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Irredundant lattice piecewise affine representations and their

applications in explicit model predictive control

Jun Xu, Ton J.J. van den Boom, and Bart De Schutter

Abstract— In this paper, we derive the irredundant lattice
piecewise affine (PWA) representation, which is capable of
representing any continuous PWA function. Necessary and
sufficient conditions for irredundancy are proposed. Besides,
we discuss how to remove redundant terms and literals and
propose corresponding necessary and sufficient conditions. In
a worked example, the irredundant lattice PWA representation
is used to express the explicit model predictive controller of
a linear system, and the result turns out to be much more
compact than that given by the state-of-the-art algorithm.

I. INTRODUCTION

In [1], the lattice piecewise affine (PWA) representation is

proposed to generate PWA functions for the approximation

of a nonlinear function, and the construction of the lattice

PWA representation is basically a proof of the fact that

any continuous PWA function can be represented by the

lattice PWA representation. In [2], a formal proof is given

demonstrating the representation ability. In fact, the lattice

PWA representation is similar to the canonical max-min-

plus-scaling (MMPS) function representation [3], [4], which

can be described as

f = min
i=1,...,N1

{max
j∈Īi

{ℓj}}, (1)

or

f = max
i=1,...,N2

{min
j∈Ĩi

{ℓj}}, (2)

in which ℓj is an affine function, N1 and N2 are integers,

the sets Īi and Ĩi are index sets; besides, the operations

“max”, “min” are performed entrywise. The first expression

is referred to as the conjunctive form, while the second is

the disjunctive form. The equivalence of continuous PWA

functions and canonical MMPS functions has been proved

in [5]. In this paper, we mainly focus on the disjunctive

lattice PWA representation; however, the results can be easily

extended to the conjunctive case due to duality.

Compared with other methods for representing PWA func-

tions [6]–[10], lattice PWA representations are powerful. In

fact, the methods of [6]–[8] cannot represent all continuous
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PWA functions, the parameters in the representation pro-

posed in [9] are not easy to determine, and the number of

parameters in the expression in [10] is large. Conversely, the

integer N1 (N2) and the index set Īi (Ĩi) used in the lattice

PWA representation are not hard to derive, which will be

demonstrated in Section II.

Lattice PWA representations have been used to express the

solution of explicit model predictive control (MPC) problems

in [11]. Traditional MPC is an online control method based

on optimization at each time step; it can handle a large

number of system constraints by incorporating them into the

optimization problem. The optimization is performed using a

prediction model for predicting future outputs of the system.

For linear prediction models with constraints on states and

outputs, if the performance criterion is quadratic or based on

a mixed 1/∞- norm, it is proved in [12], [13] that the optimal

solution is a continuous PWA function with respect to the

state vector; hence, the optimal solution can be computed

offline, and the cost of online optimization can be reduced

to that of online evaluation of a continuous PWA function.

This is exactly what “explicit” means.

The continuous PWA optimal solution can be computed

using multi-parametric quadratic programming through e.g.

the MPT toolbox [14] and stored as local affine functions

and subregions. It is straightforward to use a lattice PWA

representation to express this, and the storage requirement

will be reduced compared with the solution given by the

MPT toolbox. In [11], it is pointed out that there may be

redundant parameters in the lattice PWA expression and [11]

gives two lemmas to remove the redundant ones. However,

the lemmas have limitations and the result may be redundant.

Hence, in this paper, we aim to give an irredundant lattice

PWA representation.

The paper is organized as follows. The next section intro-

duces the full lattice PWA representation, and illustrates how

to construct one. The irredundant lattice PWA representation

is derived in Section III, including necessary and sufficient

conditions for irredundancy and how to remove redundant

terms or literals. Section IV gives a worked example of

the application of irredundant lattice PWA representations

to express the solution of the explicit MPC problem. Finally,

the paper ends with conclusions in Section V.

