
Delft University of Technology
Delft Center for Systems and Control

Technical report 14-024

Optimistic planning with a limited number
of action switches for near-optimal

nonlinear control∗

K. Máthé, L. Buşoniu, R. Munos, and B. De Schutter

If you want to cite this report, please use the following reference instead:
K. Máthé, L. Buşoniu, R. Munos, and B. De Schutter, “Optimistic planning with a
limited number of action switches for near-optimal nonlinear control,” Proceedings
of the 53rd IEEE Conference on Decision and Control, Los Angeles, California, pp.
3518–3523, Dec. 2014. doi:10.1109/CDC.2014.7039935

Delft Center for Systems and Control
Delft University of Technology
Mekelweg 2, 2628 CD Delft
The Netherlands
phone: +31-15-278.24.73 (secretary)
URL: https://www.dcsc.tudelft.nl

∗ This report can also be downloaded via https://pub.bartdeschutter.org/abs/14_024.html

https://doi.org/10.1109/CDC.2014.7039935
https://www.dcsc.tudelft.nl
https://pub.bartdeschutter.org/abs/14_024.html

Optimistic Planning with a Limited Number of Action Switches

for Near-Optimal Nonlinear Control

Koppány Máthé Lucian Buşoniu Rémi Munos Bart De Schutter

Abstract— We consider infinite-horizon optimal control of
nonlinear systems where the actions (inputs) are discrete.
With the goal of limiting computations, we introduce a search
algorithm for action sequences constrained to switch at most
a given number of times between different actions. The new
algorithm belongs to the optimistic planning class originating
in artificial intelligence, and is called optimistic switch-limited
planning (OSP). It inherits the generality of the OP class, so
it works for nonlinear, nonsmooth systems with nonquadratic
costs. We develop analysis showing that the switch constraint
leads to polynomial complexity in the search horizon, in
contrast to the exponential complexity of state-of-the-art OP;
and to a correspondingly faster convergence. The degree of
the polynomial varies with the problem and is a meaningful
measure for the difficulty of solving it. We study this degree
in two representative, opposite cases. In simulations we first
apply OSP to a problem where limited-switch sequences are
near-optimal, and then in a networked control setting where
the switch constraint must be satisfied in closed loop.

I. INTRODUCTION

Optimal control problems arise in numerous areas of

technology. We focus here on optimal control in discrete

time, so as to maximize a discounted sum of rewards

(negative costs). Recently proposed in artificial intelligence,

the class of optimistic planning (OP) techniques [17] solves

the optimal control problem locally at any given state, by ex-

ploring tree representations of possible sequences of actions

(inputs) from that state. Given a computational budget of

tree node expansions, performance grows with the resulting

depth of the tree (an adaptive horizon). OP works for general

dynamics and rewards, and has the crucial advantage of

providing a tight characterization of the relation between

the computational budget and near-optimality. Motivated by

these features, several OP algorithms have been introduced,

e.g. [6], [12], [15], and they have shown good performance

in practical problems [10], [15]. OP can be applied offline to

find arbitrarily long near-optimal sequences, but it is usually

applied online in a receding-horizon fashion, so that it is a

type of model-predictive control (MPC).

In this paper, we consider deterministic systems with dis-

cretized actions, and introduce a new OP technique tailored

K. Máthé (koppany.mathe@aut.utcluj.ro) and L. Buşoniu are with the
Automation Department, Technical University of Cluj-Napoca, Romania.
R. Munos is with INRIA Lille, France. B. De Schutter is with the Delft
Center for Systems and Control, Delft University of Technology, the
Netherlands. This paper is supported by the Sectoral Operational Programme
Human Resources Development (SOP HRD), ID 137516 financed from the
European Social Fund and by the Romanian Government; by a grant of the
Romanian National Authority for Scientific Research, CNCS-UEFISCDI,
project number PNII-RU-TE-2012-3-0040; and by an internal grant of the
Technical University of Cluj-Napoca.

We are grateful to Anna Sadowska and Bart Dekens for helpful discus-
sions on the examples.

for sequences that switch only a limited number of times

between different discrete actions. The constraint on the

number of switches is exploited by only exploring sequences

that switch at most S times, resulting in an algorithm we

call Optimistic Switch-limited Planning (OSP). This allows

us to significantly reduce the computational complexity with

respect to the state-of-the art algorithm in the deterministic,

discrete-action case: Optimistic Planning for Deterministic

systems (OPD) [11]. OSP inherits the generality of OP, so

it can deal with generic, nonlinear and nonsmooth dynamics

and nonquadratic, nondifferentiable reward functions.

