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Abstract— The main goal of this paper is to develop a
multi-class traffic flow and emission model that is suited for
on-line model-based control. Multi-class traffic flow and
emission models take into account the heterogeneous nature of
traffic networks. In comparison with single-class models, these
models are more accurate. Using more accurate model results
in better description of the traffic network. However, this also
leads to lower a computation speed when the model is used
for on-line model-based control. FASTLANE is a first-order
multi-class traffic flow model that is faster than more accurate
models (such as METANET). However, FASTLANE does not
yet describe emission and fuel consumption. Therefore, we
propose to integrate FASTLANE with the VT-macro emission
model. This results in a combined FASTLANE and
multi-class VT-macro model that describes multi-class traffic
flows and emissions and that yields a balanced trade-off
between the accuracy and the computation speed. On-line
model predictive control is used to obtain a balanced
optimization of the total time spent and the total emissions. A
case study is implemented to validate the efficiency of the new
integrated FASTLANE and multi-class VT-macro model. The
simulation results indicate that considering the heterogeneous
nature of multi-class traffic leads to a better control
performance than single-class models.

Keywords: Traffic management, FASTLANE, Multi-class
VT-macro, Model Predictive Control.

I. INTRODUCTION

Traffic networks are becoming more and more congested

due to the increasing traffic demand and the growth of the

number of vehicles. This leads to time losses and air

pollution problems, which both need to be paid attention

to. Many traffic management methods can be applied in

traffic networks to solve the congestion and air pollution

problems. An on-line model-based control approach is

helpful for improving the performance of the traffic

network, because it takes into account the evolution of the

controlled traffic network. The models used in on-line

model-based control affect the speed with which the

control signals can be computed. In general, the more

accurate the model is, the lower the computation speed will

be. Hence, choosing appropriate traffic models is very

critical for obtaining a balanced trade-off between accuracy

(and thus control performance) and the computation speed.

Traffic networks often contain different classes of vehicles,

such as cars, trucks, buses, and vans. Hence, the

heterogeneous nature of the traffic flows makes a

multi-class model more accurate than a single-class model.

There are already some traffic flow models taking into

account the heterogeneous nature of the traffic network.

Logghe et al. [1] extended the Lighthill-Whitham-Richards

(LWR) dynamic traffic flow model to a number of vehicle

classes. In this extended LWR model, each class is

described by a separate fundamental diagram, and

passenger car equivalents (pce) are used to represent

different classes of vehicles. Deo et al. [2] developed a

multi-class version of the METANET model in which state

variables generated based on the length of different classes

of vehicles are used to describe the traffic dynamics.

FASTLANE [3, 4] is a first-order macroscopic multi-class

traffic flow model that is an extension of the LWR model.

The main difference between FASTLANE and the

extension of the LWR model by Logghe et al. is that it

adopts dynamic pce values. The dynamic pce includes the

difference between the space occupied by vehicles in free

flow and congested flow. Compared with the constant pce,

this provides a better description of the heterogeneous

nature of multi-class traffic flow.

For the reduction of emissions, appropriate emission

models are necessary. The VT-macro model [5] was built

based on the integration of the VT-micro model [6] and the

METANET model [7, 8]. It is a macroscopic model that

yields the emissions and fuel consumption of traffic flows.

When applying VT-macro in a multi-class setting, a

multi-class version needs to be developed. In order to

realize the reduction of emissions of multi-class traffic

flow, we propose an integrated FASTLANE and multi-class

VT-macro model. The FASTLANE model is faster than

more accurate higher-order multi-class traffic flow model

(e.g. METANET). Besides, VT-macro model is a fast

emission model. Therefore, these two models should result

in an acceptable computation speed.

Many performance indications can be considered when

controlling traffic networks. The Total Time Spent (TTS) is

the total time that all vehicles need to leave the network,

and the Total Emissions (TE) is the amount of emissions

that all vehicles in the network generate before they leave.

