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Analytic expressions in stochastic max-plus-linear algebra

Ton J.J. van den Boom1 and Bart De Schutter1

Abstract— In stochastic max-plus-linear systems one often
needs to compute the expectation of a max-plus-scaling func-
tion. The algorithms available in literature are either too
computationally expensive or only give an approximation. In
this paper we derive an analytic expression for this expectation
in the case of a uniform distribution, resulting in a piece-
wise polynomial function in the components of the free control
variable. This function can be evaluated in a quick and efficient
way.

I. INTRODUCTION

Discrete-event models such as queuing systems, (ex-

tended) state machines, formal language models, automata,

temporal logic models, generalized semi-Markov processes,

Petri nets, etc. are in general nonlinear in conventional

algebra. However, there exists an important class of discrete-

event systems, namely the max-plus-linear (MPL) systems,

for which the model is linear in the max-plus algebra. The

class of max-plus linear systems consists of discrete-event

systems with synchronization but no choice. Synchronization

requires the availability of several resources at the same

time, whereas choice appears, e.g., when a user has to

choose among several resources [1]. Typical examples of

such systems are serial production lines, production systems

with a fixed routing schedule, and railway networks. In

stochastic discrete-event systems, processing times and/or

transportation times are assumed to be stochastic quantities,

since in practice stochastic fluctuations in their values can,

e.g. be caused by machine failure or depreciation [8]. To

model this stochasticity in discrete-event systems one often

uses stochastic max-plus-linear expressions or stochastic

max-plus-scaling functions [1], [2], [5], [7]–[9]

To control stochastic max-plus-linear systems, an efficient

control approach is model predictive control (MPC) [6].

MPC is an online model-based approach, in which at each

event step an optimal control sequence is computed. This

optimization is done over a finite sequence of events, and for

each event step, only the first sample of the optimal control

sequence will be applied to the system. For the next step, the

horizon will be shifted forward and a new optimal control

sequence will be computed.

Note that in the algorithm to solve the stochastic MPC

problem, an optimization problem has to be solved at each

event step. In stochastic systems, the objective function

defined in the MPC optimization problem usually consists

of an expected value of stochastic max-plus-scaling functions

[10]. In general, the expected value is computed using either

1Delft University of Technology, Delft Center for Systems
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numerical integration or some available analytic approaches,

which are all very time-consuming. Hence, solving this

optimization problem creates a considerable computational

complexity due to the presence of the expected value [4],

[11].

In literature two approaches have been proposed to reduce

the computational burden. The first approach [11] considers

a method based on variability expansion. In particular, it has

been shown that the computational load is reduced if one

decreases the level of ‘randomness’ in the system. Another

method [4] uses an approximation approach that is based

on the pth order raw moments of a random variable. This

method results in a much lower computational complexity

and a much lower computation time. However because of

the approximation, the performance will often degrade.

In this paper we aim for an exact computation of the

expectation within a reasonable time. In particular, in this

paper we derive an analytic solution to compute the expected

value of max-plus-scaling functions in the presence of a uni-

form distribution. We show that the expectation is piecewise

polynomial in general.

II. THE EXPECTATION OF A

MAX-PLUS-SCALING FUNCTION

In this section we will give the problem definition.

Assume E and W are bounded polyhedral sets:

E = {e ∈ R
n×1|Cee ≤ de}

W = {w ∈ R
p×1|Cww ≤ dw}

where Ce ∈ R
ne×n, de ∈ R

ne×1, Cw ∈ R
nw×p, and

dw ∈ R
nw×1. Let e be a stochastic variable with the

probability density function p(·) with domain E . In this paper

we consider a uniform distribution, so the probability density

function is given by:

p(e) =

{

2−n for |ei| ≤ 1, for all i = 1, . . . , n

0 elsewhere

Let α ∈ R
m×1, β ∈ R

m×p, γ ∈ R
m×n, w ∈ W , e ∈

E ⊂ R
n×1, and define the Max-Plus-Scaling (MPS) function

f : (R× R) → R as follows:

f(w, e) = max
j

(αj + βj w + γj e)

where βj and γj stand for the jth row of β and γ, respec-

tively. In this paper we aim to compute an analytic expression

for the expectation of an MPS function of the form

h(w) = E[f(w, e)] = E[max
j

(αj + βj w + γj e)] (1)



where E[f ] denotes the expectation of the function f .