II. FULL LATTICE PWA REPRESENTATION

The full lattice PWA representation is capable of repre-

senting any single-valued continuous PWA function, which

is defined through the following definition.



Definition 1: A function f : D → R, where D ⊆ Rn

is convex, is said to be continuous PWA if the following

conditions are satisfied:

1) The domain space D is divided into a finite num-

ber of nonempty convex polyhedra, i.e., D =
∪N
i=1Di, Di 6= ∅, the polyhedra are closed and

have non-overlapping interiors, int(Di) ∩ int(Dj) =
∅, ∀i, j ∈ {1, . . . , N̂}, i 6= j. These polyhedra are also

called base regions. The boundaries of the polyhedra

are nonempty sets in (n− 1)-dimensional space.

2) In each base region Di, f equals an affine function

ℓact(i):

f(x) = ℓact(i)(x), ∀x ∈ Di, with i ∈ {1, . . . ,M},
(3)

and we call the affine function ℓact(i) active in the

base region Di. In (3), the integer M is the number of

distinct affine functions in f ; so no two affine functions

ℓi and ℓj , i, j ∈ {1, . . . ,M}, i 6= j, are identical.

3) In each base region Di, no other affine function inter-

sects with ℓact(i) in the interior of Di, i.e.,

{x|ℓj(x) = ℓact(i)(x), j 6= act(i)}∩ int(Di) = ∅. (4)

4) f is continuous on the boundaries, i.e.,

ℓact(i)(x) = ℓact(j)(x), ∀x ∈ Di ∩ Dj ,Di ∩ Dj 6= ∅.
(5)

Remark. In this paper, we define the continuous PWA

function with respect to base regions. In fact, the subregions

mentioned in [15] can be partitioned into base regions.

The results of [1], [16] can be easily extended to the lattice

PWA representation for base regions, which leads to:

Lemma 1: Let f be a continuous PWA function defined

in Definition 1. Then f can be represented by

f(x) = max
i=1,...,N

{ min
j∈I≥,i

{ℓj(x)}}, ∀x ∈ D, (6)

with I≥,i = {j|ℓj(x) ≥ ℓact(i)(x), ∀x ∈ Di}.

We call (6) full lattice PWA representation.

In the base region Di, as (4) holds, for an affine function

ℓj with j 6= act(i), either j ∈ I≥,i or j ∈ I≤,i. If j ∈ I≥,i,

then ℓj(x) > ℓact(i)(x), ∀x ∈ int(Di), else if j ∈ I≤,i, we

have ℓj(x) < ℓact(i)(x), ∀x ∈ int(Di).

In the full lattice PWA representation (6), two binary

operations “min” and “max” are present. They are similar

to the Boolean AND and OR of Boolean algebra. Analog to

the terminology of Boolean algebra, we call “ min
j∈I≥,i

{ℓj}” a

term, denoted by TF
i , in which the superscript “F” indicates

that the term corresponds to the full representation. In each

term, the affine functions ℓj , j ∈ I≥,i are called literals.

We give a simple 1-dimensional example to illustrate the

above definition and lemma.

Example 1: Consider a 1-dimensional continuous PWA

function f with 5 affine functions:

f =























l1(x) = 0.5x, x ∈ [0, 2],
l2(x) = x− 1, x ∈ [2, 3],
l3(x) = 2, x ∈ [3, 6],
l4(x) = −x+ 8, x ∈ [6, 7],
l5(x) = −0.5x+ 4.5, x ∈ [7, 9].