The traffic control objectives may be conflicting according

to traffic conditions [9]. In this paper, we aim to find a



balanced trade-off between TTS and TE. Note, however,

that the approach that we proposed is generic, and it can

also accommodate other performance criteria. With the

integrated FASTLANE and multi-class VT-macro model as

prediction models, we can then use Model Predictive

Control (MPC) to optimize TTS and TE.

This paper is organized as follows. In Section II, we

present the FASTLANE model and the VT-macro model.

Then we propose the integrated FASTLANE and

multi-class VT-macro model in Section III. In Section IV,

we develop on-line MPC based on the integrated

FASTLANE and multi-class VT-macro model. After that, a

case study is implemented in Section V to show the

efficiency of the proposed integrated FASTLANE and

multi-class VT-macro model for model-based on-line traffic

control. We give the conclusions and several topics for

future research in Section VI.

II. TRAFFIC FLOW AND EMISSION MODELS

A. FASTLANE

FASTLANE [3, 4] is a first-order multi-class traffic flow

model. A FASTLANE network is represented by links

(indexed by m), where each link is divided into

homogeneous cells (indexed by i). We use the index c to

denote vehicle classes.

FASTLANE is derived from the LWR model, the main

difference being that FASTLANE uses dynamic pce.

Dynamic pce can be characterized as follows. The space

occupied by a vehicle is decided by its length and the

distance to the next vehicle. The distance between two

vehicles is different between in free flow and in congested

flow. In the free-flow regime, the distance between two

adjacent vehicles is often larger than their lengths.

However, in a congested-flow regime, the distance between

two adjacent vehicles is usually smaller than their lengths.

The difference is usually not considered in the traditional

constant pce models (such as the multi-class LWR model

of Logghe et al.). In FASTLANE, this difference is

represented by the dynamic pce. The dynamic pce value is

a function of the gross stopping distance, the class-specific

minimum headway, and the traffic flow speed:

ηm,i,c =
sc +Th,c · vm,i,c

s1 +Th,1 · vm,i,1
(1)

where sc is the class-specific gross stopping distance of

vehicles of class c, Th,c is the class-specific minimum time

headway of vehicles of class c, and vm,i,c is the speed of

vehicles of class c in cell i of link m. The index 1

represents the reference class (i.e. passenger car in the

FASTLANE model).

The class-specific speed is

vm,i,c =Vc(ρ
efc
m,i) (2)

with

ρefc
m,i =

nc

∑
c=1

ηm,i,cρm,i,c (3)

where Vc is the class-specific equilibrium speed, ρefc
m,i is the

effective density (in pce/km/lane) in cell i of link m, ρm,i,c

is density (in vehicle/km/lane) of vehicles of class c in cell

i of link m, and nc is the number of vehicle classes.

We consider the discrete-time form of FASTLANE, since we

use it in MPC in this paper. The discrete-time form of (3)

that we apply is

ρefc
m,i(k) =

nc

∑
c=1

ηm,i,c(k−1)ρm,i,c(k) (4)

where k is the time instant t = KT , and T is the simulation

time step.

The flow of vehicles of class c in cell (m, i) is

qm,i,c(k) = µmρm,i,c(k)vm,i,c(k) (5)

where µm is the number of lanes of link m.

The class-specific speed function is defined as follows:

Vc(ρ
efc
m,i(k)) =



















vfree
m,c −ρefc

m,i(k)
(vfree

m,c−vcrit
m,c)

ρcrit
m

for ρefc
m,i(k)< ρcrit

m

vcrit
m,cρcrit

m

ρefc
m,i(k)

(

1−
ρefc

m,i(k)−ρcrit
m

ρ
jam
m −ρcrit

m

)

for ρefc
m,i(k)≥ ρcrit

m

(6)

in which vfree
m,c is the free flow speed in link m for vehicle

class c, vcrit
m,c is the critical speed, ρcrit

m is the critical density

in pce/km/lane, and ρ
jam
m is the effective maximum density

in pce/km/lane.

