conclude that Eq. 50 holds true.

A.4 Proof of Lemma 4

Proof. The sub-matrices A12, A22, A32, A42, A21 defined in Appendix B expressions (95) and (94) have all
their elements different from ε. The sub-matrix A23 has all diagonal elements different from ε. As such, any
node can be reached by any other node via the rows defined by A12, A22, A32, A42 and the columns defined
by A21, A22, A23. Therefore Ā is irreducible. Since A is a similarity transformation away from Ā then we
conclude that A is also irreducible.

A.5 Proof of Lemma 5

Proof. We consider two cases:

i) τγ = τ⊗m
δ = λ.

In this situation the circuits presented in Figs. 8a1 and 8a2 on page 20 all belong to the critical graph
since their weights are τγ or τ⊗m

δ both equal to the max-plus eigenvalue λ. Note that any circuit c1 of
length l made from the nodes of tℓm , illustrated in Fig. 8a1 on page 20, has an average weight of

|c1|w
|c1|1

=

(
τ⊗m
δ

)⊗l

l
= τ⊗m

δ = λ, (61)

and as such also belongs to the critical graph.

Any other circuit in the precedence graph of Ā must pass through at least one node of tℓm, as illustrated
in Figs. 9b, c1, and c2 (with the exception of the self-loops in Fig. 8a3 and the circuits in Fig. 8a4 that
we do not consider since their weights are e and τγ/2 both less than λ). Additionally, arcs starting in
nodes from a group tℓq with q < m are only connected to nodes in ℓℓq+p for p ⩾ 0 (or lℓq+p). This is
again illustrated in Figs. 9a, c1, and c2. Let t[ℓq]i denote element i of tℓq. Consider the circuit

c2 : t[ℓm]i → t[ℓq]j → t[ℓm]i , (62)

with q < m. The average weight is (with τγ = τ⊗m
δ )

|c2|w
|c2|1

=
τ⊗q
δ ⊗ τγ ⊗ τ

⊗(m−q)
δ

2
=

τ⊗m
δ ⊗ τγ

2
= λ. (63)

Circuit c2 is thus also in the critical graph. For the general circuit of the type

c3 : t[ℓm]i → t[ℓq1]j1
→ t[ℓq2]j2

→ · · · → t[ℓql]jl︸ ︷︷ ︸
l nodes

→ t[ℓm]i , (64)

with q1 < q2 < · · · < ql < m, the average weight is

|c3|w
|c3|1

=
τ⊗l
γ ⊗ τ⊗q1

δ ⊗ τ
⊗(q2−q1)
δ ⊗ · · · ⊗ τ

⊗(m−ql)
δ

l + 1

=
τ⊗l
γ ⊗ τ⊗m

δ

l + 1
= λ.
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Figure 8: Graph reductions. Touchdown and lift off events with indexes belonging to the same set ℓq can be
grouped together since they have the same number of output and input arcs with the same weights.
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Figure 9: Elements of the precedence graph of the system matrix A. The total precedence graph of A is
composed of all the arcs presented in a) and b), together with the m − 1 remaining subgraphs that follow
the pattern of Figures c1) and c2).
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Again, circuit c3 is part of the critical graph. Any circuit that passes through any node in lℓq, for
any q, will never be in the critical graph. This is due to the fact that arcs within touchdown nodes of
different leg groups yield a higher weight:

t[ℓq]i → t[ℓp]j weight: τγ ⊗ τ
⊗(q−p)
∆ (65)

t[ℓq]i → l[ℓp]j weight: τg ⊗ τ
⊗(q−p)
∆ (66)

l[ℓq]i → t[ℓp]j weight: τf ⊗ τ
⊗(q−p)
∆ (67)

l[ℓq]i → l[ℓp]j weight: τ
⊗(q−p)
∆ . (68)

As such, a path that connects a touchdown node to a lift off node “loses” τγ − τg = τf from the
maximum possible weight, a path from lift off to lift off nodes loses τγ , and a path from lift off nodes to
touchdown nodes loses τg in weight. This can also be observed in the structure of Ā, in Eq. 92 , where
the sub-matrix τf ⊗ (τg ⊗W ⊕ V ) overcomes the sub-matrices τg ⊗W ⊕ V, τf ⊗W , and W . Consider,
for example, the circuit c4 :

c4 : t[ℓm]i → t[ℓp]j0 → l[ℓp+q]jq
→ t[ℓm]i (69)

then

|c4|w
|c4|1

=
τ⊗p
δ ⊗

(
τg ⊗ τ⊗q

δ

)
⊗

(
τf ⊗ τ

⊗(m−(p+q))
δ

)
3

=
τγ ⊗ τ⊗m

δ

3
< λ.