The switch constraint is motivated by two classes of

problems. In the first class (i), the loss of performance

induced by the constraint is negligible, e.g. in time-optimal

control, where solutions are of the bang-bang type. In the

second class (ii), the constraint must be imposed due to the

problem’s nature, despite performance degradation, e.g. be-

cause setting the actuator to a new discrete level is costly, or

simply to decrease computational efforts. Examples include

traffic signal control [9], water level control by barriers and

sluices [21], networked control systems [19], etc.

The idea of exploiting limited switches is novel in OP. In

MPC, exploiting such a constraint to decrease computation

has been proposed in the linear case in [1], [8], [9], later

extended to the nonlinear case as time-instant optimization

MPC [21], and with applications to hybrid [1], [9], [16] or hi-

erarchical control [18]. In [14], the solutions are constrained

to hold the command constant for a preset number of steps.

In these works, an off-the-shelf optimizer (e.g. of the mixed-

integer linear programming type [2]) is usually applied,

and computation is investigated empirically. In contrast, our

approach analytically characterizes the relationship between

computation and near-optimality, for the complete algorithm

down to the implementation of the optimizer.

Indeed, by exploiting the switch constraint we show

that the complexity of OSP when applied at any state is

polynomial in the tree depth, rather than exponential as in

OPD. Therefore, given a computation budget n, the tree

depth grows quickly and (since near-optimality is related

to depth) OSP converges faster to the constrained optimal

solution than OPD would converge to the unconstrained

one. More precisely, we introduce an asymptotic measure of

problem complexity at the given state called near-optimality

degree, σ, so that the size of the tree that OSP must

explore to reach depth d is O(dσ).1 Then, d grows like

n1/σ and suboptimality decreases exponentially with this

1Here and in the sequel, notations g = O(h) and g = Ω(h) mean that
g asymptotically grows, respectively, at most as fast / at least as fast as h.

depth. In simpler problems, σ is smaller, so that d grows

more quickly and suboptimality decreases faster. The near-

optimality degree σ is related to other complexity measures

in OP, e.g. the near-optimality exponent [6] or the branching

factor of near-optimal sequences [11]. However, the structure

of the OSP tree is more specific, so these measures would

not work here.

The method is applied in receding horizon to the inverted

pendulum swingup, which is in class (i) where near-optimal

sequences switch rarely. In addition, we show how the switch

constraint can be applied to enforce bandwidth limitations

in networked control systems, leading to a problem from

class (ii). The constraint is enforced in closed loop so that

along any range of N consecutive steps there are at most

S switches, where N is a parameter. For (i) the closed-loop

solution may still switch often. We also explain how to reuse

the developed trees across multiple steps.

Other work in MPC that characterizes complexity typi-

cally focuses on the linear quadratic case, e.g. [13], with a

particularly strong work thread in explicit MPC [4], where

the optimal state feedback law is piecewise affine and the

complexity of the online search for the current affine region

is characterized, see e.g. [3], [20]. Recall that OSP works

for nonlinear dynamics and nonquadratic reward functions.

Next, Section II gives the necessary background, Section

III introduces and analyzes the proposed approach, and

Section IV evaluates it in examples. Section V concludes.

II. BACKGROUND: OPTIMAL CONTROL AND OPTIMISTIC

PLANNING FOR DETERMINISTIC SYSTEMS

Consider a Markov decision process (MDP) describing an

optimal control problem with state x ∈ X , action u ∈ U ,

transition function f : X×U → X and an associated reward

function ρ : X×U → R. Function f describes the transition

from state x to next state x′ when applying action u, i.e. the

system dynamics, x′ = f(x, u). The immediate quality of

the transition is rewarded by ρ(x, u).
We assume that the action space U is finite and discrete,

U =
{

u1, ..., uM
}

, and the system dynamics f and the re-

ward function ρ are known. Additionally, the reward function

is considered to be bounded, ρ(x, u) ∈ [0, 1], ∀x, u.2

The objective is to find for any given state x0 an infinite

action sequence h∞ = (u0, u1, ...) that maximizes the value

function (discounted sum of rewards)

v(h∞) =

∞
∑

k=0

γkρ(xk, uk) (1)

where γ ∈ [0, 1) is the discount factor. The optimal value is

denoted v∗ = suph∞

v(h∞).
The Optimistic Planning for Deterministic Systems (OPD)

algorithm [11], [17] is an extension of the classical A∗ tree

search to infinite-horizon problems. OPD looks for v∗ by

creating a search tree starting from x0, and simulating action

sequences until a given computational budget is exhausted.

