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Stabilization and robust H∞ control for sector-bounded

switched nonlinear systems ⋆

Mohammad Hajiahmadi a, Bart De Schutter a, Hans Hellendoorn a

aDelft Center for Systems and Control, Delft University of Technology, The Netherlands

Abstract

This paper presents stability analysis and robust H∞ control for a particular class of switched systems characterized by non-
linear functions that belong to sector sets with arbitrary boundaries. The sector boundaries can have positive and/or negative
slopes, and therefore, we cover the most general case in our approach. Using the special structure of the system but without
making additional assumptions (e.g. on the derivative of the nonlinear functions), and by proposing new multiple Lyapunov
function candidates, we formulate stability conditions and a control design procedure in the form of matrix inequalities. The
proposed Lyapunov functions are more general than the quadratic functions previously proposed in the literature, as they
incorporate the nonlinearities of the system and hence, lead to less conservative stability conditions. The stabilizing switch-
ing controllers are designed through a bi-level optimization problem that can be efficiently solved using a combination of a
convex optimization algorithm and a line search method. The proposed optimization problem is achieved using a special loop
transformation to normalize the arbitrary sector bounds and by other linear matrix inequalities (LMI) techniques.

Key words: Switched nonlinear systems; Stability; H∞ control; Linear matrix inequalities.

1 Introduction

Switched systems arise in cases where several dynamical models are required to represent a system due to e.g.
uncertainty in parameters, or specific applications that utilize switching between controllers in order to achieve a
higher performance (Liberzon, 2003; Hu et al., 2008; Aleksandrov et al., 2011; Geromel et al., 2013).

In this work, we study a special case of switched systems comprising a set of nonlinear subsystems. In each subsystem,
the evolution of states is governed by linear combinations of nonlinear state-dependent functions. Furthermore, a
switching signal determines the active subsystem at each time instant. The nonlinear functions are assumed to belong
to sector sets with arbitrary (positive or negative, and possibly asymmetric) slopes for the sector boundaries. Thus,
in the non-switched case, we cover more general cases of nonlinear functions compared e.g. to the Lure’ type systems
studied by Castelan et al. (2008); Gonzaga et al. (2012) and to the nonlinear systems that admit diagonal-type
Lyapunov functions investigated by Kazkurewicz and Bhaya (1999); Aleksandrov et al. (2011).

Our paper contains 3 main contributions with respect to the state-of-the-art: 1) inclusion of sector bounds with arbi-
trary slopes for nonlinear functions (moreover, the nonlinear functions are no longer required to have an unbounded
integral), 2) stability analysis for this class of switched systems under arbitrary switching using a less conservative
approach based on multiple Lyapunov functions and the concept of average dwell time, 3) stabilization and robust
disturbance attenuation of these systems using a bi-level convex optimization problem.

For stability analysis under arbitrary switching, we propose a family of Lyapunov functions that incorporate both
quadratic functions of states and also the integrals of nonlinearities in the subsystems. Since the proposed Lyapunov
candidate functions are general and include the nonlinear dynamics, this choice in general will lead to less conservative
stability conditions compared to e.g. the choice of quadratic functions (see Castelan et al. (2008); da Silva et al.
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(2013) for a specific non-switched case). Based on the concept of average dwell-time (Hespanha, 2004), which allows
fast switching occasionally, we formulate feasibility problem based on matrix inequalities that are nonlinear in a
single scalar variable, in order to find a lower bound for the average dwell time to ensure asymptotic stability.

Next, we investigate the stabilization problem for the given class of switched systems in case of unstable modes and
disturbances. Combining the proposed Lyapunov functions and their derivatives in order to obtain a single expression
that can be used to design controllers is challenging. This is because the Lyapunov functions include the integrals of
nonlinear functions while in the time derivative of the Lyapunov functions, the nonlinear functions appear explicitly.
Using a transformation to normalize the sector bounds and congruence transformations in order to re-arrange the
matrix inequalities into linear ones, design conditions are formulated in the form of a bi-level optimization problem
with high-level problem non-convex only in a single scalar variable, and a convex low-level problem. Hence, the
overall problem can be efficiently solved using a line search method along with LMIs feasibility checking.

In the following, we first present the problem statement and next, the stability conditions for the system under
arbitrary switching. The design of robust stabilizing controllers is presented next and finally, the performance of the
proposed scheme is shown using an example.

