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Abstract: The model predictive control problem for max-plus-linear discrete-event systems
generally leads to a nonlinear optimization problem, which may be hard to solve efficiently. In
this paper, we propose to apply optimistic optimization to resolve this problem. The algorithm
builds a tree where each selected control sequence corresponds to a node of the tree. An
optimistic exploration of the tree is implemented, where the most promising control sequences
are explored first. We give an example to illustrate the effectiveness of the method.

Keywords: Discrete-event systems; Max-plus-linear systems; Model predictive control;
Optimistic optimization

1. INTRODUCTION

Many complex man-made systems such as flexible man-
ufacturing systems, telecommunication networks, railway
networks, traffic control systems, and logistic systems, can
be modeled by discrete-event systems. Usually in con-
ventional algebra discrete-event systems lead to nonlin-
ear descriptions, but there is a subclass of discrete-event
systems for which we can get a “linear” model in the max-
plus algebra (Baccelli et al., 1992; Cuninghame-Green,
1979; Heidergott et al., 2006), i.e. max-plus-linear (MPL)
systems. In these systems, only synchronization and no
choice is considered. Many results have been achieved for
control or analysis of MPL systems (Cassandras et al.,
1995; Boimond and Ferrier, 1996; Gazarik and Kamen,
1999; Cottenceau et al., 2001; De Schutter and van den
Boom, 2001; Katz, 2007; Hardouin et al., 2010; Maia et al.,
2011; Houssin et al., 2013).

Model predictive control (MPC) has been widely used in
the process industry since its introduction in the 1980s
(Richalet et al., 1978; Garcia et al., 1989). A key advantage
of MPC is that it can handle constraints on inputs and out-
puts. In essence, MPC uses a prediction model in combina-
tion with on-line optimization to determine a sequence of
control inputs. An objective function is optimized subject
to various operational constraints over a given prediction
horizon. MPC has been extended to MPL discrete-event
systems (De Schutter and van den Boom, 2001; van den
Boom and De Schutter, 2004; Necoara et al., 2008).

The MPC problem for MPL systems can be formulated as
an optimization problem subject to constraints on inputs
and outputs. For some special cases, namely, if the objec-
tive function is a monotonically non-decreasing piecewise
affine function of the output and an affine function of the
input and if the constraints are linear and monotonically
non-decreasing as a function of the output, we get a

linear programming problem, which can be solved very
efficiently. However, in general MPL-MPC will result in a
nonlinear optimization problem. Mixed integer linear pro-
gramming (MILP) can be used to solve the problem, but
this method will be less efficient if the prediction horizon
increases. In this paper we focus on applying optimistic op-
timization to solve the MPL-MPC problem and we develop
a corresponding dedicated semi-metric. Optimistic opti-
mization uses a tree architecture to represent the possible
sequences of control inputs and implements an optimistic
exploration of the tree, where the most promising nodes
of the tree are explored first (Munos, 2011; Valko et al.,
2013; Munos, 2013). The main advantage of optimistic
optimization is that one can specify the computation bud-
get (e.g. the number of function evaluations) in advance.
The computation complexity of optimistic optimization
depends on the control horizon instead of the prediction
horizon. In particular, the algorithm with the proposed
semi-metric will be more efficient than MILP for small
control horizons and large prediction horizons.

This paper is organized as follows. In Section 2 we intro-
duce MPL discrete-event systems. Section 3 discusses the
MPC problem for MPL systems. Section 4 presents the
background of optimistic optimization. In Section 5 we
apply optimistic optimization to the MPL-MPC problem.
Next, we consider an example to illustrate the effectiveness
of this algorithm. Finally, conclusions are given.

2. MAX-PLUS-LINEAR SYSTEMS

Consider a single-input single-output 1 MPL system of the
following form

x(k) = A⊗ x(k − 1)⊕B ⊗ u(k) (1)

y(k) = C ⊗ x(k) (2)

1 The approach presented in this paper can be extended to multi-

input multi-output systems too.



where k is the event counter, x(k) ∈ R
n
ε is the state,

u(k) ∈ Rε is the input, y(k) ∈ Rε is the output, with
Rε = R ∪ {−∞}, and where A ∈ R

n×n
ε , B ∈ R

n×1
ε , and

C ∈ R
1×n
ε are the coefficient matrices.