Since all the nodes in the critical graph are connected (they are all touchdown nodes) we conclude that
for the case τγ = τ⊗m

δ = λ the critical graph of Ā has a single strongly connected subgraph. Figure 5a
on page 14 illustrates the complete critical graph of Ā for this case.

ii) τγ < τ⊗m
δ = λ.

In this situation only circuits of the type c1 are part of the critical graph. Circuits of the type c2 or
c3 are not part of the critical graph. Figure 5b illustrates the resulting critical graph of Ā. Since all
the nodes of tℓm are connected to each other we conclude that for the case τγ < τ⊗m

δ = λ the critical
graph of Ā has a single strongly connected subgraph.

A third case can be considered: τ⊗m
δ < τγ = λ. In this situation the critical graph of Ā does not have

a single strongly connected subgraph. Figure 5c illustrates this situation, that we document here without
proof.

A.6 Proof of Theorem 3

Proof. According to Lemma 4 the matrix A is irreducible, and as such it has a unique max-plus eigenvalue.
According to Lemma 5 the critical graph of Gc(A) has a single strongly connected subgraph, and as such its
max-plus eigenvector is unique up to a max-plus scaling factor (see Baccelli et al. (1992), Theorem 3.101).

A.7 Proof of Lemma 6

Proof. Computing successive products of Ā and taking advantage of its structure, which can be found in
Appendix B, and Eqs. 83–85 one can write its p-th power Ā⊗p, valid for all p ⩾ 2, illustrated by Eqs. 72 and
74.

By inspection of the expression of Ā⊗p in Eqs. 72–74 one can observe that most terms are max-plus
multiplying by a power of the max-plus eigenvalue λ (recall that with Assumption A2 we have λ = τ⊗m

δ ).
To factor out λ of the matrix composed by expressions Eqs. 72 and 74 we show that

λ⊗(p−2) ⊗ τf ⊗ τg ⊗ V ⊗W ⩾ τ
⊗(p−1)
f ⊗ τ⊗p

g ⊗W ⇔ (70)

τg ⊗ λ⊗(p−2) ⊗ τf ⊗ V ⊗W ⩾ τg ⊗ τ⊗(p−1)
γ ⊗W

Since λ ⩾ τγ it is sufficient to show that

τf ⊗ V ⊗W ⩾ τγ ⊗W (71)

This can be confirmed by inspecting Eq. 88 and 76:
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1. All the terms in the upper block triangle of τγ ⊗ W are ε while for τf ⊗ V ⊗ W they are positive
numbers.

2. In the block diagonal [τf ⊗ V ⊗W ]i,i = τ⊗m
δ ⊗ 1 ⩾ τγ ⊗ E = [τγ ⊗W ]i,i, by Assumption A2.

3. In the lower block triangle [τf ⊗W ⊗W ]i,j = τ
⊗(m+i−j)
δ ⊗ 1 ⩾ τ

⊗(i−j)
δ ⊗ τγ ⊗ 1 = [τγ ⊗W ]i,j , by

Assumption A2.

Taking advantage of this simplification one can obtain Eqs. 73, 75, and 77–79 (with ⊗ omitted in unam-
biguous locations). Together with the similarity transformation we obtain the result valid for p ⩾ 2:

A⊗(p+1) = C ⊗ Ā⊗(p+1) ⊗ CT = C ⊗ λ⊗ Ā⊗p ⊗ CT = λ⊗A⊗p,

thus concluding that the coupling time is k0z = 2 with cyclicity c = 1.