The density update equation used in FASTLANE is

ρm,i,c(k+1) = ρm,i,c(k)+
T

Lmµm

(

qi−1,i
m,c (k)−qi,i+1

m,c (k)
)

(7)

where, q
i−1,i
m,c is the flow from cell i−1 to cell i, q

i,i+1
m,c is the

flow from cell i to cell i+1, and Lm is the cell length. The

following relation should hold [3]:

T

Lm

≥ max
c=1,··· ,nc

{vfree
m,c} (8)

The traffic demand of cell i of link m is distributed according

to the traffic composition ratios on cell i, which are defined

as

λm,i,c(k) =
ηm,i,c(k)qm,i,c(k)

∑
nc
c=1 ηm,i,c(k)qm,i,c(k)

(9)

The class-specific flow between cell i and i+1 is

qi,i+1
m,c (k) =

1

ηm,i,c(k)
min

(

Dm,i,c(k),λm,i,c(k)Sm,i+1(k)
)

(10)

where the demand and supply functions are

Dm,i,c(ρ
efc
m,i(k)) =







ρm,i,c(k)Vc(ρ
efc
m,i(k))µm for ρefc

m,i(k)< ρcrit
m

vcrit
m,cρcrit

m µm for ρefc
m,i(k)≥ ρcrit

m

(11)



Sm,i(ρ
efc
m,i(k)) =







vcrit
m,cρcrit

m µm for ρefc
m,i(k)< ρcrit

m

ρefc
m,i(k)Vc(ρ

efc
m,i(k))µm for ρefc

m,i(k)≥ ρcrit
m

(12)

There are three types of nodes in traffic networks: link-to-

link nodes, merge nodes, and diverge nodes. Fig. 1 is a sketch

of these three kinds of nodes.

(a) link to link node (b) merge node (c) dievrge node

Fig. 1. Sketch of three kinds of nodes

For a link-to-link node, the flow from one cell to its adjacent

cell is computed through (10). For a merge node, the flow

is given as

qa,b,c(k)=
1

ηa,c(k)
min

(

Da,c(k),κaλa,c(k)Sb(k)
)

(13)

κa =
Ca

∑χ∈Ab
Cχ

(14)

where the index a denotes an incoming link of the

incoming link, Ab is the set of all incoming links that are

connected to the downstream link b, and where the

downstream supply is distributed according to the

proportion κa, which is computed through the effective

capacities (in pce) of the incoming links, and Ca is the

effective capacity of link a. Besides, if the demand of one

incoming link is less than the given supply, the remaining

supply is assigned to other links.

As for a diverge node, the demand has to be assigned to

two or more downstream links. The flow equation is as

follows:

qa,b,c(k) =
1

ηa,c(k)
min

(

γbDa,c(k),λa,c(k)Sb(k)
)

(15)

in which b is one of the outgoing links, γb is the turn fraction

for link b (the upstream demand is assigned according to this

turn fraction).

B. VT-macro model

The VT-macro model [5] is a macroscopic emissions and

fuel consumption model. Currently, the VT-macro model is

still single-class. It is derived from the VT-micro model

[6], which describes the emissions and fuel consumption of

individual vehicles. The estimation of traffic emissions in

the VT-micro model needs the speed and acceleration of

each vehicle. In the VT-macro model, however, the

emissions are estimated based on macroscopic traffic flows,

and the speeds and accelerations used are also the

macroscopic ones. More specifically, the VT-macro model

considers two kinds of accelerations: inter-cell acceleration

and cross-cell acceleration, as shown in Fig. 2.

vehicles that are subject to inter−cell acceleration

vehicles that are subject to cross−cell acceleration

upstream cell current cell downstream cell

time step

tiem step

current

next

Fig. 2. Inter-cell acceleration and cross-cell acceleration

These accelerations are computed trough the following

equations:

ainter
m,i (k) =

vm,i(k+1)− vm,i(k)

T
(16)

across
α ,β (k) =

vβ (k+1)− vα(k)

T
(17)

in which α and β denote the indices of 2 consecutive cells,

on-ramps, or off-ramps. The corresponding numbers of

vehicles subject to these two accelerations are

ninter
m,i (k) = Lmµmρm,i(k)−T qm,i(k) (18)

ncross
α ,β (k) = T qα(k) (19)

where qm,i is the outflow of cell i in link m, and qα is the

outflow of the upstream cell α .