The max-plus-algebraic addition (⊕) and multiplication
(⊗) are defined as follows:

x⊕ y = max(x, y), x⊗ y = x+ y

for numbers x, y ∈ Rε and
[

A⊕B
]

ij
= aij ⊕ bij = max(aij , bij)

[

A⊗ C
]

ij
=

n
⊕

k=1

aik ⊗ ckj = max
k=1,...,n

(aik + ckj)

for matrices A,B ∈ R
m×n
ε and C ∈ R

n×p
ε .

3. THE MPC PROBLEM FOR MPL SYSTEMS

MPC uses a prediction model in combination with on-line
optimization to determine a sequence of control inputs by
optimizing a performance criterion subject to various con-
straints over a given prediction horizon. De Schutter and
van den Boom (2001) have extended the MPC framework
to MPL systems as follows. Assume Np is the prediction
horizon and denote the estimate of the output at event step
k+j based on the information available at event step k by
ŷ(k+j|k). The evolution of the output can be estimated by
successive substitution of (1) into (2). In matrix notation
we obtain

ỹ(k) = H ⊗ ũ(k)⊕ g(k) (3)

where

ỹ(k) =











ŷ(k|k)
...

ŷ(k +Np − 1|k)











, ũ(k) =











u(k)
...

u(k +Np − 1)











,

H =















C ⊗B ε · · · ε

C ⊗A⊗B C ⊗B · · · ε

...
...

. . .
...

C ⊗A⊗
Np−1

⊗B C ⊗A⊗
Np−2

⊗B · · · C ⊗B















,

g(k) =















C ⊗A

C ⊗A⊗
2

...

C ⊗A⊗
Np















⊗ x(k − 1).

De Schutter and van den Boom (2001) consider a perfor-
mance criterion J that reflects the difference between out-
put times and due dates (Jout) and just-in-time production
(Jin):

J(ỹ(k), ũ(k)) = Jout(ỹ(k)) + βJin(ũ(k))

where β is a non-negative scalar.

The MPC problem at event step k for MPL system involves
finding the input sequence u(k), . . . , u(k + Np − 1) that
minimizes the performance criterion J(ỹ(k), ũ(k)) subject
to (3) and other constraints on the inputs and outputs.

MPL-MPC uses a receding horizon approach. This means
that once the optimal input sequence is determined, only

the first element of the input sequence is applied to
the system, after which the new state of the system is
measured. At the next event step the prediction horizon is
shifted and the whole process is repeated.

In this paper we consider the following objective functions

Jout(ỹ(k)) =

Np−1
∑

j=0

∣

∣

∣

∣

ŷ(k + j|k)− r(k + j)

∣

∣

∣

∣

=

Np
∑

j=1

∣

∣

∣

∣

ỹj(k)− r̃j(k)

∣

∣

∣

∣

(4)

Jin(ũ(k)) = −

Np−1
∑

j=0

u(k + j) = −

Np
∑

j=1

ũj(k) (5)

where r̃(k) =
[

r(k) · · · r(k +Np − 1)
]T

is the due date

signal.

Remark 1. The output cost function (4) reflects the
differences between the due dates r and the actual output
time instants. The input function (5) leads to a maximiza-
tion of the input instants.

Note that

u(k+ j) = u(k− 1)+

j
∑

s=0

∆u(k+ s), for j = 0, . . . , Np− 1,

with ∆u(k + s) = u(k + s)− u(k + s− 1).

Denote

∆ũ(k) =











∆u(k)
...

∆u(k +Np − 1)











=











u(k)− u(k − 1)
...

u(k +Np − 1)− u(k +Np − 2)











and

L =















1 0 · · · 0

1 1 · · · 0
...
...
. . .

...

1 1 · · · 1















Np×Np

, uprev(k) = u(k − 1).