[
Ā⊗p

]
·,1 =

[
τf

(
λ⊗(p−2)τfτgVW ⊕ λ⊗(p−1)V ⊕ τ

⊗(p−1)
f τ⊗pW

g

λ⊗(p−2)τfτgVW ⊕ λ⊗(p−1)V ⊕ τ
⊗(p−1)
f τ⊗pW

g

]
(72)

=

[
τf
(
λ⊗(p−2)τfτgVW ⊕ λ⊗(p−1)V

)
λ⊗(p−2)τfτgVW ⊕ λ⊗(p−1)V

]
(73)

[
Ā⊗p

]
,,2

=

[
τf

(
ℓ⊗(p−2)τfVW ⊕ (τfτg)

⊗(p−1)
W

)
λ⊗(p−2)τfVW ⊕ (τfτg)

⊗(p−1)
W

]
(74)

=

[
τf
(
λ⊗(p−2)τfVW

)
λ⊗(p−2)τfVW

]
(75)

τf ⊗ V ⊗W =


τ⊗m
δ ⊗ 11,1 · · · τδ ⊗ 11,m

...
. . .

...

τ
⊗(2m−1)
δ ⊗ 1m,1 · · · τ⊗m

δ ⊗ 1m,m

 (76)

Ā⊗(p+1) =

[
τf
(
λ⊗(p−1)τfτgVW ⊕ λ⊗pV

)
τf
(
λ⊗(p−1)τfVW

)
λ⊗(p−1)τfτgVW ⊕ λ⊗pV λ⊗(p−1)τfVW

]
(77)

= λ⊗

[
τf
(
λ⊗(p−2)τfτgVW ⊕ λ⊗(p−1)V

)
τf
(
λ⊗(p−2)τfVW

)
λ⊗(p−2)τfτgVW ⊕ λ⊗(p−1)V λ⊗(p−2)τfVW

]
(78)

= λ⊗ Ā⊗p (79)

B Structure of the system matrix Ā

For an arbitrary gait the internal structure of A can be quite complex. However, the gait G associated to A
can be transformed into a normal gait via a similarity transformation. Let

C =

[
C̄ E
E C̄

]
. (80)

The similarity matrix C transforms the system matrix A of an arbitrary gait G into the system matrix
Ā of a normal gait G via the similarity transformation

Ā = C ⊗A⊗ CT .

This can be shown by direct computation:

C ⊗A⊗ CT = C ⊗A∗
0 ⊗ CT ⊗ C ⊗A1 ⊗ CT = A∗

0 ⊗ Ā1 = Ā.

Transforming an arbitrary gait into a normal gait is very useful since, by effectively switching rows and
columns in A, one obtains a very structured matrix Ā for which a structural analysis is much easier. The
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interpretation of the similarity matrix C̄ is that legs can be renumbered, simplifying algebraic manipulation.
Besides max-plus nilpotency, other properties are invariant to similarity transformations: irreducibility is
preserved since the graphs of A and Ā are equivalent up to a label renaming. Max-plus eigenvalues and
eigenvectors are related by:

A⊗ ν = λ⊗ ν

⇔C ⊗A⊗ CT ⊗ C ⊗ ν = λ⊗ C ⊗ ν

⇔Ā⊗ ν̄ = λ⊗ ν̄, with ν̄ = C ⊗ ν.

The structure of Ā can be obtained via a laborious but straightforward set of algebraic manipulations.
For an arbitrary gait G we compute the normal gait Ḡ via the similarity transformation with the matrix C.
By observing the structures of Ā∗

0 and Ā1 (derived from P̄ and Q̄) a closed-form solution can be obtained
for Ā∗

0 :

Ā∗
0 =

[
W τf ⊗W

W̄ W

]
, (81)

where W = (τf ⊗P )∗, illustrated in Eq. 88 on page 25. The matrix W̄ is defined in Eq. 87 on page 12. Note
that τf ⊗ W̄ ⊕ E = W and W ⩾ W̄ . An expression for Ā is then obtained:

Ā = Ā∗
0 ⊗ Ā1 =

[
W τf ⊗W

W̄ W

]
⊗

[
E E

τg ⊗ E ⊕ Q̄ E

]
(82)

=

[
W ⊕ τf ⊗ τg ⊗W ⊕ τf ⊗W ⊗⊗Q̄ τf ⊗W

W̄ ⊕ τg ⊗W ⊕W ⊗ Q̄ W

]
.