At the end, it chooses an action sequence that maximizes the

2If the reward function is bounded in any other interval, it can be scaled
and translated in [0, 1] without affecting the optimal solution.

discounted sum of rewards of sequences on the tree. Usually,

to deal with unmodeled effects, only the first action of this

sequence is applied to the system, after which the loop is

closed and the algorithm is reapplied for the new state.

We define the computational budget n as the number of

nodes the algorithm is allowed to expand in the search tree,

where expanding a node means adding M child nodes to it,

one corresponding to each action from U . The example from

Fig. 1 therefore considers n = 3 expansions.

x1

d=2

d=3

d=1

u
1

x0

x2

ρ(x ,u)0

1

u
2

ρ(x ,u)0

2

x2 x3

x2 x4

u
1

u
2

u
2

u
1

Fig. 1. OPD search tree with states in the nodes and actions and rewards
on the arcs (corresponding to transitions). The size of the action space is
M = 2. A node at depth d can also be seen as the action sequence hd

that leads to that state starting from the root state: one example at d = 3 is
(u1, u2, u2). Note that some states may appear several times in the tree as
results of different action sequences. The algorithm does not exploit these
duplicates, but keeps them separate on the tree.

The search tree is constructed by iteratively expanding the

optimistic leaf, defined next. Considering a node at depth d
as equivalent to the action sequence hd = (u0, u1, ..., ud−1)
leading to it, the optimistic leaf is the node with the highest

b-value, where a b-value is an upper bound defined on v(h∞)
for all the sequences h∞ passing through a node hd:

b(hd) = ν(hd) +
γd

1− γ
≥ v(h∞) (2)

where ν(hd) defines a lower bound on v(h∞):

ν(hd) =

d−1
∑

k=0

γkρ(xk, uk) ≤ v(h∞) (3)

These are valid bounds on v(h∞) since γ < 1, and

ρ(xk, uk) ∈ [0, 1]. Note that since the depth d varies

among leaf nodes, so does the gap γd

1−γ between ν(hd) and

b(hd), and therefore b(hd) must be computed separately and

constitutes an informative selection criterion.

OSP returns a sequence maximizing the lower bound:

ĥ∗ = arg max
leaf hd

ν(hd) (4)

III. OPTIMISTIC SWITCH-LIMITED PLANNING

The OSP algorithm is based on the same principle as

OPD: it simulates action sequences starting from state x0 by

optimistically constructing a search tree. After the simulation

ends, like OPD, OSP chooses a sequence ĥ∗ maximizing

ν(hd), see (4). The novelty of OSP is a constraint applied

to the algorithm: it never expands a node with more than

S action switches in its action sequence. Some examples

of finite action sequences respecting this constraint are: for

S = 1, h3 = (u2, u1, u1), for S = 2, h3 = (u2, u1, u1)
or h5 = (u2, u3, u3, u1, u1). An example of an OSP search

tree, showing all sequences created by OSP up to depth 4,

is presented in Fig. 2.

u
1

u
2

u
1

u
1

u
2

u
1

u
2

u
2

u
1

u
2

u
1

u
2

u
1

u
2

u
1

u
2

u
2

u
1

u
2

u
1

u
1

u
2

u
1

u
2

u
1

u
2

d=2

d=4

d=1

d=3

Fig. 2. OSP tree up to depth 4, with M = 2 discrete actions and S = 1
switch allowed. The action leading to a node is put in the node. Nodes
preceded by continuous lines are expanded with all M actions. Nodes on
the dashed paths are no longer expanded, since they have more than S
switches in their action sequence.

We fully analyze OSP when applied locally at a given state

x0, and later show how to empirically apply it in closed loop.

Using the constraint on the number of switches, the search

space is restricted and the optimal solution may fall outside

it. Denote the optimal return with sequences having at most

S switches by v∗S , where v∗S ≤ v∗. In problem class (i)

(see Section I), the loss v∗ − v∗S due to enforcing the switch

limitation is small by assumption, whereas in class (ii) it may

be significant but it must be accepted due to the problem

constraints or the need to reduce computational efforts. As

S → ∞, v∗S is expected to approach v∗.