Then

ũ(k) = L ∆ũ(k) +











uprev(k)
...

uprev(k)











. (6)

Using (3) and (6) we can rewrite the objective function as
follows:

J(ỹ(k), ũ(k))

=

Np
∑

j=1

∣

∣

∣

∣

ỹj(k)− r̃j(k)

∣

∣

∣

∣

− β

Np
∑

j=1

ũj(k)



=

Np
∑

j=1

∣

∣

∣

∣

ỹj(k)− r̃j(k)

∣

∣

∣

∣

− β

Np
∑

j=1

(

(

L ∆ũ(k)
)

j
+ uprev(k)

)

=

Np
∑

j=1

∣

∣

∣

∣

ỹj(k)− r̃j(k)

∣

∣

∣

∣

− β

Np
∑

j=1

( j
∑

s=1

∆ũs(k) + uprev(k)

)

=: J∆(∆ũ(k)).

This defines a new objective function J∆.

In this paper the input rate is assumed to be bounded,
which can be guaranteed by the following assumption:

Assumption 1.

0 ≤ a ≤ ∆u(k + j) ≤ b, for j = 0, . . . , Np − 1, (7)

where a < b and b is finite.

Now we can write the MPL-MPC problem at event step k
as follows:

min
∆ũ(k)

J∆(∆ũ(k)) (8)

subject to
∆ũ(k) ∈ [a, b]Np . (9)

4. OPTIMISTIC OPTIMIZATION

Denote X = [a, b]Np , then 2 ∆ũ ∈ X . Optimistic opti-
mization is a tree search algorithm that can perform an
efficient exploration of the search space X . This algorithm
is called optimistic because it explores the most promising
areas first (Munos, 2011). The implementation of opti-
mistic optimization is based on a hierarchical partitioning
of the search space X . Consider a set of partitions of the
space X at all scales h = 0, 1, . . ., i.e. for any integer h,
X is partitioned into Kh sets Xh,i (called cells), where
i = 0, . . . ,Kh−1. This partitioning may be represented by
a K-ary tree (i.e. a rooted tree in which each node has no
more than K children) where each cell Xh,i corresponds to
a node (h, i) of the tree such that each node (h, i) possesses
K child nodes {(h+1, ik)}k=1,...,K . In addition, the set of
cells of the children {Xh+1,ik}Kk=1 forms a partition of the
parent cell Xh,i. The root of the tree (i.e. the cell X0,0)
corresponds to the whole domain X . To each cell Xh,i we
assign a representative point ∆ũh,i ∈ Xh,i where f may
be evaluated. In this paper, ∆ũh,i is the center of Xh,i.

We also need the following definition:

Definition 1 (Semi-metric). A semi-metric on a set S is a
function ℓ : S×S → R

+ satisfying the following conditions
for any x, y ∈ S:
1) ℓ(x, y) = ℓ(y, x) ≥ 0;
2) ℓ(x, y) = 0 if and only if x = y.

To use optimistic optimization, the following requirements
should be satisfied:

Requirement 1. There exists a semi-metric ℓ in the
search space X .

Requirement 2. There exists at least one global opti-
mizer ∆ũ∗ ∈ X of J∆ (i.e. J∆(∆ũ∗) = min

∆ũ∈X
J∆(∆ũ))

such that for all ∆ũ ∈ X ,

J∆(∆ũ)− J∆(∆ũ∗) ≤ ℓ(∆ũ,∆ũ∗).

2 For simplicity, the index k is dropped from now on.

Requirement 3. There exists a decreasing sequence
δ(h) > 0, such that for any level h ≥ 0, for any cell Xh,i

of level h, we have sup∆ũ∈Xh,i ℓ(∆ũh,i,∆ũ) ≤ δ(h).

Requirement 4. There exists a ν > 0 such that for any
level h ≥ 0, any cell Xh,i contains an ℓ-ball of radius νδ(h)
centered in ∆ũh,i.

5. OPTIMISTIC OPTIMIZATION FOR THE
MPL-MPC PROBLEM

In this section, we will look at the implementation of
optimistic optimization for the MPL-MPC problem (8)-
(9). To show that Requirements 1-4 hold for the problem,
the following lemma will be needed.

Lemma 1. Suppose that ỹ∗ and ũ∗ are the outputs and
inputs corresponding to the global optimizer ∆ũ∗ of the
problem (8)-(9). Then for any ∆ũ and corresponding input
sequence ũ and output sequence ỹ, it holds that

∣

∣

∣

∣

ỹj − r̃j

∣

∣

∣

∣

−

∣

∣

∣

∣

ỹ∗j − r̃j

∣

∣

∣

∣

≤ max
i=1,...,j

∣

∣

∣

∣

i
∑

s=1

∆ũs −

i
∑

s=1

∆ũ∗
s

∣

∣

∣

∣

for all j = 1, . . . , Np.