Let V = W ⊗ Q̄, as illustrated by Eq. 89. One can show that:

W ⊗W = W (83)

W ⊗ V = V (84)

V ⊗ V = τ
⊗(m−1)
δ ⊗ τ∆ ⊗ V (85)

Since µ⊗ V ⩾ W for any µ > 0, and W ⩾ W̄ , expression (82) simplifies to:

Ā =

[
τf ⊗ (τg ⊗W ⊕ V ) τf ⊗W

τg ⊗W ⊕ V W

]
. (86)

Let

tℓi(k) =
[
t[ℓi]1(k)t[ℓi]2(k) · · · t[ℓi]#ℓi(k)

T
]

lℓi(k) =
[
l[ℓi]1(k)l[ℓi]2(k) · · · l[ℓi]ℓi(k)

T
]
.

Equations 90–93 illustrate the resulting structure of Ā written in the system form x̄(k) = Ā⊗ x̄(k− 1), with
x̄(k) = C ⊗ x(k), and Ēi = E#ℓi .
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W = τ∆ ⊗



E · · · E

12,1 E
...

τδ ⊗ 13,1 13,2 E
...

. . .
. . .

τ
⊗(m−2)
δ ⊗ 1m,1 · · · τδ ⊗ 1m,m−1 1m,m−2 E


(87)

W =



Ē1 · · · E

τδ ⊗ 12,1 Ē2

...

τ⊗2
δ ⊗ 13,1 τδ ⊗ 13,2 Ē3

...
. . .

. . .

τ
⊗(m−1)
δ ⊗ 1m,1 · · · τ⊗2

δ ⊗ 1m,m−2 τδ ⊗ 1m,m−1 Ēm


(88)

V =


τ∆ ⊗ 11,m

En,(n−m) τ∆ ⊗ τδ ⊗ 12,m

...

τ∆ ⊗ τ
⊗(m−1)
δ ⊗ 1m,m

 (89)

With (the ⊗ operator is omitted in unambiguous locations):

x̄(k) = Ā⊗ x̄(k − 1) ⇔ (90)

x̄(k) =

[
τf ⊗ (τg ⊗W ⊕ V ) τf ⊗W

τg ⊗W ⊕ V W

]
⊗ x̄(k − 1) ⇔ (91)



tℓ1(k)
...

tℓm(k)

lℓ1(k)
...

lℓm(k)


︸ ︷︷ ︸

x̄(k)

=



A11 A12 A13

A21 A22 A23

A31 A32 A33

A41 A42 A43


︸ ︷︷ ︸

Ā

⊗



tℓ1(k − 1)
...

tℓm(k − 1)

lℓ1(k−1)

...

lℓm(k − 1)


︸ ︷︷ ︸

x̄(k−1)

(92)

[
A11 A12

A21 A22

]
=


τγĒ1 · · · E τδ11,m

τγτδ12,1 τγĒ2

... τ⊗2
δ 12,m

...
. . .

...

τγτ
⊗(m−1)
δ 1m,1 · · · τγτδ1m,m−1 τγĒm ⊕ τ⊗m

δ 1m,m

 (93)

[
A31 A32

A41 A42

]
=


τgĒ1 · · · E τ∆11,m

τgτδ12,1 τgĒ2

... τ∆τδ12,m

...
. . .

...

τgτ
⊗(m−1)
δ 1m,1 · · · τgτδ1m,m−1 τgĒm ⊕ τ∆τ

⊗(m−1)
δ 1m,m

 (94)
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A13

A23

A33

A43

 =



τfĒ1 · · · E

τfτδ12,1 τfĒ2

...
...

. . .

τfτ
⊗(m−1)
δ 1m,1 · · · τfĒm

Ē1 · · · E

τδ12,1 Ē2

...
...

. . .

τ
⊗(m−1)
δ 1m,1 · · · Ēm



(95)

C Precedence Graph of A

With the structure given it is possible to construct the precedence graph of Ā. Since this graph can be quite
large for a general Ā, we find it more efficient to first group “similar” nodes into a single node, i.e. apply a
procedure called node reduction (Fig. 8 on page 20).