The estimations of emissions per time unit in one cell are

Jinter
y,m,i(k) = ninter

m,i (k)exp
(

ṽT
m,i(k)Pyãinter

m,i (k)
)

(20)

Jcross
y,α ,β (k) = ncross

α ,β (k)exp
(

ṽT
α(k)Pyãcross

α ,β (k)
)

(21)

where y ∈ Y = {CO,NOx,HC}, ãinter
m,i and ãcross

α ,β are vectors

in terms of x̃ = [1 x x2 x3]T , Py is a model parameter matrix,

and the value of this matrix can be found in [6, 10].

III. INTEGRATED FASTLANE AND MULTI-CLASS

VT-MACRO MODEL

A. Extensions of FASTLANE

The original FASTLANE does not include the estimation of

queue lengths at the origins. Also, the applying of traffic

control measures (such as speed limit and ramp metering)

is not discussed. Here we extend the original FASTLANE

by including queue length equation, speed limit and ramp

metering.

In order to obtain the queue lengths at the origins and on-

ramps, We introduce a simple queue equation [7, 8, 11]:

wo,c(k+1) = wo,c(k)+T (Do,c(k)−qo,c(k)) (22)

where wo,c is the queue length of vehicles of class c at

origin(on-ramp) o, Do,c is the demand of the vehicles of

class c at the origin o, and qo,c is the outflow of the

vehicles of class c at the origin o.

If a dynamic speed limit is applied in cell i of link m, the

speed can be estimated through the following equation

[11]:

vm,i,c(k) = min(Vc(ρ
efc
m,i(k)),(1+δ )vSL,m,i(k)) (23)



in which vSL,m,i(k) is the speed limit, and (1 + δ ) is the

non-compliance factor that allows for modeling enforced and

unenforced speed limit.

According to the above-mentioned concepts, an on-ramp is

merge node. If there is a ramp metering at the on-ramp, the

on-ramp flow can be defined as

qa,b,c(k)=
1

ηa,c(k)
min

(

r(k)Da,c(k),κaλa,c(k)Sb(k)
)

(24)

in which a indicates the on-ramp, b indicates the link that

is connected to the on-ramp, and r(k) is the ramp metering

rate at this on-ramp.

B. Multi-class VT-macro model

Now we propose the integrated FASTLANE and

multi-class VT-macro model. The FASTLANE model

describes the multi-class traffic flow, and the output state

variables of the FASTLANE model are used as the inputs

of the multi-class VT-macro model. These output state

variables are vm,i,c(k), ρm,i,c(k), and q
i,i+1
m,c (k).

The inter-cell and cross-cell accelerations in the multi-class

case are given as

ainter
m,i,c(k) =

vm,i,c(k+1)− vm,i,c(k)

T
(25)

across
α ,β ,c(k) =

vβ ,c(k+1)− vα ,c(k)

T
(26)

where the index c denotes the vehicle class. The actual

numbers of vehicles subject to these two accelerations are

ninter
m,i,c(k) = Lmµmρm,i,c(k)−T qi,i+1

m,c (k) (27)

ncross
α ,β ,c(k) = T qα ,β ,c(k) (28)

where qα ,β ,c is the flow from α to β . Based on the equations

above, we get the estimates of emissions rates of each class

of vehicles in one cell:

Jinter
y,m,i,c(k) = ninter

m,i,c(k)exp
(

ṽT
m,i,c(k)Py,cãinter

m,i,c(k)
)

(29)

Jcross
y,α ,β ,c(k) = ncross

α ,β ,c(k)exp
(

ṽT
α ,c(k)Py,cãcross

α ,β ,c(k)
)

(30)

where the parameter matrices Py,c are class-specific.

IV. ON-LINE MODEL PREDICTIVE CONTROL

On-line Model Predictive Control (MPC) [12] was used as

the control approach in this paper. MPC is based on a

dynamic prediction model and a receding horizon

approach, and can deal with nonlinear systems,

multi-criteria optimization, and constraints. The

performance of the controlled system is evaluated by an

objective function. This objective function includes the

predicted performance of the traffic network over some

horizon, which are generated by the prediction model. The

optimized control inputs are produced by the controller,

and the first element of the control sequence is applied to

the traffic network in a receding horizon approach. The

closed loop MPC for traffic network is shown in Fig. 3.

