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Robust H∞ Control of a Class of Switched Nonlinear Systems with

Application to Macroscopic Urban Traffic Control

Mohammad Hajiahmadi, Bart De Schutter, and Hans Hellendoorn

Abstract— This paper presents stability analysis and robust
H∞ control for nonlinear switched systems bounded in sectors
with arbitrary boundaries. By proposing new and more general
multiple Lyapunov functions that incorporate nonlinearities
in the system, we formulate the stability conditions under
arbitrary switching in the form of linear matrix inequalities.
Moreover, an optimization problem subject to bilinear matrix
inequalities is established in order to determine the minimum
L2-gain along with the optimal matrices for the Lyapunov
functions and for the robust state feedback gains. Finally, the
optimization problem is recast as a bi-level convex optimization
problem using loop transformation and other linear matrix
inequalities techniques. Furthermore, in order to illustrate the
performance of the proposed switching control scheme, results
for control of an urban network partitioned into sub-regions
and modeled using a high-level hybrid model are presented.

I. INTRODUCTION

Switched systems are a class of hybrid systems charac-

terized by a set of linear and/or nonlinear subsystems and a

switching signal selecting the active subsystems [1]. Stability

analysis, stabilization, and control synthesis for such systems

have been studied in recent years [1]–[3].

In this work, we consider a class of switched systems

composed of several nonlinear subsystems. Further, a state

and/or time dependent switching signal determines the active

subsystem. The nonlinear functions are assumed to belong to

sector sets with arbitrary (and possibly asymmetric) slopes

for the sector boundaries. Thus, we cover more general

cases of nonlinear functions compared e.g. to the Lure’ type

systems studied by [4], [5] and to the systems that admit

diagonal-type Lyapunov functions investigated by [6], [7]).

To motivate the research and to provide a practical appli-

cation, we draw the attention to the hybrid high-level model

developed by [8] for large-scale urban traffic networks. In

this model, the evolution of the traffic states is represented by

several nonlinear dynamics, each corresponding to a partic-

ular traffic signal timing plan and a switching controller that

determines the operating mode of the system. The switching

controller needs to be designed in a way that guarantees

stability and high overall performance of the whole system

which is exposed to uncertain trip demands and other sources

of disturbance. The required design scheme should be able

to control the system in real-time. However, achieving the

aforementioned performance goals is challenging, mainly
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due to the existence of multiple nonlinear functions bounded

in sector sets with arbitrary slopes and the switching between

nonlinear subsystems.

For this purpose, we use a set of Lyapunov functions that

have both quadratic functions of states and also the integrals

of nonlinearities in the subsystems. Since the proposed

Lyapunov functions are general and include the nonlinear

dynamics, we expect that this choice leads to less conser-

vative stability conditions compared to e.g. the choice of

quadratic functions (see [4], [9] for a specific non-switched

case). Furthermore, we will utilize some matrix inequality

techniques to eventually establish sufficient conditions for

the design of robust stabilizing switching control laws in

the form of an optimization problem constrained by bilin-

ear matrix inequalities. The optimization problem gives the

minimum possible L2-gain for the switched system under

control along with the optimal state feedback gains.

In order to further improve the efficiency, we reformulate

the optimization problem using a transformation technique to

normalize the sector boundaries and additional congruence

transformations. At the end, we obtain a bi-level optimization

problem with high level problem that is non-convex only

in a single scalar variable, while the low level optimization

problem is convex. Hence, we are able to solve it efficiently

using a line search method along with a convex optimization

method and subject to LMI constraints.

The rest of the paper is organized as follows. In Sec-

tion II the particular class of switched nonlinear systems

under study is presented. Section III presents the stability

conditions under arbitrary switching patterns. A set of new

Lyapunov functions that contain the nonlinearities in the

model is used in Section IV, as basis for the design of

robust stabilizing controllers. Finally, the performance of the

proposed scheme is evaluated using an urban network control

case study in Section V.