2 Problem statement and background

Consider the following switched nonlinear system:

ẋ(t) = Aσ(t)x(t) +Bσ(t)u(t) + Eσ(t)f
(
x(t)

)
+Hσ(t)ω(t), (1)

u(t) = Kσ(t)x(t) + Fσ(t)f(x), (2)

y(t) = Cσ(t)g
(
x(t)

)
, (3)

with x = (x1, . . . , xn)
T the state vector, u ∈ Rnu the control input, ω ∈ Rnω the exogenous input, y ∈ Rny the

output, and f : Rn → Rn : xi → fi(xi), g : Rn → Rn : xi → gi(xi) nonlinear vector functions. Moreover, the
switching signal σ is defined as a piecewise constant function, σ(·) : [0,+∞) → {1, . . . , N}.
Assumption 1. The scalar functions fi are continuous and belong to the class Sc1 defined as follows:

Sc1 = {φ : R → R|
(
φ(ζ)− αζ

)(
φ(ζ)− βζ

)
≤ 0, φ(0) = 0, ∀ζ ∈ R, α, β ∈ R, α < β}, (4)

Note that the functions fi are not required to lie only in the 1st and the 3rd quadrant as in Gonzaga et al. (2012),
nor to have unbounded integrals as in Kazkurewicz and Bhaya (1999); Aleksandrov et al. (2011).
Assumption 2. The scalar functions gi are continuous and belong to the class Sc2 defined as follows:

Sc2 = {ψ : R → R| ∃δ such that |ψ(ζ)| ≤ δ|ζ|, ∀ζ ∈ R}, (5)

In fact, Sc2 is a special case of the class Sc1 and functions that belong to the class Sc2 are bounded within a symmetric
convex double cone with the origin as apex. Moreover, the nonlinear functions in system (1) can also be considered
as state-dependent disturbances. Therefore, specific applications in which this type of disturbances affect the system,
can be treated with our proposed analysis and control tools.

For the non-switched case of system (1), Ionsian and Susya (1991) proved that a Lyapunov function formulated as:

V (x) = xTPx+

n∑

i=1

λi

∫ xi

0

fi(ξ)dξ, (6)

always exists provided that A is Hurwitz, xifi(xi) ≥ 0, ∀i and E has nonnegative off-diagonal elements. However,
stability of a composed switched system cannot be concluded from the stability of subsystems Liberzon (2003).
Stability under arbitrary switching for system (1) with Ai = 0 using a common Lyapunov function of the form (6)
but without the quadratic term is proposed by Aleksandrov et al. (2011). However, extension of the results obtained
by Aleksandrov et al. (2011) to our more general model (1)–(3) and more important, to the robust stabilization
problem is not possible. This is mainly because we need to combine and compare the Lyapunov functions and their
derivatives in order to compose a stabilizing control law and this is not feasible with the current formulation of the
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Lyapunov function (6) (due to the integral of the nonlinearities). One solution is to use only quadratic functions of
states. However, this choice would increase the conservatism in the stability analysis. Therefore, in the following, we
use a different Lyapunov function that still contains the nonlinearities in the model and meanwhile, is extendable
for the design of stabilizing switching laws. In the first stage, we propose a less conservative approach (compared to
the common Lyapunov function method) for stability under arbitrary switching, using the concept of dwell time.

3 Stability analysis under arbitrary switching with dwell time constraint

For the switched system (1) with u(t), ω(t) = 0 ∀t, the following set of Lyapunov functions is proposed:

Vℓ(x) = xTPℓx+ 2

n∑

i=1

λ
(ℓ)
i

∫ xi

0

fi(ξ)dξ, ℓ = 1, . . . , N. (7)

With this choice, the functions fi are not required to have an unbounded integral (in contrast to the Lyapunov
function in Aleksandrov et al. (2011)). The following theorem provides sufficient conditions for exponential stability
of (1) using the concepts of multiple Lyapunov functions (Colaneri et al., 2008) and the average dwell time (Hespanha,
2004). Note that asymptotic stability of all subsystems is a necessary condition here.