Proof. Due to the triangle inequality, it is easy to verify
that

∣

∣

∣

∣

ỹj − r̃j

∣

∣

∣

∣

−

∣

∣

∣

∣

ỹ∗j − r̃j

∣

∣

∣

∣

≤

∣

∣

∣

∣

ỹj − ỹ∗j

∣

∣

∣

∣

for all j = 1, . . . , Np.

From (3) we have

ỹj = max( max
p=1,...,j

hjp + ũp, gj).

Given ũ and ũ∗ corresponding to a given ∆ũ ∈ X and the
optimizer ∆ũ∗, we can define p0 and q0 as follows:

p0 = arg max
p=1,...,j

hjp + ũp,

q0 = arg max
q=1,...,j

hjq + ũ∗
q .

Now

ỹj − ỹ∗j = max( max
p=1,...,j

hjp + ũp, gj)

−max( max
q=1,...,j

hjq + ũ∗
q , gj)

= max(hjp0
+ ũp0

, gj)

−max(hjq0 + ũ∗
q0
, gj)

≤ max(hjp0
+ ũp0

, gj)

−max(hjp0
+ ũ∗

p0
, gj)

≤ max(ũp0
− ũ∗

p0
, 0)

≤
∣

∣

∣
ũp0

− ũ∗
p0

∣

∣

∣
≤ max

i=1,...,j

∣

∣

∣
ũi − ũ∗

i

∣

∣

∣
.

In a similar way, we have

ỹ∗j − ỹj ≤
∣

∣

∣
ũ∗
q0

− ũq0

∣

∣

∣
≤ max

i=1,...,j

∣

∣

∣
ũi − ũ∗

i

∣

∣

∣
.

Therefore
∣

∣

∣

∣

ỹj − r̃j

∣

∣

∣

∣

−

∣

∣

∣

∣

ỹ∗j − r̃j

∣

∣

∣

∣

≤

∣

∣

∣

∣

ỹj − ỹ∗j

∣

∣

∣

∣

≤ max
i=1,...,j

∣

∣

∣
ũi − ũ∗

i

∣

∣

∣
.

Because

ũi = uprev +

i
∑

s=1

∆ũs, ũ∗
i = uprev +

i
∑

s=1

∆ũ∗
s,



we have
∣

∣

∣

∣

ỹj − r̃j

∣

∣

∣

∣

−

∣

∣

∣

∣

ỹ∗j − r̃j

∣

∣

∣

∣

≤ max
i=1,...,j

∣

∣

∣

∣

i
∑

s=1

∆ũs −

i
∑

s=1

∆ũ∗
s

∣

∣

∣

∣

for all j = 1, . . . , Np. ✷

Define a mapping ℓ : X × X → R
+, such that for all

∆ũ,∆ṽ ∈ X ,

ℓ(∆ũ,∆ṽ) = (1 + β)

Np
∑

j=1

j
∑

s=1

∣

∣

∣

∣

∆ũs −∆ṽs

∣

∣

∣

∣

. (10)

Now we show that Requirements 1-4 are satisfied for the
problem (8)-(9).

Theorem 2. The function ℓ defined by (10) is a semi-
metric.

Proof. From the definition of the mapping ℓ and since
β ≥ 0, it is obvious that

ℓ(∆ũ,∆ṽ) = ℓ(∆ṽ,∆ũ) ≥ 0,

ℓ(∆ũ,∆ṽ) = 0, if ∆ũ = ∆ṽ.

Now we only need to prove that

ℓ(∆ũ,∆ṽ) = 0 implies ∆ũ = ∆ṽ.

If ℓ(∆ũ,∆ṽ) = 0, then we have
Np
∑

j=1

j
∑

s=1

∣

∣

∣

∣

∆ũs −∆ṽs

∣

∣

∣

∣

= 0

i.e.
∣

∣

∣

∣

∆ũs −∆ṽs

∣

∣

∣

∣

= 0

for s = 1, . . . , Np. Therefore, ∆ũ = ∆ṽ.