II. PROBLEM STATEMENT AND BACKGROUND

Consider the switched nonlinear system:

ẋ(t) = Aσx(t) +Bσu(t) + Eσf
(
x(t)

)
+Hσω(t), (1)

u(t) = Kσx(t) + Fσf(x), (2)

y(t) = Cσg
(
x(t)

)
, (3)

with x = (x1, . . . , xn)
T the state, u ∈ R

nu the control input,

ω ∈ R
nω the disturbance input, y ∈ R

ny the output, and

f : Rn → R
n : xi → fi(xi), g : Rn → R

n : xi → gi(xi)
nonlinear vector functions. Moreover, the switching signal σ
is defined as a piecewise constant function, σ(·) : [0,+∞) →
{1, . . . , N}.



Assumption 1: The scalar functions fi are continuous and

belong to the class Sc1 defined as:

Sc1 = {φ : R → R|
(
φ(ζ)− αζ

)(
φ(ζ)− βζ

)
≤ 0}, (4)

for all ζ ∈ R with α, β ∈ R and α < β.

Assumption 2: The scalar functions gi are continuous and

belong to the class Sc2 defined as follows:

Sc2 = {ψ : R → R| ∃δ : |ψ(ζ)| ≤ δ|ζ|, ∀ζ ∈ R}, (5)

For the non-switched form of system (1) with Aℓ = 0, ∀ℓ,
it is proved [6] that the equilibrium xe = 0 is globally

asymptotically stable if and only if: 1) xifi(xi) > 0, ∀i,
2)

∫ xi

0
fi(ξ)dξ → +∞ as |xi| → ∞, ∀i, 3) E is a Hurwitz

diagonally stable matrix. Moreover, they proved that

V (x) =

n∑

i=1

λi

∫ xi

0

fi(ξ)dξ, (6)

is a diagonal-type Lyapunov function. However, stability of

a switched system cannot be concluded from the stability

of subsystems. According to [1], it is sufficient to find a

common Lyapunov function (CLF) for a switched system

in order to prove stability. In a special case of (1)–(3) with

Aℓ = 0, ∀ℓ ∈ {1, . . . , N}, and with the external inputs u and

ω equal to zero, a CLF can be constructed by combining the

integrals of the nonlinearities of the model [7]. However,

extension of the results for arbitrary switching proposed by

[7] to the general system (1)–(3) and to the stabilization

and robust control problem is not possible. Therefore, in

the next sections, we use a different Lyapunov function

that still contains the nonlinearities in the model and at the

same time, it is suitable for the design of robust disturbance

rejection switching laws. Another major advantage of our

proposed methodology will be establishing efficient convex

optimization problems subject to LMI constraints.

III. STABILITY ANALYSIS UNDER ARBITRARY

SWITCHING

For the system (1) with u(t), ω(t) = 0 ∀t, the following

common Lyapunov function is proposed:

V (x) = xTPx+ 2
n∑

i=1

λi

∫ xi

0

fi(ξ)dξ. (7)

The time derivative of (7) along the trajectories of the

switched system is obtained as follows (the time index t
is dropped for simplicity):

V̇ (x) =

[
x

f(x)

]T [
PAℓ +AT

ℓ P PEℓ +AT
ℓ Λ

ET
ℓ P + ΛAℓ ΛEℓ + ET

ℓ Λ

] [
x

f(x)

]

(8)

with Λ = diag{λi} and ℓ index of the active subsystem. Now

noticing that the nonlinear functions fi belong to the class

Sc1, the following theorem provides sufficient conditions for

the asymptotic stability of (1) with u, ω ≡ 0.

Theorem 1: Assume there exists a symmetric matrix P ,

a diagonal matrix Λ, and a positive definite and diagonal

matrix T = diag{τ1, . . . , τn}, such that the LMIs:
[

PAℓ +AT
ℓ P − T DαDβ ⋆

ET
ℓ P + ΛAℓ +

1
2T (Dα +Dβ) ΛEℓ + ET

ℓ Λ− T

]

< 0

∀ℓ ∈ {1, . . . , N}, (9)

P +DαΛ > 0, (10)

P +DβΛ > 0, (11)

with Dα = diag{α1, . . . , αn}, Dβ = diag{β1, . . . , βn}, are

feasible, then the switched system (1) with u, ω ≡ 0 will be

asymptotically stable under arbitrary switching.