Intuitively, the constraint allows OSP to construct deeper

search trees than OPD for a given problem, as in place of

the nodes eliminated by the constraint OSP will explore other

nodes that may be at larger depths. Therefore, for the same

budget n, OSP ensures a smaller distance to the constrained

optimum v∗S than OPD would ensure with respect to v∗.

To make the following statements more concise, we say

that OSP is ε-optimal if the solution ĥ∗ it returns satisfies

v∗S − ν(ĥ∗) ≤ ε.

Lemma 1. OSP will only expand nodes that satisfy the

relation v∗S − ν(hd) ≤ γd

1−γ . Therefore, the algorithm is
γdmax

1−γ -optimal, where dmax is the depth of the deepest

expanded node, information available a posteriori.

Proof. Define the set Hd consisting of all infinite se-

quences h∞ starting with hd; then, there exists at least one

leaf hd in a search tree such that suph∞∈Hd
v(h∞) = v∗S .

Therefore, using the definition of the b-value (2), there exists

hd such that b(hd) ≥ v∗S . Since the algorithm always expands

the node with the highest b-value, all the expanded nodes will

satisfy the relation b(hd) ≥ v∗S . Hence, v∗S − ν(hd) ≤
γd

1−γ
is valid for all the expanded nodes.

Now, as ν(ĥ∗) ≥ ν(hdmax
) due to (4), and b(hdmax

) =

ν(hdmax
) + γdmax

1−γ ≥ v∗S from the previous part of the proof,

we get v∗S − ν(ĥ∗) ≤ γdmax

1−γ , and the proof is complete. �

This result is similar to the one for OPD (where v∗S would

be substituted by v∗), which was given in a different form

in [11]. Note that ĥ∗ may be among the nodes with an extra

switch, which are never expanded and so remain leaf nodes;

the entire analysis holds in that case as well. (The way to

apply OSP in case (ii), which will be explained in Section III-

C, further ensures that selecting such a node does not affect

the satisfaction of the constraint in closed loop.)

Now, note that due to Lemma 1 and the switch constraint,

at depths up to d OSP only expands nodes in the set:

Hd =

{

hd′ | d′ ≤ d; s(hd′) ≤ S; v∗S − ν(hd′) ≤
γd′

1− γ

}

where s(hd′) counts the number of switches in the action

sequence hd′ . Using the cardinality of this set one can

characterize a priori the depth the algorithm will reach.

In OPD, the nodes possibly expanded at depth d do not

have to satisfy the switch limitation, but only be γd

1−γ -

optimal. It was shown then in [11] that the tree of such

nodes grows with branching factor K ∈ [1,M], a measure of

complexity of the OPD planning problem. Then, the number

of expandable nodes grows exponentially with the depth,

so that the cardinality of the entire tree up to depth d is

dominated by the number of nodes at this last depth: it is

O(Kd). In OSP this is no longer valid, as the search tree

grows polynomially with the depth. To see why, consider the

worst possible case, in which nodes are expanded in the order

of their depth, see also Section III-A. Then, OSP distributes

up to S switches along sequences of length d, a number

proportional to the combinations of up to S elements from

d – which grows only polynomially with d.

Now, to describe in general the cardinality of Hd, a new

complexity measure is needed, and is defined as follows.

Definition. Let c > 0 and σ ∈ [1, S+1] be so that |Hd| ≤
c · dσ; we show later that these constants always exist. The

near-optimality degree is defined as the smallest value of σ
for which the relationship holds.

Our results below hold for any pair c, σ, but we take a

pair with the smallest σ, which is called near-optimality

degree because it plays a similar role to the near-optimality

dimension from the optimization algorithms at the basis of

OP [17]. Note that σ (as well as K in OPD) may be non-

integer.

Theorem 2. Given a computational budget n, the OSP

algorithm is γ(n/c)1/σ

1−γ -optimal, where c is the constant from

the definition of σ.