Theorem 3. Consider the system (1) with Assumption 1. Suppose there exist positive matrices Λℓ = diag{λ(ℓ)i },
symmetric matrices Pℓ, positive diagonal matrices Tℓ, for ℓ = 1, . . . , N , and a positive scalar ε, such that:

[

PℓAℓ +AT
ℓ Pℓ + ε(Pℓ + ΛℓDβ)− TℓDαDβ ⋆

ET
ℓ Pℓ + ΛℓAℓ +

1
2Tℓ(Dα +Dβ) ΛℓEℓ + ET

ℓ Λℓ − Tℓ

]

< 0, (8)

Pℓ + ΛℓDα > 0, ∀ℓ ∈ {1, . . . , N}, (9)

with Dα = diag{αi}, Dβ = diag{βi}. System (1) with u, ω ≡ 0 is globally exponentially stable under arbitrary
switching, if the average dwell time of consecutive switching instants for any arbitrary interval (t0, t) is bounded by:

TD(t0, t) ≥
1

ε
log

(

max
j,ℓ∈{1,...,N}

bmax,j

amin,ℓ

)

, ∀t > t0, (10)

where amin,ℓ denotes the smallest singular value of (Pℓ+ΛℓDα) and bmax,j is the largest singular value of (Pj+ΛjDβ).

Proof. Since λ
(ℓ)
i > 0, we have:

n∑

i=1

λ
(ℓ)
i

∫ xi

0

αiξdξ ≤
n∑

i=1

λ
(ℓ)
i

∫ xi

0

fi(ξ)dξ ≤
n∑

i=1

λ
(ℓ)
i

∫ xi

0

βiξdξ (11)

Therefore, for each Lyapunov function Vℓ, the following inequalities hold:

amin,ℓ‖x‖2 ≤ xT(Pℓ + ΛℓDα)x ≤ Vℓ(x) ≤ xT(Pℓ + ΛℓDβ)x ≤ bmax,ℓ‖x‖2 (12)

The sector condition (4), for the function fi, can be written in the following quadratic form:

[

xi

fi(xi)

]T [

αiβi −αi+βi

2

−αi+βi

2 1

][

xi

fi(xi)

]

≤ 0, (13)

Using the S-procedure (Boyd et al., 1994), if (8) and (13) hold, we obtain:

[

x

f(x)

]T [

PℓAℓ +AT
ℓ Pℓ PℓEℓ +AT

ℓ Λℓ

ET
ℓ Pℓ + ΛℓAℓ ΛℓEℓ + ET

ℓ Λℓ

][

x

f(x)

]

︸ ︷︷ ︸

V̇ℓ(x)

< −εxT(Pℓ + ΛℓDβ)x < −εVℓ(x) (14)
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Moreover, using (12), it can be easily shown that:

Vℓ(x) ≤ ηVj(x), ∀x ∈ Rn, ∀j, ℓ ∈ {1, . . . , N}, (15)

with:

η = max
j,ℓ∈{1,...,N}

(bmax,j/amin,ℓ) (16)

Now from (14) we obtain:

Vσ(tk)(x(t)) ≤ e−ε(t−tk)Vσ(tk)(x(tk)), ∀t ∈ [tk, tk+1), (17)

with tk the k-th switching time instant. Using (15) and by iteration, we get:

Vσ(tk)(x(t)) ≤ e−ε(t−tk)Vσ(tk)(x(tk)) ≤ e−ε(t−tk)ηVσ(tk−1)(x(tk)) ≤ · · · ≤ ηNσ(t,t0)e−ε(t−t0)Vσ(t0)(x(t0)), (18)

where Nσ(t, t0) denotes the number of switchings in (t0, t). Substituting

Nσ(t, t0) ≤ (t− t0)/TD, (19)

with TD the average dwell time between successive switching time instants, results in:

Vσ(tk)(x(t)) ≤ e
−(ε− log η

TD
)(t−t0)Vσ(t0)(x(t0)) (20)

Hence, using (20) and (12), we obtain:

‖x(t)‖ ≤ maxℓ∈{1,...,N} bmax,ℓ

minj∈{1,...,N} amin,j
e
− 1

2
(ε− log η

TD
)(t−t0)‖x(t0)‖ (21)

Therefore, system (1) is globally exponentially stable for any switching pattern with TD(t0, t) satisfying (10).

Remark 4. If there exist common P and Λ matrices that satisfy the inequalities (8), it is easy to show that the
bound (10) on the average dwell-time reduces to TD ≥ 0, since (15) will hold for η = 1.

Since (8) will be an LMI if the scalar variable ε is fixed, one can utilize an LMI optimization algorithm along with
a line search method to find a feasible solution for (8)-(9).