Next, we show various subgraphs of the graph of Ā to better illustrate its structure (Fig. 9 on page 21).
The total precedence graph of Ā is thus the combination of Figs. 8 and 9.

The process of constructing the graph of Ā starts by grouping all nodes of an event associated with a
group of legs ℓi into a single node. This can be accomplished since event nodes from the same group of legs
ℓi have “similar” incoming and outgoing arcs. As an example, consider the first set of #ℓ1 rows of Ā as
defined in expression (89):

tℓ1(k) =τγ ⊗ E1 ⊗ tℓ1(k − 1)⊕ τδ ⊗ 11,m ⊗ tℓm(k − 1)⊕ (96)

τδ ⊗ E1 ⊗ lℓ1(k − 1).

The precedence graph for Eq. 96 consists of 3×#ℓ1 nodes, since it involves the vectors tℓ1 , tℓm , and ℓℓ1 .
The relation between tℓ1(k) and tℓ1(k − 1) results in #ℓ1 self connected arcs in the tℓ1 events with weights
τγ . Instead of expressing all elements of tℓ1 as individual nodes with self arcs, we reduce then to a single
node with one self arc, as seen in Fig. 8a2. The dashed attribute used on the self arc indicates that for each
node in the group only self arcs exist, as expressed by the “connecting” matrix E1. The relation between
tℓ1(k) and tℓm(k − 1) is somewhat more involved, since it contains #ℓ1 × #ℓm arcs, as expressed by the
connecting matrix 11,m. The resulting node reduction is illustrated in Fig. 8b1. The node reduction for
the relation between tℓ1 and ℓℓ1 is illustrated in Fig. 8a4. Again we use dashed attributes on the arcs to
represent the connecting matrix E1. For all other relations with connecting matrices 1 we use solid arcs.
We make an exception in Figs. 8c1 to c4 where different line attributes are used to distinguish arcs from
tℓp → tℓq , tℓp → lℓq , etc. The same line attributes are used in Figs. 9c1 and c2. Note that multiple incoming
arcs to a node are related via the ⊕ operation, e.g. as in the example Eq. 96 the node tℓ1 has 3 incoming
arcs, illustrated in Fig. 9.

The following list summarizes the node reduction:

• Figure 8a1 illustrates node reduction of the term τ⊗m
δ ⊗1m,m of sub-matrix A22 from expression (95).

• Figure 8a2 illustrates the node reduction of the block diagonal of matrix A11 and the τγ ⊗ Ēm term of
A22.

• Figure 8a3 illustrates the node reduction of the block diagonal of matrix
[
AT

33 AT
43

]T
.

• Figure 8a4 illustrates the node reduction of the term τg ⊗ Em of sub-matrix A42 together with the

block diagonals of matrices A31 and
[
AT

13 AT
23

]T
.

• Figures 8b1 and b2 illustrate the node reduction for the columns formed by the matrices (not including

the term τg ⊗Em from matrix A42 already represented in Fig. 8a4) A12 and
[
AT

32 AT
42

]T
respectively.

• Figures 8c1 to c4 illustrate the node reduction of the off-diagonal elements of matrices τγ ⊗W , τf ⊗W ,
τg ⊗W , and W , from expression (92) respectively. Given the node reduction one can now proceed to
construct the precedence graph of Ā:
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• Figure 9a is the graph of the block diagonal of Ā together with the block diagonals of the sub-matrices[
A31 A32

A41 A42

]
and

[
AT

13 AT
23

]T
using the node reductions presented in Figs. 8a1 to a4.

• Figure 9b is the graph of the columns formed by the matrices A12 and
[
AT

32 AT
42

]T
using node

reductions presented in Figs. 8b1 and b2.

• Figures 9c1 and c2 illustrate two subgraphs of the remaining columns of Ā. Note that we only present
the subgraphs of the first sets of #ℓ1 and #ℓ2 out of a total of m− 1 columns. These follow the same
pattern. We use different attributes on the arcs, such as dashed, thick solid, etc., to distinguish the
different node reductions, as presented in Figs. 8c1 to c4.
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