Proof. According to Lemma 1, the OSP algorithm is
γdmax

1−γ -optimal if a node at depth dmax was expanded. Now,

we calculate a lower bound on dmax a priori from the

cardinality of set Hd. Define d∗ to be the smallest depth

so that n ≤ |Hd∗ | = c · d∗σ; this means the algorithm has

surely expanded nodes at d∗ (but possibly not yet at d∗+1),

so dmax ≥ d∗. Moreover, d∗ ≥ (n/c)
1/σ

, hence the same

holds for dmax, and OSP is γ(n/c)1/σ

1−γ -optimal. �

A smaller σ corresponds to a slower growth of Hd, so that

a given budget n allows reaching larger depths and thus a

better solution. In particular, in the best case σ = 1, which

means that Hd grows linearly with d, and suboptimality

shrinks exponentially with n. In the sequel, this theorem and

the meaning of σ are illustrated for two interesting opposite

cases, omitting the detailed proofs due to limited space.

A. Identical rewards (σ = S + 1)

Consider a problem where all the rewards are identical,

say equal to 1 or to 0. While any sequence is optimal in this

problem, it is nevertheless an interesting worst case, which

highlights the (correct) behavior of the algorithm in general,

as we explain below.

Proposition 3. In case of identical rewards, σ = S + 1

and the OSP algorithm is γ
1
M

(n/c′)1/(S+1)

1−γ -optimal, where c′

is a positive constant.

Proof sketch. Each node at depth d corresponds to a way

of choosing s switches among d steps and M actions, overall
(

dM
s

)

≤ (Md)s. Counting all s ≤ S, nodes at lower depths,

and other factors, it takes n = O((Md)S+1) expansions to

reach depth d, and the result follows by Lemma 1. �

This bound differs from the one of Theorem 2 by including

M , the number of actions, which yields a more precise

expression and a different constant c′; if this refinement were

ignored, we would obtain the general result of Theorem 2.

So OSP expands nodes uniformly, in the order of their

depth, and σ has the largest possible value. The bound

achieved by OSP here is also the smallest achievable in

a worst-case sense, which means that for any planning

algorithm, and any value of S and n, one can find a problem

(constrained to sequences with at most S switches) for which

the distance from the optimal value is Ω(γ
1
M (n/c′)1/(S+1)

). To

see this, choose the largest D so that n ≥ c′[M(D−1)](S+1),

assign rewards of 1 for some arbitrary sequence h∗
∞ satisfy-

ing the constraint, but only starting from level D+1 onward,

and rewards of 0 everywhere else. Then, OSP has uniformly

expanded all nodes up to D− 1 but none at D+1, so it has

no information and must make an arbitrary action choice,

which may not be optimal, leading to a sub-optimality of
γD+1

1−γ = Ω(γ
1
M (n/c′)1/(S+1)

). An algorithm that does not

expand uniformly may miss the optimal sequence for an

even larger number of expansions n, so their suboptimality

is at least as large. This fact also shows that OSP behaves

correctly: as long as only uniform rewards are observed,

the tree must be expanded uniformly, and this behavior is

reflected in the bound.

B. Single optimal path (σ = 1)

In this case, a single sequence has maximal rewards (equal

to 1), and all other transitions have a reward of 0.

Proposition 4. When there is a single optimal path, σ = 1

and OSP is γn−c′′

1−γ -optimal, with c′′ a positive constant.

Proof sketch. When the optimal path has at most S
switches, OSP only explores this path. Otherwise, at some

depth it reaches the switch limit and then continues expand-

ing the subsequent constant-action path (a constrained opti-

mal solution), while for each node expanded along this path

it may also expand a constant number of nodes elsewhere.

In both cases, n = O(d) leading to the bound. �

Thus, in this case where a “maximal” amount of structure

exists in the reward function, the problem becomes easy,

represented by a value of σ = 1, and the near-optimality

is exponential in n rather than stretched-exponential like

before. Again, we have obtained a refined expression with a

different constant than in Theorem 2.

These special cases also prove the existence of σ ∈ [1, S+
1], as the tree cannot contain more nodes than in the case of

uniform expansion (thus σ ≤ S + 1), nor fewer nodes than

in the single-optimal-path case (thus σ ≥ 1).

C. Implementation in closed loop

To implement the algorithm in closed loop, one simply

applies it at each encountered state xk, sends the first action

of the sequence returned to the actuator, and then repeats the

process in receding horizon. In case (i), the resulting closed-

loop sequence may have more than S switches.

Consider now case (ii), when the switch constraint must

be enforced in closed loop. It is not practical to enforce

only S switches for the entire infinite horizon, as after

they are exhausted the algorithm can no longer react to

unmodeled effects (e.g. disturbances). Instead, we suggest

ensuring at most S switches are applied for any range of

consecutive N steps, where N is a tuning parameter. This can

be implemented easily, by keeping track of the past N actions

(over the range k − N, . . . , k − 1) and ensuring that nodes

violating the condition are not expanded by the algorithm.