4 Design of robust stabilizing switching laws

In this section, we synthesize switching laws together with the control input u in order to stabilize the switched
nonlinear system and moreover, to minimize the effects of disturbances on the output of the system. Therefore, from
now on we assume that none of the subsystems of (1) is locally or globally asymptotically stable.

We assume that the disturbance ω belongs to the L2 space. The goal is to design a switching law σ of the form:

σ(t) = r(x(t)), (22)

with r(·) : Rn → {1, . . . , N} a piecewise constant function, such that the closed-loop system is globally asymptotically
stable when ω(t) = 0, ∀t ≥ 0, and moreover, the desired L2-gain γ from ω to y = Cσg(x) on any finite time interval
[0, T ] is achieved, i.e. ‖y‖L2[0,T ] ≤ γ‖ω‖L2[0,T ]. To this aim, a Lyapunov-like function is proposed as follows:

V(x) = min
ℓ=1,...,N

Vℓ(x), (23)
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with Vℓ selected as (7) with identical Λℓ. Further, we define the class of Metzler matrices M, with elements:

µij ≥ 0 ∀i 6= j,

N∑

i=1

µij = 0 ∀j, (24)

(Geromel and Colaneri, 2006). Moreover, we limit our search for Metzler matrices to the cases in which the diagonal
elements µii are all equal (as is also done in Geromel and Deaecto (2009); Deaecto and Geromel (2010)).

In order to reach control design conditions in the form of linear matrix inequalities, we propose a transformation
that brings the nonlinear functions fi in (1) into the sector [0, 1]. The transformed system, with nonlinear functions
f̄i bounded in the sector [0, 1], has the following structure:

ẋ(t) =Āσ(t)x(t) +Bσ(t)u(t) + Ēσ(t)f̄
(
x(t)

)
+Hσ(t)ω(t), (25)

u(t) =K̄σ(t)x(t) + F̄σ(t)f(x), (26)

y(t) =Cσ(t)g
(
x(t)

)
, (27)

with the following system matrices:

Āσ(t) = Aσ(t) + Eσ(t)Dα, Ēσ(t) = Eσ(t)Γ,

K̄σ(t) = Kσ(t) + Fσ(t)Dα, F̄σ(t) = Fσ(t)Γ, (28)

where Γ = diag{β1 − α1, . . . , βn − αn}, and f̄i defined as:

f̄i(xi) =
(
fi(xi)− αixi

)
/(βi − αi). (29)

Moreover, the Lyapunov function (7) has to be adapted to the transformed system. Therefore, we have:

V̄ℓ(x) = xTP̄ℓx+ 2

n∑

i=1

λ̄i

∫ xi

0

f̄i(ξ)dξ, (30)

P̄ℓ = Pℓ + diag
{

α1λ1, . . . , αnλn

}

, (31)

λ̄i = λi(βi − αi). (32)

The following theorem provides the design tools for robust H∞ control of the transformed system (25)–(27).
Theorem 5. Suppose there exist positive definite matrices Qℓ and Sℓ, positive diagonal matrices Z and Uℓ, matrices
Wℓ, Yℓ, and scalar µ̄ < 0, such that the following problem:

min
Qℓ,Wℓ,Yℓ,Sℓ,Uℓ,Z,ρ,µ̄

ρ (33)

subject to:











ĀℓQℓ +QℓĀ
T
ℓ +BℓWℓ +WT

ℓ B
T
ℓ + µ̄Qℓ ⋆ ⋆ ⋆ ⋆

ĀℓQℓ +BℓWℓ + Y T
ℓ B

T
ℓ + ZĒT

ℓ + Sℓ BℓYℓ + ĒℓZ + ZĒT
ℓ + Y T

ℓ B
T
ℓ − Uℓ ⋆ ⋆ ⋆

HT
ℓ HT

ℓ −ρI ⋆ ⋆

‖Cℓ‖F∆Qℓ 0 0 −I ⋆

−µ̄Qℓ 0 0 0 µ̄Qj












< 0, (34)

[

Qℓ Qℓ

Qℓ D−1
α,(1)(Dβ −Dα)Z

]

> 0, ∀ℓ, j ∈ {1, . . . , N}, ℓ 6= j. (35)

has an optimal solution ρ∗ > 0, then the switching rule:

σ̄(t) = r̄(x(t)) = min arg min
ℓ=1,...,N

V̄ℓ(x(t)), (36)
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1 with P̄ℓ = Q−1
ℓ and Λ̄ = Z−1, along with the state feedback control:

u(t) = K̄ℓx(t) + F̄ℓf̄(x), (37)

with K̄ℓ =WℓQ
−1
ℓ , F̄ℓ = YℓZ

−1, make the closed-loop switched system (25)–(27) globally asymptotically stable in the
absence of disturbances, and further, guarantee an upper bound γ∗ =

√
ρ∗ for L2-gain.