In the following control scheme, the newly proposed
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Fig. 3. Closed loop Model Predictive Control

integrated FASTLANE and multi-class VT-macro model

was used as the prediction model. The control measures

that we used here are variable speed limits and ramp

metering. The prediction horizon is denoted by Np, and the

control horizon is denoted by Nc. The simulation time step

is T , and the controller time step is Tc. We also define

M = T/Tc that is assumed to be a positive integer.

The total time spent (TTS) is estimated as

TTS(kc) = T

(kc+Np)M−1

∑
j=kcM

C

∑
c=1

(

∑
(m,i)∈Iall

1

ηm,i,c( j)
Lmµmρm,i,c( j)

+ ∑
o∈Oall

wo,c( j)

)

(31)

in which Iall is the set of all pairs of link and cell indices

(m, i) in the network, Oall is the set of indices of all origins,

wo,c is the queue length of vehicles of class c at the origin

o.

The total emissions (TE) of type y ∈ Y = {CO,NOx,HC}
can be defined as

TEy(kc) = T

(kc+Np)M−1

∑
j=kcM

C

∑
c=1

[

∑
(m,i)∈Iall

Jinter
y,m,i,c( j)+∑

α ,β∈Pall

Jcross
y,α ,β ,c( j)

]

(32)

where Pall is the set of all pairs of adjacent cells.

The objective function to be optimized by the controller

at control step kc is defined as

J(kc) = ξTTS

TTS(kc)

TTSnom + ∑
y∈Y

ξTE,y
TEy(kc)

TEnom
y

+ξramp

kc+Nc−1

∑
l=kc

∑
o∈Oramp

(rctrl,o(l)− rctrl,o(l −1))2

+ξspeed

kc+Nc−1

∑
l=kc

∑
(m,i)∈Ispeed

(

vctrl,m,i(l)− vctrl,m,i(l −1)

vfree,m,max

)2

(33)

in which TTSnom is the ’nominal’ TTS for some nominal

control profile (here we take the ’nominal’ TTS as the TTS

in no control case), TEnom
y is the defined in a similar way

with TTSnom, the variation of control inputs ramp rates and

speed limits are penalized through the third and forth terms

of (33), Oramp represents all the metered origins, rctrl,o is

the ramp metering rate of origin o at control steps, vctrl,m,i

is the speed limit of vehicles of class c in cell i of link m

at control steps, and vfree,m,max = maxc vfree
m,c , moreover, ξTTS,

ξTE,y, ξramp, and ξspeed are nonnegative weights.



V. CASE STUDY

A. Network

A benchmark network [11] is used for case study in this

paper. The network includes one origin, one destination, one

single-lane on-ramp and two double-lane links. The links are

divided into homogeneous cells. The first link contains four

cells, and the second links contains two cells. The on-ramp

is connected to the first cell of the second link. The network

is shown in the Fig. 4.
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Fig. 4. The benchmark network

We select parameters according to [3, 11, 13]. Two classes

of vehicles (class 1: cars; class 2: trucks) are considered

with the following parameters: vcrit
1 = 106.34 km/h,

δ1 = 0.12, ρcrit
1 = 34.7349 veh/km/lane, ρ

jam
1 = 175

veh/km/lane, s1 = 7.5 m, Th,1 = 1.2 s, Cmain
1 = 2034

veh/h/lane; vcrit
2 = 82.80 km/h, δ2 = 0.0533, ρcrit

2 = 18.9261

veh/km/lane, ρ
jam
2 = 75 veh/km/lane, s2 = 17.5 m,

Th,2 = 1.8 s, Cmain
2 = 990 veh/h/lane.

The capacity of the on-ramp is Con ramp = Cmain − 100pce.

The parameters for single-class model are the convex

combination of parameters of class 1 and class 2 obtained

as follows:

Parametersnom = θ 1
nomParameters1 +(1−θ 1

nom)Parameters2.