Further, for the ranges of steps where no more switches are

allowed, the action is simply held constant and OSP is only

reapplied when a new switch becomes eligible.

Finally, we explain how the tree developed at step k can

be used as a starting point at k+1. We start with the subtree

corresponding to the single action applied, and throw away

the subtrees of the other actions. Since all sequences on this

subtree are truncations of sequences on the original tree,

all expanded nodes satisfy the constraint, while new nodes

become eligible for expansion – which the algorithm can

proceed to expand. Thus, performance at k+1 increases by

reusing the subtree. This holds in case (i), as well as when

the closed-loop constraint from case (ii) is enforced.

IV. SIMULATION RESULTS

OSP is first evaluated in the problem of swinging up an

inverted pendulum (Section IV-A). Although an academic

example, this is an appropriate benchmark for our algorithm,

allowing us to study it in detail: the example is nonlinear,

requires large horizons to plan the swings, and the swings

exhibit the limited-switch property so the problem is in class

(i). Then, as a more general set of applications, we show how

the constraint from case (ii) can help in networked control

systems, and illustrate the idea using again the inverted

pendulum (Section IV-B).

In all simulations, we apply only the first action from

the action sequence an algorithm returns. We compare OSP

against OPD using various performance indicators, for a

range of values of the number of expansions allowed n.

A. Inverted Pendulum Swing-up

The goal in the Inverted Pendulum problem is to bring and

stabilize a pendulum to the pointing-up equilibrium, starting

from any state x = [x1, x2]
T , with x1 = α ∈ [−π, π) rad

the angular position and x2 = α̇ [rad/s] the angular velocity

of the pendulum; the latter is restricted to [−15π, 15π]
rad/s, by saturation. The pendulum is controlled using a

motor as shown in Fig. 3, with the control action space

U = {−2, 0, 2} V. Since, from certain states, the control

power is not sufficient to bring up the pendulum using a

single rotation, one or several swings may be required to

bring the pendulum to the desired state.

motor

m

α

Fig. 3. Inverted Pendulum

The first set of simulations considers with each

value of n a set of states
{

−π,− 5π
6 , ..., π

}

rad ×
{−15π,−14π, ..., 15π} rad/s for which the algorithms are

run, providing a near-optimal control action for each state.

Fig. 4 presents the average regret, while Fig. 5 shows the

depth of the deepest expanded nodes, averaged over this set

of states, for a range of values of n. The regret is difference

between the unconstrained optimal value v∗ and the value

v(u0) of applying the first action in the returned sequence,

and then acting optimally; so lower regret is better. The regret

measure is appropriate for a receding-horizon algorithm.

In this problem, the true optimum v∗ is not available but

we compute an accurate approximation of it using value

iteration with a precise approximator [5], at much higher

computational costs.

0 2000 4000 6000 8000

0.05

0.1

0.15

computational budget n

a
v
e
ra

g
e
 r

e
g
re

t

 opd

osp S=1

osp S=2

osp S=3

osp S=4

Fig. 4. Inverted Pendulum average regret for OPD and for OSP with
S ∈ {1, 2, 3, 4}.

0 2000 4000 6000 8000
0

50

100

150

200

250

computational budget n

a
v
e
ra

g
e
 d

e
p
th

opd

osp S=1

osp S=2

osp S=3

osp S=4

Fig. 5. Inverted Pendulum average depth.

A first remark is that average regret tends to decrease with

n, i.e. with more expansions OSP generally obtains better

results, but the relationship is not strict. The depth on the

other hand always increases when allowing more expansions.

Recall from Lemma 1 that as depth grows suboptimality

is reduced, however for OSP the relation is not exactly

reflected by the two figures since we measure regret in the

unconstrained problem.

The advantage of OSP over OPD can be clearly seen

for S ≤ 3. For the same budget, OSP gets closer to the

constrained optimum, which here is also close to the true

optimum v∗ and so the overall regret is better. Also note that

as S increases, OSP converges to OPD as expected from the

design, a property of the algorithm reflected in the following

simulations as well.

The next set of simulations consists of running the algo-

rithms online, in receding horizon from initial state x0 =
[−π, 0]T and for 160 steps, with a sampling time of 0.025s.