(7)

The plot of f is shown in Fig. 1. From Fig. 1, we can see
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Fig. 1. An example illustrating Theorem 2.

that there are 7 base regions. According to Lemma 1, we

have the following 7 index sets and corresponding terms:

I≥,1 = {1, 3, 4, 5}, I≥,2 = {2, 3, 4, 5}, I≥,3 = {2, 3, 4, 5},
I≥,4 = {1, 2, 3, 4, 5}, I≥,5 = {1, 2, 3, 4},
I≥,6 = {1, 2, 3, 4}, I≥,7 = {1, 2, 3, 5},

(8)
TF
1 = min{ℓ1, ℓ3, ℓ4, ℓ5}, TF

2 = min{ℓ2, ℓ3, ℓ4, ℓ5},
TF
3 = min{ℓ2, ℓ3, ℓ4, ℓ5}, TF

4 = min{ℓ1, ℓ2, ℓ3, ℓ4, ℓ5},
TF
5 = min{ℓ1, ℓ2, ℓ3, ℓ4}, TF

6 = min{ℓ1, ℓ2, ℓ3, ℓ4},
TF
7 = min{ℓ1, ℓ2, ℓ3, ℓ5}.

(9)

The full lattice PWA representation for this example is

f(x) = max
i=1,...,7

{ min
j∈I≥,i

{ℓj(x)}} = max
i=1,...,7

{TF
i }, ∀x ∈ [0, 9].

(10)

It is obvious that TF
2 and TF

3 are the same; so either

of them can be deleted without affecting the value of f .

Similarly, we can also delete either TF
5 or TF

6 without

affecting the value of f . Besides, a more surprising fact is

that removing ℓ5 from TF
1 will also not affect the whole

expression. Therefore, the lattice PWA expression (10) is

redundant. �

In the next section, we are dedicated to find an irredundant

lattice PWA representation.

III. IRREDUNDANT LATTICE PIECEWISE AFFINE

REPRESENTATION

We define the irredundancy of a lattice PWA representation

as follows:

Definition 2: A lattice PWA representation

fL = max
i=1,...,Ñ

{Ti} = max
i=1,...,Ñ

{min
j∈Ii

{ℓj}} (11)



with Ñ ≤ N is irredundant, if no term Ti = min
j∈Ii

{ℓj}, and

no literal ℓj , with i ∈ {1, . . . , Ñ} and j ∈ Ii, can be deleted

without affecting the value of fL.

To achieve irredundancy, analog to the Boolean algebra,

we define implicants and prime implicants.

A. Implicants and prime implicants

Definition 3: For a continuous PWA function defined in

Definition 1, we say Ti = min
j∈Ii

{ℓj} is an implicant of f , if

Ti(x) ≤ f(x), ∀x ∈ D, (12)

and there is some base region Dk such that Ti ≡ f in Dk.

The implicant Ti = min
j∈Ii

{ℓj} is prime if there exists no other

implicant Tr = min
j∈Ir

{ℓj} of f such that Ir ( Ii.

For an implicant of f , we also define the base regions in

which it is active.

Definition 4: The implicant Ti is called active in the base

region Dk, if Ti ≡ f in Dk. The indices of all base regions

in which Ti is active constitute an index set A(Ti).

It is noted that in Definition 1 we call ℓact(i) active in the

base region Di. Similar to the notation in Definition 4, the

indices of all base regions in which ℓact(i) is active constitute

an index set A(ℓact(i)). It is obvious that i ∈ A(ℓact(i)).

In the base region Dk with k /∈ A(Ti), from the definition

of implicant, we have Ti ≤ f, Ti 6≡ f . Besides, if x ∈
int(Dk), k /∈ A(Ti), according to (4), we have Ti(x) < f(x).

We now describe the implicants and prime implicants in

the context of the lattice PWA representation. The following

lemma determines the indices of base regions in which a

term is active.

Lemma 2: Given an implicant Ti = min
j∈Ii

{ℓj}, it is active

in the base region Dk, i.e., k ∈ A(Ti) if and only if Ii ⊆
I≥,k.

Proof: Necessity. If k ∈ A(Ti), we have Ii ⊆ I≥,k.

Otherwise, if Ii 6⊆ I≥,k, we can find an r such that r ∈
Ii, r /∈ I≥,k. As r /∈ I≥,k, there would exist an x̃ ∈ Dk,

such that ℓr(x̃) < ℓact(k)(x̃) = f(x̃). Since r ∈ Ii, we have

Ti(x̃) ≤ ℓr(x̃) < ℓact(k)(x̃) = f(x̃), contradicting the fact

that k ∈ A(Ti).