This completes the proof. ✷

Theorem 3. Suppose ∆ũ∗ ∈ X is a global optimizer of
J∆(∆ũ), i.e. J∆(∆ũ∗) = min

∆ũ∈X
J∆(∆ũ). Then for all ∆ũ ∈

X , it holds that

J∆(∆ũ)− J∆(∆ũ∗) ≤ ℓ(∆ũ,∆ũ∗). (11)

Proof. Note that for a sequence of real numbers α1, . . . , αj

we have

max
i=1,...,j

∣

∣

∣

∣

i
∑

s=1

αs

∣

∣

∣

∣

≤ max
i=1,...,j

i
∑

s=1

∣

∣

∣
αs

∣

∣

∣
≤

j
∑

s=1

∣

∣

∣
αs

∣

∣

∣
. (12)

Based on Lemma 1 and (12), we have

J∆(∆ũ)− J∆(∆ũ∗)

=

Np
∑

j=1

[

∣

∣

∣

∣

ỹj − r̃j

∣

∣

∣

∣

−

∣

∣

∣

∣

ỹ∗j − r̃j

∣

∣

∣

∣

]

− β

Np
∑

j=1

j
∑

s=1

[

∆ũs −∆ũ∗
s

]

≤

Np
∑

j=1

max
i=1,...,j

∣

∣

∣

∣

i
∑

s=1

∆ũs −
i

∑

s=1

∆ũ∗
s

∣

∣

∣

∣

− β

Np
∑

j=1

j
∑

s=1

[

∆ũs −∆ũ∗
s

]

≤

Np
∑

j=1

j
∑

s=1

∣

∣

∣

∣

∣

∆ũs −∆ũ∗
s

∣

∣

∣

∣

∣

− β

Np
∑

j=1

j
∑

s=1

[

∆ũs −∆ũ∗
s

]

≤ (1 + β)

Np
∑

j=1

j
∑

s=1

∣

∣

∣

∣

∣

∆ũs −∆ũ∗
s

∣

∣

∣

∣

∣

= ℓ(∆ũ,∆ũ∗).

This completes the proof. ✷

Remark 2. The global optimizer of the MPL-MPC prob-
lem exists because the objective function is convex and the
constraints are feasible and closed.

Theorem 4. For any cell Xh,i of level h ∈ {0, 1, . . .}, there
is a decreasing sequence

δ(h) =
Np(Np + 1)(1 + β)(b− a)

2h+2
(13)

such that
sup

∆ũ∈Xh,i

ℓ(∆ũh,i,∆ũ) ≤ δ(h)

where ∆ũh,i is the representative point of Xh,i.

Proof. From the constraint (9), we have

a ≤ ∆ũj ≤ b, j = 1, . . . , Np

for any ∆ũ ∈ Xh,i.

Denote dh as the maximum distance along every axis
between any two points in a cell at level h, i.e.

dh =
b− a

2h
. (14)

Because a < b, we have dh > 0.

Since ∆ũh,i is the center of Xh,i, then we have for any
∆ũ ∈ Xh,i

ℓ(∆ũh,i,∆ũ) = (1 + β)

Np
∑

j=1

j
∑

s=1

∣

∣

∣

∣

∆ũh,i
s −∆ũs

∣

∣

∣

∣

≤ (1 + β)

Np
∑

j=1

j
∑

s=1

dh

2

≤ (1 + β)
Np(Np + 1)

2

b− a

2h+1
.

So if we define δ(h) as in (13), then

sup
∆ũ∈Xh,i

ℓ(∆ũh,i,∆ũ) ≤ δ(h).

✷

Theorem 5. For any level h ∈ {0, 1, . . .}, define

ν ≤
ρ

Np(Np + 1)(1 + β)
.

Then any cell Xh,i contains an ℓ-ball Bh,i of radius νδ(h)
centered in ∆ũh,i, where Bh,i = {∆ũ ∈ X |ℓ(∆ũh,i,∆ũ) ≤
νδ(h)}.

Proof. According to Theorem 4, we can define a decreas-
ing sequence δ(h) as in (13). Select 0 < ρ < 1. The ℓ-ball
Bh,i centered in ∆ũh,i is inside the cell Xh,i if we select ν
such that

νδ(h) ≤
ρdh

2
where dh is defined as in (14).