For the resulting finite sequence of control actions the return

(1) is calculated. The following figures show the returns

obtained by the algorithms for the same range of n as

before. Note that the online simulations result in different

sets of 160 states (due to different trajectories) for each value

of the computational budget, different from the previous

simulations as well; so these returns cannot be directly

compared to the average-regret results before.

0 2000 4000 6000 8000
24

26

28

30

32

34

computational budget n

re
tu

rn

opd

osp S=1

osp S=2

osp S=3

osp S=4

Fig. 6. Inverted Pendulum return for OPD and OSP.

Looking at Fig. 6, a first remark is that the convergence

of OSP to OPD with S → ∞ is reflected here as well.

Choosing S = 1 is insufficient and OSP obtains a sub-

optimal solution (the larger returns obtained for small n OSP

are a coincidence). Taking higher values for S, the advantage

of OSP is clearly reflected: the return increases with n, while

obtaining the same return as OPD for lower values of n.

In other words, for intermediate values of S, OSP obtains a

result of the same quality as OPD, using fewer computational

resources (as also illustrated by the regret, before).

Regarding computation time, for the same budget OSP

runs somewhat faster than OPD, as it selects nodes to expand

by looking at candidates in a constrained (i.e. smaller) set of

leaves. We omit detailed results due to space limits.

B. Application to networked control systems

In networked control systems, the controller is connected

to the system by a communication network shared with other

devices (e.g. controllers). We consider the setting where state

measurements can be performed at every step, while changes

in the control action are expensive and should be minimized;

this is standard in so-called event-triggered control [19].

Then, a new action is transmitted only when a switch occurs,

and in the meantime the old action is maintained. By setting

the ratio of S switches (transmissions) per N steps, OSP can

be used to fine-tune the usage of the network. Discretizing

the actions in a small number of actions is also useful [7],

since it reduces the size of the packets to a few bits (the

action index), requiring a local table to transform the action

index back into the true value on the system side. Fig. 7

shows this architecture.

network

OP algorithm

System
Zero-order

hold

Index
table

Fig. 7. Networked control system architecture

We illustrate this setting for the inverted pendulum. OSP is

used to enforce at most S = 3 action changes over N = 12
or 20 steps (as the sampling time is 0.025s and M = 3, no

more than 9 bits of data are sent in 0.3s or 0.5s, respectively).

As expected from the previous section, in Fig. 8 OSP is still

able to maintain a better performance than OPD despite the

restriction on the number of switches. Note that OPD violates

the constraint, by switching e.g. 4 times over 10 steps.

0 2000 4000 6000 8000
24

26

28

30

32

34

computational budget n

re
tu

rn

opd

osp (N) S=3 N=12

osp (N) S=3 N=20

Fig. 8. Returns of OSP when the closed-loop switch constraint is enforced,
compared to OPD.

V. CONCLUSIONS AND FUTURE WORK

This paper has presented a novel algorithm for near-

optimal control called OSP, tailored to compute solutions that

switch at most S times between different discrete actions. By

taking advantage of this property, our analysis shows that

computation is polynomial in the adaptive horizon of the

computed solution, in contrast to the exponential complexity

achieved by unconstrained OP algorithms; and therefore that

OSP approaches the constrained optimum fast. The degree of

the polynomial, called near-optimality degree, characterizes

the difficulty of the optimal control problem at a given state,

with smaller degrees corresponding to simpler problems.

Extensive simulations confirm the analytical properties of

the algorithm and illustrate that it works well in receding

horizon. As a more general class of applications, we explain

how the switch constraint can be applied to limit bandwidth

requirements in networked control systems.

Future work will focus on analyzing the closed-loop

performance, and on developing an adaptive-S variant of

the algorithm that should converge fast to the unconstrained

optimal solution.

REFERENCES

[1] J. Alende, Y. Li, and M. Cantoni, “A {0,1} linear program for fixed-
profile load scheduling and demand management in automated irri-
gation channels,” in Proceedings 48th IEEE Conference on Decision

and Control (CDC-09), Shanghai, China, 16–18 December 2009, pp.
597–602.

[2] M. J. Alves and J. Clı́maco, “A review of interactive methods for
multiobjective integer and mixed-integer programming,” European

Journal of Operational Research, vol. 180, no. 1, pp. 99–115, 2007.
[3] F. Bayat, T. A. Johansen, and A. A. Jalali, “Using hash tables to

manage the time-storage complexity in a point location problem:
Application to explicit model predictive control,” Automatica, vol. 47,
no. 3, pp. 571–577, 2011.