Proof: It is easy to verify that condition (4), for the

function fi, can be written in the following quadratic form:
[

xi
fi(xi)

]T [
αiβi −αi+βi

2

−αi+βi

2 1

] [
xi

fi(xi)

]

≤ 0, (12)

The main idea is that the derivative (8) should be negative

whenever (12) holds for all i ∈ {1, . . . , n}. Using the so-

called S-procedure [10], the inequalities (8) and (12) can be

combined, resulting in the LMI (9). Furthermore, we have

for any xi ∈ R:

n∑

i=1

λi

∫ xi

0

αiξdξ ≤
n∑

i=1

λi

∫ xi

0

fi(ξ)dξ

≤
n∑

i=1

λi

∫ xi

0

βiξdξ (13)

Therefore, in order to guarantee that V (x) > 0, we need:

xTPx+ xTDαΛx > 0, (14)

xTPx+ xTDβΛx > 0. (15)

Hence, it is sufficient to have matrices P+DαΛ and P+DβΛ
positive definite as in (10)–(11).

IV. DESIGN OF ROBUST STABILIZING

SWITCHING LAWS

Before, we discussed the stability analysis for switched

systems (1)–(3) under given switching signals. In this sec-

tion, we synthesize switching laws together with the control

input u in order to stabilize the switched system and more-

over, to minimize the effects of disturbances on the output of

the system. We assume that the disturbance vector ω belongs

to the space of square integrable functions. The system has

L2-gain γ > 0 under some switching law σ if ‖y‖L2[0,T ] ≤
γ‖ω‖L2[0,T ] for all nonzero ω ∈ L2[0, T ] (0 ≤ T <∞) and

for initial condition x(0) = 0.

A Lyapunov-like function is proposed as follows:

V(x) = min
ℓ=1,...,N

Vℓ(x), (16)

with Vℓ selected as:

Vℓ(x) = xTPℓx+ 2

n∑

i=1

λi

∫ xi

0

fi(ξ)dξ. (17)

Further, we define the class of Metzler matrices M, with

elements µij ≥ 0 ∀i 6= j,
N∑

i=1

µij = 0 ∀j [11]. The main

results are summarized in the following theorem.



Theorem 2: Suppose there exist a Metzler matrix M ∈ M
with elements µij , positive definite matrices Pℓ, a diagonal

matrix Λ, matrices Kℓ and Fℓ, and positive diagonal matrices

Tℓ = diag{τ1,ℓ, . . . , τn,ℓ} that give an optimal solution for

the problem (18)–(20), then the control input:

u(t) = K∗
ℓ x+ F ∗

ℓ f(x), (21)

along with the min-switching law:

r(x(t)) = arg min
ℓ=1,...,N

Vℓ(x(t)), (22)

make the closed-loop switched system (1)–(3) asymptotically

stable in the absence of disturbance and moreover, ensure the

L2-gain γ∗ =
√
ρ∗ from ω to the output y.

Proof: The Lyapunov function (16) is piecewise differ-

entiable. Therefore, we define the so-called Dini derivative

[11], [12]:

D
+
(
V(x(t))

)
= lim

δt→0+
sup

V(x(t+ δt))− V(x(t))
δt

(23)

Assume that at a time instant t ≥ 0, the switching law is

given by σ(t) = r(x(t)) = ℓ for some ℓ ∈ I(x(t)) = {ℓ :
V(x) = Vℓ(x)}. Hence, from (23) and (1), we have ( [13]):

D
+
(
V(x(t))

)
= min

i∈I(x(t))

[∂Vi
∂x

(

Aℓx+ Eℓf(x)
)]

≤ ∂Vℓ
∂x

(

Aℓx+ Eℓf(x)
)

(24)

where ℓ denotes the index of the active subsystem calculated

from (22). Applying the Schur complement to (19) with

respect to the fourth row and column, rearranging terms

and pre- and post-multiplying it by [xT, fT(x), ωT] and its

transpose yields:

∂Vℓ
∂x

(
Aℓx+Bℓu+ Eℓf(x) +Hℓω

)
< −

N∑

j=1

µjℓx
TPjx

+

[
x

f(x)

] [
TℓDαDβ ⋆

− 1
2Tℓ(Dα +Dβ) Tℓ

] [
x

f(x)

]

− ‖Cℓ‖2FxT∆2x+ ρωTω (25)