Here we take θ 1
nom = 0.7. The length of each cell is: L = 1

km. The queue length at the on-ramp O2 may not exceed

100 pce (passenger car equivalents). Besides, the

destination D1 has an unrestricted outflow.

The nominal model parameter matrices in VT-macro model

Pnom
CO , Pnom

HC , and Pnom
NOx

are taken from [10]. We assume:

PCO
1 = 1.1PCO

nom PHC
1 = 1.1PHC

nom P
NOx
1 = 1.1PNOx

nom

The parameter matrices for class 2 are computed through

P2 =
Pnom−θnomP1

1−θnom
.

The control parameters are ξTTS = 1 ξTE,y = 0.1 ξramp =
ξspeed = 0.01, T = 10 s, Tc = 60 s, Np = 7, Nc = 5. The

prediction horizon is in the order of the typical travel time

through the network. A shorter prediction cannot account

for the whole response of the network, and lead to

insufficient control actions. Moreover, longer prediction

horizon takes the future demand too much into account, as

such the performance will be degraded. Besides, a large

difference between Np and Nc may result in a lower

performance, since the control inputs for this period equal

the last sample of the control sequence, while only the first

sample of the control sequence is applied to the network. A

control horizon Nc = 5 is necessary here.

B. Scenarios

We take the typical demand scenario from [11]. The total

simulation time is 2.5 h. The demand scenario is shown in

Fig. 5. Different proportions for the two classes of vehicles
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Fig. 5. The original demand scenario

are considered: θ1 ∈ {0.1,0.3,0.7}. Besides, we consider

three control cases:

• No control.

• MPC with single-class prediction models.

• MPC with multi-class prediction models.

FASTLANE and the multi-class VT-macro model are used

as simulation models in MPC.

C. Results

The simulation results are shown in Tables 1-3. The

TTS, TE and J listed in Table 1-3 are calculated for the

entire simulation period of 2.5 h.

Table 1 Simulation results (θ1 = 0.1)

Scenario TTS (veh·h) TE (kg) J

No control 1246.9 687.8865 33.4351
Single-class MPC 1283.5 695.8364 34.3791
Multi-class MPC 1107.7 651.7231 29.8238

Table 2 Simulation results (θ1 = 0.3)

Scenario TTS (veh·h) TE (kg) J

No control 1422.9 541.1609 33.2376
Single-class MPC 1373.4 532.6754 32.1203
Multi-class MPC 1313.3 511.2108 30.7212

Table 3 Simulation results (θ1 = 0.7)

Scenario TTS (veh·h) TE (kg) J

No control 1751.4 249.6476 32.9837
Single-class MPC 1835.4 226.3983 34.2790
Multi-class MPC 1744.6 232.9226 32.7288

According to Table 1-3, we can see that multi-class MPC

results in a much better control performance than

single-class MPC. This means that multi-class MPC results

in smaller J than single-class MPC: 4.21%-13.62%.

Sometimes applying single-class model even leads to worse

results than no-control case. For the given setting here, we

can conclude that taking into account heterogeneous nature

leads to a better performance in on-line model based

control.



VI. CONCLUSIONS

In this paper, we have introduced a multi-class extension

of the VT-macro model. We have also integrated this model

with the multi-class traffic flow model FASTLANE. The

outputs of FASTLANE are used to estimate the

accelerations for the multi-class VT-macro model. We have

also extended the FASTLANE model by including a queue

length equation and control measures (speed limits and

ramp metering). Finally, a case study was implemented to

illustrate the potential benefits of the newly developed

models using Model Predictive Control (MPC). Multi-class

MPC and single-class MPC were both implemented for

comparison. Based on the obtained results for the given

settings, we can see that taking into account the multi-class

nature of traffic network results in a much better control

performance.

Based on the research that we have done, the following

topics are going to be studied: comparison with traffic

control using more accurate multi-class traffic flow model

(e.g., multi-class METANET), applying more accurate

emission model. Thus, we aim to investigate different

computation speed and accuracy when applying simple fast

model and accurate slow model separately.
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