Sufficiency. If Ii ⊆ I≥,k, as Ti is an implicant, we have

act(k) ∈ Ii, then Ti ≡ ℓact(k) ≡ f in Dk, i.e., k ∈ A(Ti).

Lemma 3: Every term TF
i = min

j∈I≥,i

{ℓj} in the full lattice

PWA expression (6) is an implicant of f . Moreover, there

exists at least one prime implicant Ti = min
j∈Ii

{ℓj} of f with

Ii ⊆ I≥,i and A(TF
i ) ⊆ A(Ti).

Proof:

According to Lemma 1, TF
i ≡ f in Di, thus A(TF

i ) 6= ∅,

besides, TF
i ≤ f in D, so TF

i is an implicant of f .

For each TF
i , we first set Ii = I≥,i and Ti = min

j∈Ii
{ℓj}.

Then, for each k ∈ Ii, if min
j∈Ii\{k}

{ℓj} ≤ f , we set Ii =

Ii\{k} and Ti = min
j∈Ii

{ℓj}. Thus the resulting Ti = min
j∈Ii

{ℓj}

satisfies Ti ≤ f , and for any index set Ĩi ( Ii, the statement

min
j∈Ĩi

{ℓj} ≤ f does not hold.

Considering Ti obtained above, now we explain why

A(TF
i ) ⊆ A(Ti). Assume this does not hold. Then there

would exist an index k satisfying k ∈ A(TF
i ) and k /∈ A(Ti),

so in int(Dk), we have TF
i ≡ f , and Ti < f,, which

contradicts the fact that TF
i ≤ Ti.

From the above proof, the resulting Ti satisfying Ti ≤ f
in D and no literals can be deleted from Ti without violating

the inequality, moreover, Ti ≡ f in A(Ti), thus Ti is a prime

implicant of f .

The following lemma gives the conditions that the term in

the full lattice PWA representation can be replaced.

Lemma 4: In the full lattice PWA representation (6), the

term TF
i = min

j∈I≥,i

{ℓj} can be replaced by Ti = min
j∈Ii

{ℓj}

without affecting the function value if Ti is an implicant of

f and Ii ⊆ I≥,i.

Proof: After replacing TF
i with Ti in (6), we have

max{TF
1 , . . . , T

F
i−1, Ti, T

F
i+1, . . . , T

F
N} ≡ f in all base re-

gions, hence the function value of f is not changed.

B. Necessary and sufficient conditions for irredundancy

The irredundancy of a lattice PWA expression can be

checked through the following theorem.

Theorem 1: The lattice PWA representation (11) satisfies

fL = f in D is irredundant if and only if the following two

conditions hold:

i) Each term Ti = min
j∈Ii

{ℓj} is a prime implicant of f .

ii) A(Ti) 6⊆ ∪Ñ
s=1,s 6=iA(Ts), ∀i ∈ {1, . . . , Ñ}.

Proof: First we prove necessity. If the lattice PWA

expression fL is irredundant, then no terms and literals can

be deleted from fL without affecting the function value of

fL.

Clearly condition i) must hold; otherwise if Ti is not an

implicant of f ,we can delete it without affecting the function

value of fL, or else if Ti is an implicant but not prime

implicant, as a direct result of Lemma 4, we can delete some

literal from Ti without affecting the function value.

Considering condition ii), if it is not satisfied, there is an î
such that A(Tî) ⊆ ∪Ñ

s=1,s 6=î
A(Ts), then for each k ∈ A(Tî),

there is some ik ∈ {1, . . . , Ñ}, ik 6= î such that k ∈ A(Tik),
i.e.,

Tik(x) ≡ f(x), ∀x ∈ Dk. (13)

Thus we have

max
s=1,...,̂i−1,̂i+1,...,Ñ

{Ts(x)} = f(x), ∀x ∈ D,

hence Tî can be removed from fL without affecting the

function value, yielding contradiction.