Now we can choose ν such that

ν ≤
ρdh

2δ(h)
=

2ρ

Np(Np + 1)(1 + β)
.

This completes the proof. ✷

In MPC often a control horizon Nc is introduced with
Nc < Np and the control input is taken to be constant
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Fig. 1. A manufacturing system

from the event step k + Nc. The use of Nc leads to a
reduction of the computational complexity. For the MPL-
MPC problem in this paper, it is assumed that the input
rate ∆u(k+ j) stays constant from the event step k+Nc,
i.e.

∆u(k + j) = ∆u(k +Nc − 1)
or

∆2u(k + j) = ∆u(k + j)−∆u(k + j − 1) = 0

for j = Nc, . . . , Np − 1.

Remark 3. Up to now we have in fact considered the case
Nc = Np. If we would use Nc < Np the previous results
still remain valid; only the structure of ∆ũ changes in the
sense that only the first Nc components are free, and the
remaining ones will be set constant and equal to ∆ũNc

.
Moreover, this also implies that the actual search space is
now Xc = [a, b]Nc instead of X = [a, b]Np .

Remark 4. In general, the MPL-MPC problem can be
formulated as an MILP problem; the number of auxiliary
binary variables that are used to convert the max operator
into linear equations is proportional to the prediction
horizon Np. So the computational complexity of the MILP
problem is in the worst case exponential in Np. On the
other hand, the computational complexity of optimistic
optimization is exponential in the number of decision
variables, i.e. the control horizon Nc. Thus optimistic
optimization will be more efficient if Nc ≪ Np.

6. EXAMPLE

Consider the single-input single-output manufacturing sys-
tem of Fig. 1, which was also used in (De Schutter and van
den Boom, 2001). This system can be modeled as following
MPL system

x(k + 1) =









11 ε ε

ε 12 ε

23 24 7









⊗ x(k)⊕









2

0

14









⊗ u(k), (15)

y(k) =
[

ε ε 7
]

⊗ x(k) (16)

with u(k) the release time of raw material for the kth time,
x(k) the starting time of the ith machine for the kth time,
and y(k) the finishing time of the kth product.

Assume that k = 1 and the prediction horizon Np = 8.

The initial conditions are given as x(0) =
[

0 0 10
]T

and

u(0) = 0. The reference signal sequence is

r̃(k) =
[

r(k) · · · r(k +Np − 1)
]T

=
[

25 40 55 70 85 100 115 130
]T

.
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Fig. 2. The CPU time for Nc = 3 and Np = 4, . . . , 8
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Consider one step of the MPC problem for the MPL
system (15)-(16) with the objective function J∆ and the
constraints 10 ≤ ∆u(k+j) ≤ 20 for j = 0, . . . , Nc−1. This
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Fig. 5. Optimal values of J∆ for Nc = 3 and
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MPL-MPC problem is solved by optimistic optimization
and MILP method. It should be noted that optimistic
optimization is implemented in Matlab and the MILP
method uses the solver of ‘mipSolve’ in Tomlab. And CPU
times in Fig. 2 and Fig. 3 are average values over 10 runs.

The CPU time needed to compute the optimal input rate
sequence ∆ũ for Nc = 3 is shown in Fig. 2 as a function
of Np. The CPU time for the MILP method increases
exponentially as the prediction horizonNp increases. Fig. 3
illustrates that the computational complexity of optimistic
optimization depends on the control horizon Nc instead of
Np. From Fig. 4 and Fig. 5, it can be seen that optimistic
optimization with Nc = 3 yields a better approximation
of the optimal value of the objective function J∆ than
the case with Nc = 2. And the performance of optimistic
optimization is almost as good as MILP method when
Nc = 3.

7. CONCLUSIONS

In this paper, we have considered the MPL-MPC problem
of De Schutter and van den Boom (2001). Optimistic
optimization has been proved to be able to solve the
MPL-MPC problem. The method in this paper is more
efficient than MILP when the control horizon is small
and the prediction horizon is large. In the future, we will
extend this method to the MPC problem for max-plus-
linear systems with more general objective functions.
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