Since (19) is valid for some M ∈ M and Vj ≥ Vℓ for all

j ∈ {1, . . . , N} \ {ℓ}, and based on (12), we obtain:

D
+
(
V(x(t))

)
≤ ∂Vℓ

∂x

(

Aℓx+Bℓu+ Eℓf(x) +Hℓω
)

< −
N∑

j=1

µjℓx
TPjx− ‖Cℓ‖2FxT∆2x+ ρωTω

< −xTPℓx
N∑

j=1

µjℓ

︸ ︷︷ ︸

=0

−‖Cℓ‖2FxT∆2x+ ρωTω

< −yTy + ρωTω. (26)

The last inequality is justified using:

yTy = ‖Cσ(t)g(x)‖22 ≤‖Cσ(t)‖2F · ‖g(x)‖22
≤ ‖Cσ(t)‖2FxT∆2x, (27)

where the first inequality is obtained using relation (2.3.7)

of [14] and ‖ · ‖F is the Frobenius norm.

The optimization problem (18)–(20) involves solving Bilin-

ear Matrix Inequalities (BMIs), which is in general a com-

putationally hard problem. Therefore, using some transfor-

mation techniques, we reformulate the problem as a convex

optimization problem.

First, we use a transformation to bring the functions fi into

the sector [0, 1]. The transformed system, with functions f̄i
bounded in the sector [0, 1], has the following form:

ẋ(t) =Āσx(t) +Bσu(t) + Ēσ f̄
(
x(t)

)
+Hσω(t), (28)

u(t) =K̄σx(t) + F̄σf(x), (29)

y(t) =Cσg
(
x(t)

)
, (30)

with system matrices:

Āσ(t) = Aσ(t) + Eσ(t)Dα, Ēσ(t) = Eσ(t)Γ,

K̄σ(t) = Kσ(t) + Fσ(t)Dα, F̄σ(t) = Fσ(t)Γ, (31)

where Dα = diag{αi}, and Γ = diag{βi−αi}, i = 1, . . . , n.

Moreover, the Lyapunov function (17) has to be adapted to

the transformed system. Therefore, we have:

V̄ℓ(x) = xTP̄ℓx+ 2
n∑

i=1

λ̄i

∫ xi

0

f̄i(ξ)dξ, (32)

P̄ℓ = Pℓ + diag
{

α1λ1, . . . , αnλn

}

, (33)

λ̄i = λi(βi − αi). (34)

The following theorem provides the design tools for robust

control of the transformed system (28)–(30).

Theorem 3: Suppose there exist positive definite matrices

Qℓ and Sℓ, positive diagonal matrices Z and Uℓ, matrices

Wℓ, Yℓ, and scalar µ̄ < 0, such that the problem (35)–(37)

has an optimal solution ρ∗, then the switching rule:

σ̄(t) = r̄(x(t)) = arg min
ℓ=1,...,N

V̄ℓ(x(t)), (37)

with P̄ℓ = Q−1
ℓ and Λ̄ = Z−1, along with the controller:

u(t) = K̄ℓx(t) + F̄ℓf̄(x), (38)

with K̄ℓ = WℓQ
−1
ℓ , F̄ℓ = YℓZ

−1, make the closed-loop

switched system (28)–(30) globally asymptotically stable in

the absence of disturbances, and further, guarantee an upper

bound γ∗ =
√
ρ∗ for L2-gain.

Proof: We use a backward reasoning approach. First,

we consider a Metzler matrix with equal diagonal elements,

i.e. µii = µ̄, µ̄ < 0. Based on the definition of Metzler

matrices, this implies that µ̄−1
∑N

j=1,j 6=ℓ µjℓ = 1. Taking

this into account, the Schur complement is performed to (36)

with respect to the last row and column. We multiply the

result by µjℓ, sum up for all j 6= ℓ, and then multiply by

µ̄−1. Now, the resulting matrix is pre- and post-multiplied by

the matrix diag{Q−1
ℓ , Z−1, I, I} with Q−1

ℓ = P̄ℓ, Z
−1 = Λ̄,

and the variables WℓQ
−1
ℓ = K̄ℓ, YℓZ

−1 = F̄ℓ, SℓQ
−1
ℓ = T̄ℓ,

UℓZ
−1 = T̄ℓ are assigned. Furthermore, a new variable Tℓ

for the positive diagonal matrix Λ̄T̄ℓ is defined. Now the final



min
Pℓ,Λ,Kℓ,Fℓ,Tℓ,ρ,µjℓ

ρ (18)

subject to:








Pℓ(Aℓ +BℓKℓ) + (Aℓ +BℓKℓ)
TPℓ − TℓDαDβ +

N∑

j=1

µjℓPj ⋆ ⋆ ⋆

(Eℓ +BℓFℓ)
TPℓ + Λ(Aℓ +BℓKℓ) +

1
2Tℓ(Dα +Dβ) Λ(Eℓ +BℓFℓ) + (Eℓ +BℓFℓ)

TΛ− Tℓ ⋆ ⋆
HT

ℓ Pℓ HT
ℓ Λ −ρI ⋆

‖Cℓ‖F∆ O O −I









< 0

(19)
[
Pℓ +DαΛ ⋆

O Pℓ +DβΛ

]

> 0, Pℓ > 0, ρ > 0, ∀ℓ ∈ {1, . . . , N}. (20)

min
Qℓ,Wℓ,Yℓ,Sℓ,Uℓ,Z,ρ,µ̄

ρ (35)

subject to:








ĀℓQℓ +QℓĀ
T
ℓ +BℓWℓ +WT

ℓ B
T
ℓ + µ̄Qℓ ⋆ ⋆ ⋆ ⋆

ĀℓQℓ +BℓWℓ + Y T
ℓ B

T
ℓ + ZĒT

ℓ + Sℓ BℓYℓ + ĒℓZ + ZĒT
ℓ + Y T

ℓ B
T
ℓ − Uℓ ⋆ ⋆ ⋆

HT
ℓ HT

ℓ −ρI ⋆ ⋆
‖Cℓ‖F∆Qℓ O O −I ⋆

−µ̄Qℓ O O O µ̄Qj









< 0, (36)

[
Qℓ Qℓ

Qℓ D−1
α,(1)(Dβ −Dα)Z

]

> 0, ∀ℓ, j ∈ {1, . . . , N}, ℓ 6= j.

matrix inequality resembles (36), with αi = 0, βi = 1 for the

transformed system.

The positive-definiteness of the Lyapunov functions (17)

defined for the original system should be preserved under

the proposed transformation. Pre- and post-multiplying (37)

by the diagonal matrix diag{Q−1
ℓ , I}, and then performing

the Schur complement to the result, we obtain:

P̄ℓ −Dα,(1)(Dβ −Dα)
−1Λ̄ > 0, (39)

since Q−1
ℓ = P̄ℓ and Z−1 = Λ̄. We use the fact that

Dα = diag{αi} can be written as subtraction of two

positive definite diagonal matrices, i.e. Dα = Dα,(1)−Dα,(2).

Therefore, (39) guarantees P̄ℓ −Dα(Dβ −Dα)
−1Λ̄ > 0. On

the other hand, using (33)–(34), we get:

0 < P̄ℓ −Dα(Dβ −Dα)
−1Λ̄ =

= Pℓ +DαΛ−Dα(Dβ −Dα)
−1(Dβ −Dα)Λ = Pℓ (40)

Finally, adding and subtracting the term DαΛ to the condition

Q−1
ℓ = P̄ℓ > 0, yields:

0 < P̄ℓ −DαΛ +DαΛ = Pℓ +DαΛ. (41)

Condition (41) is in fact similar to the original condition

(20). Hence, (17) is ensured to be positive definite under the

proposed transformation.

Remark 1: Note that if the variable µ̄ is fixed, the opti-

mization problem (35)–(37) can be efficiently solved by any

LMI solver. Therefore, the optimal value of µ̄ corresponding

to the minimum gain γ =
√
ρ can be obtained by a line

search method together with LMIs feasibility checking.

G
(n

(t
))

(v
eh

/
s)

T
ri
p
co

m
p
le
ti
o
n
fl
o
w

ncr

Accumulation, n(t) (veh)

Fig. 1. Schematic macroscopic fundamental diagram.