Proof. For the transformed system, V̄(x) is defined as in (23) based on V̄ℓ(x). Since V̄ is piecewise differentiable, we
define the so-called Dini derivative (see Geromel and Colaneri (2006)):

D+
(
V̄(x(t))

)
= lim

δt→0+
sup

V̄(x(t+ δt))− V̄(x(t))
δt

(38)

Assume that at an arbitrary time t ≥ 0, the switching law is given by σ̄(t) = r̄(x(t)) = ℓ for some ℓ ∈ I(x(t)) = {ℓ :
V̄(x) = V̄ℓ(x)}. Hence, from (38) and (1), we have (using Theorem 1 of Lasdon (1970)):

D+
(
V̄(x(t))

)
= min

i∈I(x(t))

[∂V̄i
∂x

(

Āℓx+Bℓu+ Ēℓf(x) +Hℓω
)]

≤ ∂V̄ℓ
∂x

(

Āℓx+Bℓu+ Ēℓf(x) +Hℓω
)

(39)

where ℓ denotes the index of the active subsystem determined from (36). We consider a Metzler matrix with equal
diagonal elements, i.e. µii = µ̄, µ̄ < 0. This implies that

µ̄−1
N∑

j=1,j 6=ℓ

µjℓ = 1 (40)

Taking this into account, the Schur complement is performed to (34) with respect to the last row and column. We
multiply the result by µjℓ, sum up for all j 6= ℓ and then, multiply by µ̄−1.

Now, we pre- and post-multiply the result by the matrix diag{Q−1
ℓ , Z−1, I, I} with Q−1

ℓ = P̄ℓ, Z
−1 = Λ̄, and next,

we change the variables WℓQ
−1
ℓ = K̄ℓ, YℓZ

−1 = F̄ℓ, SℓQ
−1
ℓ = 0.5T̄ℓ, and finally UℓZ

−1 = T̄ℓ. Furthermore, we
define a new variable Tℓ for the positive diagonal matrix Λ̄T̄ℓ. Applying again the Schur complement to the resulting
matrix with respect to the fourth row and column, rearranging terms and pre-multiplying by [xT, f̄T(x), ωT] and
post-multiplying by its transpose yields:







x

f̄(x)

ω







T 





P̄ℓ(Āℓ +BℓK̄ℓ) + (Āℓ +BℓK̄ℓ)
TP̄ℓ ⋆ ⋆

(Ēℓ +BℓF̄ℓ)
TP̄ℓ + Λ̄(Āℓ +BℓK̄ℓ) Λ̄(Ēℓ +BℓF̄ℓ) + (Ēℓ +BℓF̄ℓ)

TΛ̄ ⋆

HT
ℓ P̄ℓ HT

ℓ Λ̄ 0













x

f̄(x)

ω







︸ ︷︷ ︸

∂V̄ℓ
∂x

(
Āℓx+Bℓu+Ēℓf̄(x)+Hℓω

)

<

[

x

f̄(x)

][

0 ⋆

− 1
2Tℓ Tℓ

][

x

f̄(x)

]

−
N∑

j=1

µjℓx
TP̄jx− ‖Cℓ‖2FxT∆2x+ ρωTω (41)

Based on the sector condition (13) with αi = 0, βi = 1, and since V̄j ≥ V̄ℓ for all j ∈ {1, . . . , N} \ {ℓ}, we obtain:

D+
(
V̄(x(t))

)
≤ ∂V̄ℓ

∂x

(

Āℓx+Bℓu+ Ēℓf(x) +Hℓω
)

< −
N∑

j=1

µjℓx
TP̄jx− ‖Cℓ‖2FxT∆2x+ ρωTω

< −xTP̄ℓx

N∑

j=1

µjℓ

︸ ︷︷ ︸

=0

−‖Cℓ‖2FxT∆2x+ ρωTω < −yTy + ρωTω. (42)