Now we prove sufficiency. Condition i) implies that no

literals can be deleted from Ti without affecting the function

value.

We prove that condition ii) indicates that no prime im-

plicant Ti = min
j∈Ii

{ℓj} can be deleted without affecting the

function value of fL in D. Otherwise, if we delete Tî for



some î ∈ {1, . . . , Ñ}, according to condition ii), there is at

least one index kî ∈ {1, . . . , N} satisfying kî ∈ A(Tî) and

kî /∈ ∪Ñ

s=1,s 6=î
A(Ts). Thus in int(Dkî

), we have

max
s=1,...,̂i−1,̂i+1,...,Ñ

{Ts} < f

the function value of fL has been changed. Therefore, the

two conditions ensure the irredundancy of fL.

C. Removing redundant terms and literals

A corollary concerning removing redundant terms in a

lattice PWA representation follows.

Corollary 1: In the lattice PWA representation (11), the

term Ti = min
j∈Ii

{ℓj} can be removed without affecting the

function value fL in D if and only if

A(Ti) ⊆ ∪Ñ
s=1,s 6=iA(Ts). (14)

Proof: According to the proof of Theorem 1, condition

ii) is a necessary and sufficient condition for the irredundancy

of terms. Hence, Ti is redundant if and only if (14) is

satisfied.

Next we explain how to remove redundant literals and

derive prime implicants.

Theorem 2: Given a term TF
i = min

j∈I≥,i

{ℓj} in the full

lattice PWA representation (6). The term Ti = min
j∈Ii

{ℓj} with

Ii ( I≥,i is an implicant of f if and only if ∀t ∈ I≥,i \ Ii,
∀k ∈ A(ℓt), we have

Ti(x) ≤ ℓt(x), ∀x ∈ Dk. (15)

Proof: The proof can be divided into two parts, the first

is necessity and the second is sufficiency.

(1) Necessity. As Ti is an implicant of f , we have Ti ≤ f
in D. If (15) does not hold, there would exist some index

t̃ ∈ I≥,i \Ii, k̃ ∈ A(ℓt), and some x̃ ∈ Dk̃ such that Ti(x̃) >
ℓt(x̃) = f(x̃), which yields a contradiction.

(2) Sufficiency. Assuming that (15) holds for all t ∈ I≥,i\Ii
and all k ∈ A(ℓt), then act(i) ∈ Ii. According to Definition

3, in order to prove that Ti is an implicant of f , two steps are

needed, the first is to prove Ti ≤ f in D and the second is

to prove that there exist some base regions in which Ti ≡ f .

Step 1: Now we prove that Ti ≤ f in D, i.e., for all

k ∈ {1, . . . , N}, the following holds:

Ti(x) ≤ ℓact(k)(x) = f(x), ∀x ∈ Dk (16)

The proof proceeds according to different cases of the index

act(k): act(k) ∈ Ii, act(k) ∈ I≥,i \ Ii and act(k) /∈ I≥,i.

Case 1: act(k) ∈ Ii. In this case, (16) follows as Ti ≤
ℓact(k).

Case 2: act(k) ∈ I≥,i \ Ii. In this case, (15) ensures the

validity of (16).

Case 3: act(k) /∈ I≥,i. In this case, if (16) is invalid, we

can find an index k̃ and an xs ∈ Dk̃ satisfying ℓact(k̃)(xs) =
f(xs) < Ti(xs). As both ℓact(k̃) and Ti are continuous, such

an xs can be found in the interior of Dk̃, i.e., xs ∈ int(Dk̃).
Since act(k̃) /∈ I≥,i, we can find an xe ∈ int(Di)

satisfying ℓact(k̃)(xe) < ℓact(i)(xe) = f(xe) = TF
i (xe) =

Ti(xe).