In [10] we derived an algorithm to compute this expecta-

tion as follows:

h(w)= E[f(w, e)]

=

∫

· · ·

∫

E

max
j

(

αj+βjw+γje
)

p(e) de1 · · · den

In [10] we have shown that for a given j ∈ {1, 2, . . . ,m}
and w ∈ W one can compute the non-degenerate polyhedral

set Φj(w) such that for all e ∈ Φj(w) there holds:

f(w, e) = αj + βjw + γje

and
m
⋃

j=1

Φj(w) = W

III. AN ANALYTIC EXPRESSION FORh(w)

In this section we derive an analytic expression for h(w).
We do this in three steps. In the first step we show that the

vertices of the polytopic sets Φj(w), j ∈ {1, 2, . . . ,m} are

piecewise affine in the parameter w (see Lemma 1). In the

second step we divide each polytope Φj(w) into simplices1.

In the third step we derive h(w) by integration over the

derived simplices (see Lemma 2).

Define for each j the set Ij = {ij,1, . . . , ij,m−1} =
{1, 2, 3, . . . ,m}\{j}, and define matrices Aw,j ∈ R

(m−1)×p,

Ae,j ∈ R
(m−1)×n, bj ∈ R

(m−1)×1,

[bj ]s = αj − αij,s , for ij,s ∈ Ij ,

[Aw,j ]s = −βj + βij,s , for ij,s ∈ Ij ,

[Ae,j ]s = −γj + γij,s , for ij,s ∈ Ij ,

for all s = 1, . . . ,m − 1, where [A]s denotes the sth row

of the matrix A. Define Āe,j ∈ R
q×n, Āw,j ∈ R

q×p, and

b̄j ∈ R
q×1 as follows:

Āe,j=





Ae,j

Ce

0



, Āw,j=





Aw,j

0
Cw



 , b̄j=





bj
de
dw





Note that q > n. Let Sj = {Sj,1, . . . , Sj,Lj
} be the set of all

n× q submatrices of the q × q identity matrix such that the

matrix Sj,ℓ Āe,j is invertible. For any matrix Sj,ℓ ∈ Sj the

remaining part of the q × q identity matrix will be denoted

by Tj,ℓ ∈ R
(q−n)×q .

The following lemma shows that the vertices of the set

Φj(w) are piecewise affine in w.

Lemma 1: Define for ℓ = 1, . . . , Lj the vectors σj,ℓ ∈
R

n×1, gj,ℓ ∈ R
q−n×1 and matrices τj,ℓ ∈ R

n×p, Fj,ℓ ∈

1A simplex in R
n is a n-dimensional polytope which is the convex hull

of its n+ 1 vertices.

R
(q−n)×p as follows:

σj,ℓ = (Sj,ℓ Āe,j)
−1Sj,ℓb̄j (2)

τj,ℓ = (Sj,ℓ Āe,j)
−1Sj,ℓĀw,j (3)

Fj,ℓ = Tj,ℓ (I − Āe,j(Sj,ℓ Āe,j)
−1Sj,ℓ)Āw,j (4)

gj,ℓ = Tj,ℓ (I − Āe,j(Sj,ℓ Āe,j)
−1Sj,ℓ)b̄j (5)

Now let w ∈ Wj,ℓ = {w|Fj,ℓw ≤ gj,ℓ}. Then

vj,ℓ(w) = σj,ℓ + τj,ℓ w (6)

is a vertex of Φj(w).

Proof: Let us consider all e ∈ E and w ∈ W such that

αj + βj w + γj e ≥ αi + βi w + γi e , ∀i 6= j (7)

Now finding all e ∈ E and w ∈ W for which condition

(7) holds, can be replaced by finding all e ∈ R
n×1 and

w ∈ R
p×1 such that





Ae,j

Ce

0



 e+





Aw,j

0
Cw



 w ≤





bj
de
dw





or

Āe,j e+ Āw,j w ≤ b̄j

or

Āe,j e ≤ b̄j − Āw,j w (8)

The matrix Sj,ℓ will select constraints from (8) that are

active and Tj,ℓ will select constraints from (8) that are

inactive. For vj,ℓ to be a vertex of the polyhedral set Φj(w),
we need the following properties:

Sj,ℓ Āe,j vℓ = Sj,ℓ(b̄j − Āw,j w) (9)

Tj,ℓ Āe,j vℓ ≤ Tj,ℓ(b̄j − Āw,j w) (10)

det(Sj,ℓ Āe,j) 6= 0 (11)

From (9) and (11) we derive

vj,ℓ = (Sj,ℓ Āe,j)
−1 Sj,ℓ(b̄j − Āw,j w) (12)

= σj,ℓ + τj,ℓ w (13)

Substitution of (12) in (10) gives

Tj,ℓ Āe,j(Sj,ℓ Āe,j)
−1 Sj,ℓ(b̄j − Āw,j w)

≤ Tj,ℓ(b̄j − Āw,j w) (14)

or

Fj,ℓw ≤ gj,ℓ (15)

This means that (13) is a vertex if (15) is satisfied.