1 Note that in (36), we take the minimum argument, in case of having multiple minimum Vℓ (as a result of sliding motion).
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The last inequality is concluded using the following:

yTy = ‖y‖22 = ‖Cσ(t)g(x)‖22 ≤ ‖Cσ(t)‖2F · ‖g(x)‖22 ≤ ‖Cσ(t)‖2FxT∆2x, (43)

where the first inequality is obtained using (2.3.7) of Golub and Van Loan (1989) and ‖ · ‖F is the Frobenius norm.
The positive-definiteness of the Lyapunov functions (7) defined for the original system should be preserved under the
proposed transformation. Pre- and post-multiplying (35) by the diagonal matrix diag{Q−1

ℓ , I}, and then performing
the Schur complement to the result, we obtain:

P̄ℓ −Dα,(1)(Dβ −Dα)
−1Λ̄ > 0, (44)

since Q−1
ℓ = P̄ℓ and Z−1 = Λ̄. We use the fact that Dα = diag{αi} can be written as subtraction of two positive

definite diagonal matrices, i.e. Dα = Dα,(1) −Dα,(2). Therefore, (44) guarantees

P̄ℓ −Dα(Dβ −Dα)
−1Λ̄ > 0. (45)

On the other hand, using (31)–(32), we get:

0 <P̄ℓ −Dα(Dβ −Dα)
−1Λ̄ = Pℓ +DαΛ−Dα(Dβ −Dα)

−1(Dβ −Dα)Λ = Pℓ (46)

Finally, adding and subtracting the term DαΛ to the condition Q−1
ℓ = P̄ℓ > 0, yields:

0 < P̄ℓ −DαΛ +DαΛ = Pℓ +DαΛ. (47)

Condition (47) is similar to (9) which ensures positive-definiteness of Lyapunov functions (7).

Remark 6. If the variable µ̄ is fixed, the optimization problem (33)–(35) can be efficiently solved by any LMI solver.
The optimal value of µ̄ corresponding to the minimum γ =

√
ρ is obtained by a line search method together with LMIs

feasibility checking. Note that the γ∗ obtained from the optimization (33)–(35) is an upper bound for the L2-gain of
the system (25)–(27). Hence, the actual controlled system would outperform the estimated L2-gain γ

∗.
Proposition 7. The switching law σ(t) determined by (36) with:

λi = (Z−1)ii · (βi − αi)
−1, (48)

Pℓ = Q−1
ℓ − Z−1 · diag

{ α1

β1 − α1
, . . . ,

αn

βn − αn

}

, (49)

together with the state feedback control law (2) with gains:

Fℓ = F̄ℓΓ
−1, Kℓ = K̄ℓ − FℓDα, (50)

make the closed-loop switched system (1)–(3) globally asymptotically stable for ω ≡ 0, and guarantees an upper bound
for the L2-gain γ∗ (obtained from optimization (33)-(35)) for disturbance signals that belong to the L2 space. The
proof follows directly from the relations between the original and the transformed system’s matrices.
Remark 8. Indeed, asymptotic stability of (1) under switching law (36) is ensured even if sliding mode behavior
occurs. In case of a sliding mode, the result of argminℓ=1,...,N Vℓ(x(t)) might not be unique. However, using (42)
(assume u, ω ≡ 0 for simplicity), it can be shown that the time-derivative of the minimum Lyapunov function is
strictly negative along the Filippov solution of the system (Similar to the approach in Remark 2 of Geromel and
Colaneri (2006)). From the Lyapunov function (23) and the time-derivative (39), a switch from any ℓ ∈ I(x) to
some j ∈ I(x) is allowed only if:

∂Vj
∂x

(Aℓx+ Eℓf(x)) ≤
∂Vℓ
∂x

(Aℓx+ Eℓf(x)). (51)

For the extended model of the switched system including the sliding motion, formulated as:

ẋ(t) =
( ∑

ℓ∈I(x)

θℓAℓ

)

x+
( ∑

ℓ∈I(x)

θℓEℓ

)

f(x), 0 ≤ θℓ,
∑

ℓ∈I(x)

θℓ = 1, (52)
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we have:

∂Vj
∂x

[( ∑

ℓ∈I(x)

θℓAℓ

)

x+
( ∑

ℓ∈I(x)

θℓEℓ

)

f(x)

]

=
∑

ℓ∈I(x)

θℓ
∂Vj
∂x

(

Aℓx+ Eℓf(x)
)

≤
∑

ℓ∈I(x)

θℓ
∂Vℓ
∂x

(

Aℓx+ Eℓf(x)
)

< 0,

where the first inequality holds from (51) under sliding mode, and the last inequality is justified using the same
reasoning as in (42). Hence, we conclude that the derivative of the positive definite function Vj is strictly negative
along the trajectories of (52).