Consider the line segment

[xs, xe] = {x ∈ D|x = (1−λ)xs+λxe, 0 ≤ λ ≤ 1}, (17)

as D is convex, we conclude that f is continuous PWA when

restricted to this line segment.

As ℓact(k̃)(xs) < Ti(xs) and ℓact(k̃)(xe) < Ti(xe), for all

j ∈ Ii, ∀x ∈ [xs, xe], we have ℓact(k̃)(x) < ℓj(x). Hence for

all x ∈ [xs, xe], we have ℓact(k̃)(x) < ℓact(i)(x).

Since f is continuous when restricted to [xs, xe], there

must exist some point x1 ∈ [xs, xe] and an affine function ℓi1
with i1 6= act(k̃), such that f(x1) = ℓact(k̃)(x1) = ℓi1(x1),
thus we have

ℓi1(x1) = ℓact(k̃)(x1) < Ti(x1). (18)

According to (18), we have x1 6= xe. Define an index set S1

as

S1 = {1, . . . ,M} \
(

I≥,i ∪ act(k̃)
)

. (19)

Now we prove that i1 ∈ S1.

As ℓact(k̃)(x) < Ti(x) for all x ∈ [xs, xe], we have i1 /∈ Ii.
If i1 ∈ I≥,i \ Ii, then (15) does not hold for x1 due to (18).

Thus i1 /∈ I≥,i. Moreover, it is clear that i1 6= act(k̃) and

therefore, i1 ∈ S1.

Since i1 /∈ I≥,i, we also have ℓi1(xe) < ℓact(i)(xe). So

for all x ∈ [x1, xe], we have ℓi1(x) < ℓact(i)(x), then there

would exist a point x2 and an affine function ℓi2 with i2 6=
i1 and i2 6= act(k̃) such that f(x2) = ℓi1(x2) = ℓi2(x2).
Clearly x2 6= xe.

Let the index set S2 be defined as

S2 = S1 \ {i1},

then similar to the proof concerning i1, we have i2 ∈ S2.

Repeating the above procedure if necessary, and after

l (l < M) iterations we can reach an empty index set Sl.

According to the discussion for the previous iterations, we

should have a point xl ∈ [xl−1, xe], xl 6= xe and an index

il ∈ Sl such that

ℓil(xl) = ℓil−1
(xl),

which cannot be fulfilled as Sl is empty. Therefore, we have

(16) for all x ∈ D.

Step 2: Now we prove that there exists some base region in

which Ti ≡ f , i.e., A(Ti) 6= ∅. Considering Dk, k ∈ A(TF
i ),

according to (15), we have act(k) ∈ Ii, thus Ti ≡ TF
i ≡ f

in Dk, ∀k ∈ A(TF
i ).

Therefore Ti is an implicant of f .

Using Theorem 1 and 2, we can delete redundant terms

or literals in a term Ti until further deletion is impossible,

and the resulting expression is irredundant.

We have to point out that (14) is different from the row

vector simplification lemma in [11], which states that if Ir ⊆
Ik, then Tk = min

j∈Ik
{ℓj} can be removed without affecting

the function value. Again looking into Example 1, we will

explain that the row vector simplification lemma in [11] is

only a sufficient condition for removing redundant terms.

Example 1 (Continued): Reconsidering Example 1, now



we can use Theorem 2 to explain why ℓ5 can be removed

from TF
1 without affecting the function value. As T1(x) =

min{ℓ1(x), ℓ3(x), ℓ4(x)} ≤ ℓ5(x), ∀x ∈ D7 and A(ℓ5) =
{7}, T1 is an implicant of f and can replace TF

1 without

affecting the function value.

An interesting phenomenon is that the prime implicant

T̃1 = min{ℓ1, ℓ3, ℓ5} can also replace TF
1 as T̃1 ≤ ℓ4 in D6

and A(ℓ4) = {6}. Hence, there may be more than one prime

implicant resulting from a given term of the full lattice PWA

representation.

