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Gradient-Based Hybrid Model Predictive Control using Time Instant
Optimization for Dutch regional water systems

B. Dekens1, A.D. Sadowska2, P.J. van Overloop3, D. Schwanenberg4 and B. De Schutter2

Abstract— We present a novel hybrid nonlinear Model Pre-
dictive Control (MPC) algorithm for real-time control of
hydraulic structures in water systems. These systems can
be regarded as hybrid systems because they involve both
continuous and discrete elements. The algorithm uses Time
Instant Optimization for the control of discrete variables. The
presented method introduces a procedure to obtain continuous
time instants, allowing the derivation of a gradient of the
objective function. Reverse-mode algorithmic differentiation
is applied to obtain the analytical gradient of the objective
function. The gradient allows the use of efficient gradient-
based optimizers, making the approach suitable for real-time
control applications. Furthermore, hybrid schemes including
the optimization of time instants and standard MPC can be
easily integrated. We illustrate an application of the algorithm
to the control of five hydraulic structures in the Fivelingo water
system, a water system consisting of discrete and continuous
variables that is located in the North-East of Netherlands.

I. INTRODUCTION

Water is an essential resource for life. People use water for
consumption, sanitation, navigation, agriculture, hydropower
and leisure. Throughout history, people have always tended
to live close to water resources. However, water can also
be experienced as a burden. Especially in low-lying polder
systems, floods can occur. In order to manage the water levels
and flows in these systems, infrastructures such as gates
and pumps are installed. These hydraulic structures can be
adjusted according to the objectives imposed by society, e.g.
to deliver water for agriculture or to protect the land against
flooding. Some of these structures are operated manually, but
more and more the control has been automated. Supervisory
control of these hydraulic structures is in many cases done
locally by rule-based (if-then) operators [12], [4] that base
their control actions on a comparison of the current state (e.g.
water levels) with the desired state. The field of operational
water management focuses on optimizing control actions of
these structures. It does not only deal with the mitigation
of extreme events, but also with complex, interdependent
and often conflicting water quality and quantity objectives.
Another important goal in e.g. polder systems, where surplus
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water has to be evacuated by pumps, is reducing the energy
consumption.

Model Predictive Control (MPC) [11], [16], an antici-
patory control methodology that originated in the process
industry, is a control method that applies the concepts of
feedback and feedforward control, while taking constraints
into account. This methodology uses a model of the con-
trolled process and forecasts of future process states and
external disturbances to determine the optimal sequence of
control actions by using an optimization algorithm, taking
into account physical and operational constraints.

MPC has gained increasing attention in the field of water
management over the last years. Some controllers have suc-
cessfully been implemented in water systems [21], [13], [2],
[8]. However there are some drawbacks to the methodology
when discrete actuators such as pumps are present, especially
concerning the computational effort. Continuous and discrete
elements are not easily combined in MPC, since the discrete
elements give rise to a combinatorial optimization problem.

To reduce the computational effort, Time Instant Optimiza-
tion MPC (TIO-MPC) [5], [20] has been proposed to control
systems with discrete-state elements. TIO-MPC involves the
optimization of an (a priori determined) number of time
instants, which are the moments that a discrete variable
changes its state, e.g. when a pump should be switched on or
off. The advantage of this method is that the computational
effort is reduced because instead of deciding at each time step
whether to switch the pump on or off, the decision making
process involves optimizing the discrete moments at which
control actions should take place. Therefore, the number of
optimization variables can be significantly reduced.

However, the method described in [20] requires a multi-
start pattern search optimization algorithm to converge to a
solution since the discrete-time rounded equivalents of the
continuous time instants have to agree with the model sam-
pling time. The use of discrete time instants as control input
rules out the use of a gradient search, since the objective
function is stepwise constant. Pattern search methods are
known to exhibit slower convergence compared to gradient-
based methods [10].

Note that gradient-based solvers using Sequential
Quadratic Programming (SQP) or Interior Point (IP)
algorithms require a gradient vector of the objective
function for efficient performance. These gradients can be
calculated by means of finite differences, but this requires
many function evaluations. As a result, gradient-based
methods become computationally inefficient for problems
with hundreds of dimensions, and hence disqualify them for



being used within a real-time setting.
In this paper, we present an extension of the current TIO-

MPC in the way that the time instants become continuous.
This way, the gradient of the objective function can be
calculated and efficient gradient-based optimizers can be
used. This will decrease the computational effort of the
TIO-MPC controller. We use algorithmic differentiation [9]
to determine the gradients of the objective function that
MPC uses. Hence, by combining these two techniques, i.e.,
introducing continuous time instants and supplying the solver
with analytical gradients, the computational load of the TIO-
MPC controller is decreased, making it suitable for a real-
time application. Furthermore, hybrid schemes including the
optimization of time instants and standard MPC can be easily
integrated.