Proposition 1: The switching law (22) with

λi = (Z−1)ii · (βi − αi)
−1, (42)

Pℓ = Q−1
ℓ − Z−1 · diag

{ α1

β1 − α1
, . . . ,

αn

βn − αn

}

, (43)

together with the state feedback control (2) with:

Fℓ = F̄ℓΓ
−1, Kℓ = K̄ℓ − FℓDα, (44)

make the closed-loop switched system (1)–(3) globally

asymptotically stable for ω ≡ 0, and guarantees an upper

bound for the L2-gain γ∗ (obtained from (35)-(37)).

Proof: The proof follows directly from the relation

between the transformed system and the original system.

V. CASE STUDY: URBAN NETWORK CONTROL

For urban networks, a low-scatter macroscopic fundamen-

tal diagram (MFD) (as depicted in Fig. 1) can be captured

in case the congestion is evenly distributed in the network.
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Fig. 3. Trip demands: region 1 to 2 (ω12), and inside region 2 (ω22).

The MFD relates the network’s vehicle accumulation and the

space-mean flow [15]. For an urban network divided into two

regions (as in Fig. 2): the periphery (region 1) and the city

center (region 2), a hybrid MFD-based model is formulated

as follows (based on the two-state model in [16]):

ṅ1(t) = −G1,j(n1(t)) · u(t) + ω12(t), (45)

ṅ2(t) = −G2,j(n2(t)) +G1,j(n1(t)) · u(t) + ω22(t), (46)

with ni(t), the accumulation in region i at time t. The trip

completion flow Gi,j(ni(t)) (veh/s) is defined as the rate

of vehicles reaching their destinations. The timing plans for

intersections inside each region can be altered. Consequently,

instead of one MFD, a set of MFDs (each corresponding

to a different timing plan) is defined. Therefore, Gi,j , with

j = 1, . . . , Ni, constitute the MFDs for region i, with Ni the

total number of MFDs for region i.

The perimeter control u ∈ [0, 1] may restrict vehicles to

transfer between regions (in our case, the flow of vehicles is

restricted from region 1, the periphery, to region 2, the city

center). The perimeter control can be realized by e.g. coor-

dinating green and red durations of signalized intersections

placed on the border between two regions.

We assume that each of the regions has three timing plans

and therefore three MFDs (N1 = N2 = 3). Each MFD is

modeled by an exponential function Gi,j(n2) = 1/3600 ·
ai,j ·ni ·exp(−1/2·(ni/ni,crt,j)2), i ∈ {1, 2}, j ∈ {1, . . . , 3}.

The parameters used in our simulation are as follows:

G1,j : a1,1 = 17.8, a1,2 = 9.75, a1,3 = 13, n1,crt,j = 3500

G2,j : a2,j = a1,j/1.3, n2,crt,j = n1,crt,j/1.2,

Furthermore, the perimeter control input u can be assumed as

a quantized input that can take values from a finite set. This

is not a conservative assumption as in reality the perimeter

control is realized by manipulating the green to red duration

of traffic signals and investigations have shown that the

evolution of flows is not very sensitive to small changes in the

perimeter signal [8]. Therefore, we assume that the perimeter

inputs can takes values from the set {0.1, 0.3, 0.5, 0.7, 0.9}.

By quantizing the perimeter input, the model (45)–(46)

can be reformulated in the format of the switched system

(1)–(3). The quantized perimeter input introduces 5 modes.

Each region is assumed to have 3 MFDs. Therefore, the total

number of modes (subsystems) will be 3× 3× 5 = 45. The

resulting system matrices are as follows1:

Aℓ = 0, Bℓ = 0, Hℓ =

[
1 0
0 1

]

, Cℓ =

[
1 0
0 1

]

, (47)

E1 =

[
−0.1 · a1,1/3600 0
0.1 · a1,1/3600 −a2,1/3600

]

, · · · (48)

The sector bounded nonlinear function f = [f1, f2]
T is:

f =
[

n1 · exp
(
−0.5(

n1
n1,crt

)2
)

, n2 · exp
(
−0.5(

n2
n2,crt

)2
) ]T

(49)

For the sector slopes we take [α1, β1] = [0.0168, 0.607]
for f1 and [α2, β2] = [0.0028, 0.655] for f2. Moreover, the

output function g in (3) is [n1, n2]
T.