Following gives a set of prime implicants for each term

in (9),

T1 = min
j∈I1={1,3,4}

{ℓj}, T2 = min
j∈I2={2,3,5}

{ℓj},

T3 = min
j∈I3={2,3,4}

{ℓj}, T4 = min
j∈I4={1,3,4}

{ℓj},

T5 = min
j∈I5={1,3,4}

{ℓj}, T6 = min
j∈I6={1,3,4}

{ℓj},

T7 = min
j∈I7={1,3,5}

{ℓj}.

(20)

Then according to (14), if we search from 1 to N , the

redundant terms Ti, i = 1, 2, 4, 5, 6 can be removed and we

obtain an irredundant lattice PWA expression,

fL = max{min{ℓ2, ℓ3, ℓ4},min{ℓ1, ℓ3, ℓ5}}. (21)

In fact, if we search from N to 1, then we can remove the

redundant terms Ti, i = 3, 4, 5, 6, 7 and obtain the following

irredundant lattice PWA expression,

fL = max{min{ℓ1, ℓ3, ℓ4},min{ℓ2, ℓ3, ℓ5}}. (22)

From this example, we can conclude that the irredundant

lattice PWA representation are not unique.

If we apply the row vector simplification lemma of [11],

the following expression is obtained:

f[11] = max{min{ℓ1, ℓ3, ℓ4},min{ℓ2, ℓ3, ℓ5},

min{ℓ2, ℓ3, ℓ4},min{ℓ1, ℓ3, ℓ5}}, (23)

which clearly contains more terms than (22).

IV. APPLICATION IN LINEAR EXPLICIT MPC

Consider MPC of solving a constrained regulation problem

for discrete-time linear time-invariant system at time step t:

min
U

{

J(U, xt) = xT
t+Ny

Pxt+Ny
+

Ny−1
∑

k=0

[

xT
t+kQxt+k

(24a)

+uT
t+kRut+k

]

}

s.t. ymin ≤ yt+k ≤ ymax, k = 1, . . . , Ny, (24b)

umin ≤ ut+k ≤ umax, k = 0, 1, . . . , Ny − 1, (24c)

xt+k+1 = Axt+k +But+k, k = 0, 1, . . . , Ny − 1,
(24d)

yt+k = Cxt+k, k = 1, . . . , Ny, (24e)

ut+k = Kxt+k, k = Nu, . . . , Ny − 1, (24f)

in which the optimized variable U = [uT
t , . . . , u

T
t+Ny−1]

T ;

Nu and Ny are the control horizon and prediction horizon

respectively, xt+k, yt+k denote the predicted state and output

vector at time step t + k using (24d). We assume Q < 0,

P,R ≻ 0; K is the feedback gain of a stabilizing controller.

After solving the optimization problem (24), the optimal

U∗ = [(u∗
t )

T , . . . , (u∗
t+Ny−1)

T
]T is obtained, and only

u∗
t is applied to the system. The optimization problem is

subsequently reformulated and solved at the next time steps

t+ 1, t+ 2, . . . by refreshing the given state vector xt.

It is obvious that the online optimization has to be finished

within the sample interval of the discrete-time linear time-

invariant system, which may be hard to accomplish when

the sample interval is small. Hence, explicit MPC has been

proposed in [12] to calculate an explicit expression of ut as a

function of xt. The following lemma gives the expression of

the optimal solution and the MPT toolbox [14] can give the

solution in the form of subregions and local affine functions

defined on them.

Lemma 5: [12] The control law ut = f(xt), f : D → Rm

defined by the optimization problem (24) is a continuous and

PWA function of the form

f(x) = F ix+ gi, if Aix ≤ bi, i = 1, . . . , N, (25)

where the polyhedral sets {Aix ≤ bi}, i = 1, . . . , N form a

partition of the set of states.