[4] A. Bemporad, M. Morari, V. Dua, and E. N. Pistikopoulos, “The ex-
plicit linear quadratic regulator for constrained systems,” Automatica,
vol. 38, no. 1, pp. 3–20, 2002.

[5] L. Buşoniu, D. Ernst, B. De Schutter, and R. Babuška, “Approximate
dynamic programming with a fuzzy parameterization,” Automatica,
vol. 46, no. 5, pp. 804–814, 2010.

[6] L. Buşoniu and R. Munos, “Optimistic planning for Markov decision
processes,” in Proceedings 15th International Conference on Artificial

Intelligence and Statistics (AISTATS-12), ser. JMLR Workshop and
Conference Proceedings, vol. 22, La Palma, Canary Islands, Spain,
21–23 April 2012, pp. 182–189.

[7] C. De Persis and P. Frasca, “Robust self-triggered coordination with
ternary controllers,” IEEE Trans. Automat. Contr., vol. 58, no. 12, pp.
3024–3038, 2013.

[8] B. De Schutter, “Optimal control of a class of linear hybrid systems
with saturation,” SIAM Journal on Control and Optimization, vol. 39,
no. 3, pp. 835–851, 2000.

[9] B. De Schutter and B. De Moor, “Optimal traffic light control for a
single intersection,” European Journal of Control, vol. 4, no. 3, pp.
260–276, 1998.

[10] S. Gelly, Y. Wang, R. Munos, and O. Teytaud, “Modification of UCT
with patterns in Monte-Carlo Go,” INRIA, Paris-Sud, France, Tech.
Rep., 2006.

[11] J.-F. Hren and R. Munos, “Optimistic planning of deterministic
systems,” in Proceedings 8th European Workshop on Reinforcement

Learning (EWRL-08), Villeneuve d’Ascq, France, 30 June – 3 July
2008, pp. 151–164.

[12] L. Kocsis and C. Szepesvári, “Bandit based Monte-Carlo planning,” in
Proceedings 17th European Conference on Machine Learning (ECML-

06), Berlin, Germany, 18–22 September 2006, pp. 282–293.
[13] X. Li and T. E. Marlin, “Model predictive control with robust

feasibility,” Journal of Process Control, vol. 21, no. 3, pp. 415–435,
2011.

[14] C. Liu, W.-H. Chen, and J. Andrews, “Piecewise constant model pre-
dictive control for autonomous helicopters,” Robotics and Autonomous

Systems, vol. 59, no. 7, pp. 571–579, 2011.
[15] C. Mansley, A. Weinstein, and M. L. Littman, “Sample-based planning

for continuous action Markov decision processes,” in Proceedings

21st International Conference on Automated Planning and Scheduling,
Freiburg, Germany, 11–16 June 2011, pp. 335–338.

[16] C. O. Martinez, A. Bemporad, A. Ingimundarson, and V. P. Cayuela,
“On hybrid model predictive control of sewer networks,” in Identifica-

tion and Control, R. Sánchez, V. Puig, and J. Quevedo, Eds. Springer
London, 2007, pp. pp 87–114.

[17] R. Munos, “The optimistic principle applied to games, optimization
and planning: Towards foundations of Monte-Carlo tree search,”
Foundations and Trends in Machine Learning, vol. 7, no. 1, pp. 1–130,
2014.

[18] A. Sadowska, B. De Schutter, and P.-J. van Overloop, “Event-driven
hierarchical control of irrigation canals,” in Proceedings of the US-

CID Seventh International Conference on Irrigation and Drainage,
Phoenix, Arizona, Apr. 2013.

[19] P. Tabuada, “Event-triggered real-time scheduling of stabilizing control
tasks,” IEEE Transactions on Automatic Control, vol. 52, no. 9, pp.
1680–1685, 2007.

[20] P. Tøndel, T. A. Johansen, and A. Bemporad, “Evaluation of piecewise
affine control via binary search tree,” Automatica, vol. 39, no. 5, pp.
945–950, 2003.

[21] H. van Ekeren, R. Negenborn, P. van Overloop, and B. De Schutter,
“Time-instant optimization for hybrid model predictive control of the
Rhine-Meuse delta.” Journal of Hydroinformatics, vol. 15, no. 2, pp.
271–292, 2013.