The assumed trip demands are depicted in Fig. 3. The

uncertainty in the demands is modeled using zero mean white

Gaussian noise with variance 0.1 (veh/s) added to the average

profiles. Moreover, we have included a sudden jump in ω22

to evaluate the robustness of our control approach.

The matrices of the Lyapunov functions along with the

minimum L2-gain are determined offline by solving (35)–

(37) using Yalmip toolbox. The measured accumulations

are supplied to (22) to determine the active subsystem

(and to obtain the specific MFD and the proper perimeter

input). The results are depicted in Fig. 4. To demonstrate

the effectiveness of the proposed method, the results are

compared with two simple control strategies. In the first one,

a greedy feedback controller is designed as follows: if both

regions are uncongested, the perimeter input is maximized

and if both regions are congested, the perimeter input is set

to the minimum value, if region 2 is more congested than

region 1, otherwise to maximum (further, we choose the

MFDs with highest maximum flow for both regions). The

second strategy (called protecting the center) is to protect

the city center. If the center’s accumulation is higher than

the critical one, the perimeter control is set to minimum and

1Due to space limitation, we only mention E1. For other subsystems the
structure of the E matrix is the same, only the MFD coefficients ai,j and
the value for the perimeter control input differ.



0 500 1000 1500 2000 2500 3000 3500

2000

4000

6000

8000

10000

Time (s)

A
cc

u
m

u
la

ti
o

n
 (

v
eh

)

 

 
n

1

n
2

(a)

0 500 1000 1500 2000 2500 3000 3500

2000

4000

6000

8000

10000

Time (s)

A
cc

u
m

u
la

ti
o

n
 (

v
eh

)

 

 

n
1

n
2

(b)

0 500 1000 1500 2000 2500 3000 3500

2000

4000

6000

8000

10000

Time (s)

A
cc

u
m

u
la

ti
o

n
 (

v
eh

)

 

 
n

1

n
2

(c)

0 500 1000 1500 2000 2500 3000 3500
0

0.2

0.4

0.6

0.8

1

Time (s)

P
er

im
et

er
 i

n
p

u
t 

(−
)

 

 
u

(d)

0 500 1000 1500 2000 2500 3000 3500

1

1.5

2

2.5

3

Time (s)

T
im

in
g

 p
la

n
 (

M
F

D
) 

fo
r 

re
g

io
n

 1

(e)

0 500 1000 1500 2000 2500 3000 3500

1

1.5

2

2.5

3

Time (s)

T
im

in
g

 p
la

n
 (

M
F

D
) 

fo
r 

re
g

io
n

 2

(f)

Fig. 4. Accumulations: (a) Robust switching control, (b) protecting the center, (c) greedy feedback control. Converted control inputs from the designed
switching signal: (d) perimeter signal, (e) switching between MFDs of region 1, (f) switching between MFDs of region 2.

otherwise to maximum. As inferred from Fig. 4(a)-(c), the

switching control stabilizes the system and also significantly

reduces the effects of the trip demands, while in the other

methods, one or both accumulations grow unboundedly.

Note that the proposed method is computationally efficient

and can be applied in real-time (as it only requires computing

45 Lyapunov functions and determining the index of the

active sub-system). This is a significant advantage over other

existing approaches like MPC, which often needs online

optimization. Furthermore, setting the initial accumulations

to zero, the actual L2-gain is 0.1237 · 3600 which is lower

than the theoretical value 0.1418 · 3600 obtained by solving

optimization problem (35)–(37).

VI. CONCLUSIONS AND FUTURE WORK

We have presented stability analysis and H∞ control for

a class of switched nonlinear systems with arbitrary sector

bounds. By combining multiple Lyapunov functions that

contain both quadratic functions of states and integrals of

nonlinearities, we formulated the robust state feedback con-

trollers along with switching laws by solving an optimization

problem subject to matrix inequalities. Further, to improve

the computational efficiency, we proposed a transformation

method together with LMI techniques to eventually obtain

a convex optimization problem. Finally, we applied the

proposed method to the problem of resolving congestion in

urban networks modeled on a high-level. The obtained results

showed significant performance in stabilizing the network

and reducing the impacts of uncertain trip demands.
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