We now use the following recursive procedure to di-

vide the non-degenerate polytope Φj(w) into Kj(w) non-

degenerate simplices Ωj,k(w), k = 1, . . . ,Kj(w). We start

by considering each 2-dimensional face of the polytope. We

select the geometric center of the face and connect that to



each of the vertices of the given face. In this way each 2-

dimensional face can be partitioned into simplices with 3

vertices. We consider all 3-dimensional faces and construct

3-dimensional simplices by connecting the geometric center

of each of the 3-dimensional faces with all the vertices of

the simplices of the 2-dimensional subfaces of the given

3-dimensional face. We continue in this way until the full

n-dimensional polytope Φj(w) has been divided into n-

dimensional simplices. Note that the geometric center of

a polytope is a convex combination of the vertices of that

polytope. This means that the vertices of the n-dimensional

simplices are convex combinations of the vertices of the

polytope Φj(w).

Consider one of the simplices Ωj,k(w) and denote the

vertices of this simplex by v̄j,k,0, v̄j,k,1, v̄j,k,2, · · · , v̄j,k,n.

The simplex Ωj,k(w) is now given by2:

Ωj,k(w) = Co(v̄j,k,0, v̄j,k,1, v̄j,k,2, · · · , v̄j,k,n)

Define

hj,k(w) =

∫

· · ·

∫

Ωj,k(w)

(

αj+βjw+γje
)

p(e) de1 · · · den

Then h(w) can be computed by

h(w) =
m
∑

j=1

Kj(w)
∑

k=1

hj,k(w) (16)

For a fixed j and w ∈ W , let vj,ℓ(w), ℓ = 1, . . . , Lj be the

vertices of the polytope Φj(w). The vertices v̄j,k,i(w), i =
0, . . . , n of the simplex Ωj,k(w), k ∈ {1, . . . ,Kj} will be

convex combinations of the vertices vj,ℓ(w), ℓ = 1, . . . , Lj .

In other words, there exist parameters λj,i,k,ℓ such that

v̄j,k,i(w) =

Lj
∑

ℓ=1

λj,i,k,ℓvj,ℓ(w)

where λj,i,k,ℓ does not depend on w. (Because we used

geometric centers to construct the simplices. If the vertices

of a polytope are affine in w, also the geometric center will

be affine in w.) Now define σ̄j,k,i =
∑Lj

ℓ=1 λj,i,k,ℓσj,ℓ and

τ̄j,k,i =
∑Lj

ℓ=1 λj,i,k,ℓτj,ℓ then using (6) we find

v̄j,k,i(w) = σ̄j,k,i + τ̄j,k,i w . (17)

The following lemma gives an analytic expression for the

value hj,k(w).

Lemma 2: Consider the simplex

Ωj,k(w) = Co(v̄j,k,0(w), v̄j,k,1(w), · · · , v̄j,k,n(w)) (18)

2The convex hull of the vectors (x1, . . . , xn) is defined by:
Co(x1, . . . , xn) = {y|y = λ1x1+ . . .+λnxn, 0 ≤ λi ≤ 1 , λ1+ . . .+
λn = 1 }

with vertices affine in w according to (17). Define

Vj,k(w)

=
[

v̄j,k,1(w)−v̄j,k,0(w) v̄j,k,2(w)−v̄j,k,0(w)

· · · v̄j,k,n(w)−v̄j,k,0(w)
]

= Vj,k,0 +

p
∑

ℓ=1

Vj,k,ℓ wℓ

then

hj,k(w) =

∫

· · ·

∫

Ωj,k(w)

(

αj+βjw+γje
)

p(e) de1 · · · den

=
detVj,k(w)

(n+ 1)!

(

(n+ 1)(αj+βjw) + γj σ̄j,k,0+

+ γj τ̄j,k,0 w + γj σ̄j,k,1 + γj τ̄j,k,1 w+

+ · · ·+ γj σ̄j,k,n + γj τ̄j,k,n w
)

Hence, hj,k(w) is an (n+1)st order polynomial function in

w.

Proof: First consider the simplex

Ω′ = {λ ∈ R
n | λi ≥ 0,

∑

λi ≤ 1}

and the integral over this simplex of an affine function (κ+
µλ), where κ ∈ R, and µ ∈ R

1×n. Then we can write

∫ 1

0

∫ 1−λ1

0

∫ 1−λ1−λ2

0

· · ·

∫ 1−λ1−λ2···−λn

0

(κ+ µλ)dλ1dλ2dλ3 · · · dλn

=
(n+ 1)κ+ µ1 + µ2 + · · ·+ µn

(n+ 1)!