5 Example

To show the performance and also to emphasize that other methods in the literature are not able to cope with
the more general case we discussed in this paper, we choose an example of the system (1)–(3) with the following
functions and system matrices:

f1(x1) =

{

| sin(x1)| −π < x1 < π

0 otherwise
, f2(x2) =

{

2x2 0 ≤ x2

0.5x2 0 > x2
(53)

A1 =

[

4 1

2.3 3

]

, A2 =

[

−2 1

2 4

]

, A3 =

[

2 −1

−7 4

]

(54)

E1 =

[

2 8

−3 1

]

, E2 =

[

−3 5

0 2

]

, E3 =

[

4 8

−1 1

]

(55)

and Hℓ = I2×2, Bℓ = [1, 1]T, Cℓ = [1, 1]. Moreover, gi(xi) = xi and the disturbance signals are taken as ω1(t) =
ω2(t) = 100, for 0 ≤ t ≤ 1, and otherwise equal to zero. Note that none of the subsystems has Hurwitz matrices.
Moreover, function f1 does not have unbounded integral as it is a requirement for the methods in Kazkurewicz
and Bhaya (1999) and Aleksandrov et al. (2011). Now following the design procedure in Theorem 5 with sector
bounds (α1, β1) = (−1, 1) and (α2, β2) = (0.5, 2), the state feedback (2) along with the switching rule (36) make the
equilibrium x = 0 globally asymptotically stable in the absence of disturbance. Using a line search method and the
convex optimization problem (33)–(35) (solved using the Yalmip toolbox and the SeDuMi solver), the best value
obtained for γ is 0.1318 for all ω that belong to the L2 space. Moreover, the obtained matrices for the Lyapunov
functions and the feedback gain matrices are:

P1 =

[

10.3307 −10.3314

−10.3314 10.3323

]

, P2 =

[

9.4144 −9.4169

−9.4146 9.4197

]

, P3 =

[

11.4676 −11.4666

−11.4666 11.4658

]

, Λ =

[

0.5078 0

0 0.2979

]

K1 = 104 ·
[

4.8258 −5.9892
]

, K2 = 104 ·
[

4.2731 −5.0686
]

, K3 = 105 ·
[

−1.2504 1.0872
]

,

F1 =
[

4.6502 −5.2399
]

, F2 =
[

1.6438 −3.3400
]

, F3 =
[

2.3197 −4.6176
]

As depicted in Fig. 1, the designed switching control strategy is able to reduce the effects of severe disturbance signals
and further, makes the closed-loop system stable. The steady state response of the system contains oscillations with
a very small amplitude mainly because of function f1. For the simulated example and the given disturbance inputs,
the actual L2-gain is calculated 0.0529, which is indeed smaller than γ∗ = 0.1318.

6 Conclusions

Stability analysis and H∞ control for a class of switched nonlinear systems with general point symmetric sector
conditions were presented. Combining multiple Lyapunov functions that contain both quadratic functions of the
states and integrals of the nonlinearities, we have formulated stability conditions under arbitrary switching and
the design of robust stabilizing controllers in the form of matrix inequalities. This is a great advantage in contrast
to the general case for switched nonlinear systems, which is based on searching for Lyapunov functions without a
pre-defined structure and which involves solving multi-parametric optimization problems. Possible extensions to the
current work are 1) introducing different sector bounds for different quadrants to better characterize the sector-
bounded nonlinear functions and to reduce the conservatism even more, 2) investigating the possibility of using
polynomial Lyapunov functions (Chesi et al., 2012) for stability analysis, 3) calculating the largest sector bounds
that ensure stability, 4) designing consistent switching control schemes (Geromel et al., 2013).
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Fig. 1. (a) State evolution of the closed-loop system, (b) Switching signal selecting the active subsystem
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