In [11], a lattice PWA representation is used to represent

the resulting continuous PWA controller. In [11] the lattice

PWA expression is also simplified to give a more compact

expression. However, as pointed out in Section III above, the

irredundancy of the simplification results in [11] cannot be

guaranteed. Hence, we now give the irredundant lattice PWA

representation to simplify the explicit MPC output.

A. Simulation Example

Consider the discrete-time double integrator example in-

troduced in [17], in which the system dynamics can be

written as

xk+1 =

[

1 Ts

0 1

]

xk +

[

T 2
s

Ts

]

uk,

yk =
[

0 1
]

xk,
(26)

where the sampling interval is Ts = 0.3s. Consider the MPC

problem (24) with Q =

[

1 0
0 0

]

, R = 1. In this example,

we calculate P as the solution of the discrete-time algebraic

Riccati equation and K = (R+BTPB)−1BTPA, i.e., P =
[

4.7674 2.6941
2.6941 3.8531

]

and K = [0.8082 1.1559]. The system

constraints are −0.5 ≤ yk ≤ 0.5 and −1 ≤ uk ≤ 1. The

domain of x is [−2.8, 2.8]× [−0.8, 0.8].
Assume Ny = Nu = 10. First we use the MPT toolbox

to compute the optimal output ut as a function of xt. It is a

continuous PWA function with 137 subregions.

In each of the 137 subregions, there is a corresponding

local affine function. Among all the affine functions, there

are only 27 unique ones; hence, several subregions may share

a same local affine function. After removing redundant terms



and literals, only 11 terms left and the number of parameters

reduces from 2073 to 133. Hence, the original solution

calculated by the MPT toolbox can be represented by a much

more compact irredundant lattice PWA expression.

For Ny = 2, 6, 10, 14, 18, 20 (Nu = Ny), Table I com-

pares the performance of the MPC output, the procedure

in [11] and the irredundant lattice PWA expression. In the

table, Nm, N[11] and NL are the number of parameters of

the MPT output, of the output in [11], and of the irredundant

lattice PWA representation. Also listed in Table I are the

elapsed time for evaluating the optimal solution through the

MPT toolbox, the representation in [11], and the irredundant

lattice PWA representation, denoted by τm, τ[11] and τL,

respectively.

TABLE I

COMPARISON OF PERFORMANCES OF THREE REPRESENTATIONS

Ny Nm N[11] NL τm(ms) τ[11](ms) τL(ms)

2 477 87 80 1.6 0.137 0.119
6 1677 176 148 2.5 0.325 0.232

10 2073 172 133 2.7 0.327 0.199
14 2385 184 133 2.8 0.366 0.201
18 2349 184 133 4.0 0.458 0.241
20 2349 184 133 2.9 0.367 0.202

From the table, we can see that the number of parameters

used to describe a continuous PWA function is reduced

significantly when using the irredundant lattice PWA rep-

resentation, and this reduction is more evident when Ny is

large. Besides, the number of parameters for the irredundant

representation is less than that in [11], which means that the

lattice PWA expression in [11] is redundant.

Moreover, for this example, the time needed for evaluating

the optimal solution through the irredundant lattice PWA

representation is less than that in MPT toolbox. It is also

noticed that the evaluating time for the irredundant lattice

PWA representation and the lattice representation in [11] are

close, which is due to that the difference of the number

of parameters of the two representations is small in this

example.

V. CONCLUSIONS

In this paper, we have proposed the irredundant lattice

PWA representation, in which no terms or literals can be

deleted. It greatly facilitates the application of the lattice

PWA representation in representing continuous PWA func-

tions. Necessary and sufficient conditions for irredundancy

have been proposed. Besides, we have also provided neces-

sary and sufficient conditions for removing redundant terms

and literals. Based on these conditions, an algorithm for

obtaining an irredundant lattice PWA expression is given. A

worked example is provided to express the explicit solution

of a linear MPC problem, the results of which show that the

number of parameters is reduced significantly.
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