Simplex (18) can now be written as

Ωj,k = {e = v̄j,k,0 + Vj,k(w)λ|λ ∈ Ω′}

Consider the coordinate transformation:

e = v̄j,k,0(w) + Vj,k(w)λ

Then

de1de2 · · · den = detVj,k(w)dλ1dλ2 · · · dλn

αj+βjw+γje

= αj+βjw + γj v̄j,k,0(w) + γj Vj,k(w)λ

= κ(w) + µ(w)λ
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Fig. 1. The regions Φj(w), j = 1, . . . , 4 for different values of w. The vertices are denoted by small circles ( ◦ ) .

and (dropping (w) for easier notation)

hj,k(w) =

∫

· · ·

∫

Ω

(

αj+βjw+γje
)

de1 · · · den

=

∫ 1

0

∫ 1−λ1

0

∫ 1−λ1−λ2

0

· · ·

∫ 1−λ1−λ2···−λn

0

detVj,k(w)(κ+ µλ)dλ1dλ2dλ3 · · · dλn

=
1

(n+ 1)!

(

(n+ 1)κ+ µ1 + µ2 + · · ·+ µn

)

=
1

(n+ 1)!

(

(n+ 1)(αj+βjw + γj v̄j,k,0)

+ γj(v̄j,k,1−v̄j,k,0) + γj(v̄j,k,2−v̄j,k,0)+

+ · · ·+ γj(v̄j,k,n−v̄j,k,0)
)

=
detVj,k(w)

(n+ 1)!

(

(n+ 1)(αj+βjw) + γj v̄j,k,0

+ γj v̄j,k,1 + γj v̄j,k,2 + · · ·+ γj v̄j,k,n

)

=
detVj,k(w)

(n+ 1)!

(

(n+1)(αj+βjw) + γj σ̄j,k,0+

+ γj τ̄j,k,0 w + γj σ̄j,k,1 + γj τ̄j,k,1 w+

+ · · ·+ γj σ̄j,k,n + γj τ̄j,k,n w
)

Due to (17) we know that

Vj,k(w) = Vj,k,0 +

p
∑

ℓ=1

Vj,k,ℓ wℓ

and so detVj,k(w) will be an nth order polynomial function

in the components of w. This means that hj,k(w) is an (n+
1)st order polynomial function in w.

Theorem 3: For a fixed w ∈ W , let s1, s2, . . . , sn be such

that

w ∈ Wj,sj for j = 1, . . . , n

where Wj,sj has been defined in Lemma 1. Define

hj(w) = hj,sj (w) for w ∈ Wj,sj , j = 1, . . . , n (19)

Then for w ∈ Wj,sj we find that

h(w) =

m
∑

j=1

hj(w)

is a piecewise (n+ 1)th order polynomial function in w.

Proof: This immediately follows from (16) combined

with Lemmas 1 and 2.

From [10] we know that h is also a continuous and convex

function, and so a subgradient can easily be determined by

computing the local derivative of the polynomial function h.
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Fig. 2. The function h(w) for −8 ≤ w ≤ 6 with the corresponding functions hj(w) as defined in (19).

IV. EXTENSION TO OTHER PROBABILITY DENSITY

FUNCTIONS

In the previous sections we have considered a uniform

distribution. Also other probability density functions (pdfs)

are possible. For piecewise affine or piecewise polynomial

pdfs the methods derived in this paper can be extended

and the expectation h can be computed analytically. Also

pdfs that are piecewise multiply integrable (so consisting of

polynomials, exponentials, sine and cosine functions) lead

to an analytic solution. A disadvantage then is that the

complexity of the analytic expression will increase with an

increasing number of regions in the piecewise functions. In

addition, note that any smooth distribution can be approxi-

mated satisfactory by the above piecewise pdfs.

V. EXAMPLE

In this example we compute a piecewise polynomial

expression for the following expression:

h(w) = E

{

max(6+2w+e2, 5+3w+5e1+5e2,

3+4w+e1, 1+5w+e1+e2)
}

so for

α =









6
5
3
1









, β =









2
3
4
5









, γ =









0 1
5 5
1 0
1 1









if the MPS function is written in the form (1).

We compute the vertices of the regions Φj(w) for j =
1, . . . , 4. Fig. 1 shows these regions Φj(w) for different

values of w. The functions Fj,k, gj,k, τj,k and σj,k can be

computed using Lemma 1, and with these we can compute

hj,k and using Theorem 3 we then compute hj and h. The

resulting function h is given in Table I. The functions h and

hj , j = 1, 2, 3, 4 are plotted in Fig. 2 for −8 ≤ w ≤ 6.

We clearly see that the function h is a piecewise polynomial

function in the variable w.

VI. CONCLUSION

In this paper we have presented an analytic piecewise

polynomial function expression for the expectation of a max-

plus linear expression, in which the terms in the max-plus

expression are affine in a control variable and affine in a

stochastic variable with a uniform distribution.

In future research we will study the application of the

analytic expression for the use in MPC of stochastic max-

plus-linear systems and/or stochastic max-min-plus-scaling

(MMPS) systems [3].
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