We test the proposed TIO-MPC algorithm with continu-
ous time instants and supplied analytical gradient using a
simulation-based case study of the Fivelingo water system.
This is an existing polder system in the North-East of the
Netherlands, which is drained by pumps. This model consists
of both continuous and discrete variables and can thus be
regarded as a hybrid system.

This paper is organized as follows. Section II discusses
TIO-MPC and the dynamic model that was used. Section III
proposes gradient-based TIO-MPC. Section IV demonstrates
the potential of the novel approach in a case study. Section
V concludes the paper.

II. PRELIMINARIES

In this section we first discuss the dynamic model of
the water system. Then we introduce the principles of the
existing TIO-MPC method.

A. Process models

The flow-governing equations describing one-dimensional
gradually varying non-steady flow in prismatic channels are
the dynamic wave equations, also referred to as the De
Saint-Venant (SV) equations or shallow-water equations [3].
The SV equations are coupled nonlinear hyperbolic partial
differential equations that are derived from equations of con-
servation of mass (continuity) and momentum, respectively.
The equations of De Saint-Venant are [3]:

∂Q

∂x
+

∂A

∂t
= qlat, (1a)

∂Q

∂t
+

∂

∂x
(
Q

A
)2 + gA

∂h

∂x
+

gQ|Q|
C2RA

= 0, (1b)

where Q is the flow [m3 s−1], A is the average cross-
sectional area of flow [m2], qlat is the lateral inflow per
unit length [m2 s−1], h is the water depth [m], g is the
acceleration due to gravity [m s−2], C is the Chézy roughness
coefficient [m1/2 s−1], R [m] is the hydraulic radius [m],
t is the time [s] and x is the longitudinal distance [m].
Unfortunately there is no known analytical solution of the De
Saint-Venant equations in real geometry [12] so the system
of equations has to be solved numerically. Depending on
the characteristics of the flow and the required accuracy,

different one-dimensional distributed flow routing equations
can be derived by using the full continuity equation (1a)
while neglecting some terms of the momentum equation (1b)
(see [3] and references therein). The diffusive wave model
neglects the local and convective acceleration terms of the
momentum equation. Some rewriting of (1b) yields:

Q = −sign
(
∂h

∂x

)
CA

√∣∣∣∣∂h∂x
∣∣∣∣R. (2)

The diffusive wave model can be spatially discretized on
a staggered grid [19], [18], where the dependent variables
(water level and discharge, respectively) are carried at al-
ternating grid points. The model can be schematized as a
system of nodes and branches. The discharge is schematized
in branches between upstream and downstream storage nodes
hup and hdown. The water levels in the storage nodes are
calculated from the continuity equation, while the flow in the
branches that connect the storage nodes is described by the
diffusive wave model (2). If we define the distance between
the storage nodes as ∆x, we can rewrite (2) into a function
of the upstream and downstream water levels hup and hdown
by applying central differences:

Qk+1 = f(hk
up, h

k
down) = −sign(

hk
up − hk

down

∆x
)C(h k)A(h k)

·

√√√√∣∣∣∣∣hk
up − hk

down

∆x

∣∣∣∣∣R(h k),

(3)

where k denotes the time step and the variables C, A and
R are functions of the mean water level h k =

hk
up+hk

down

2 [m]
in a representative cross-section between storage nodes.

Hydraulic structures between nodes can be represented by
a general flow equation for a hydraulic structure, where the
flow is a function of upstream and downstream water levels
and a gate or weir setting dg, according to:

Qk+1 = fQ(h
k
up, h

k
down, d

k+1
g ). (4)

The gate setting dg can usually not be written as an explicit
function of the discharge and has to be solved iteratively.

By using (3), applying the (implicit) Euler Backward
scheme to (3), multiplying by ∆x and substituting s(h) =
A(h)∆x, the continuity equation can be written as a water
balance in the domain of a node [1]:

sk+1 = sk +∆t(Qk+1
up −Qk+1

down +Qk+1
lat ), (5)

where sk is the storage [m3] at the node and Qk+1
lat is the

aggregated lateral inflow [m3 s−1] flowing into the domain
of the node, and Qk+1

up and Qk+1
down are the upstream and

downstream discharge at the intermediate reaches connected
to the node.

B. Time Instant Optimization MPC

Water systems often comprise both continuous and dis-
crete elements. For instance, pumps are either on or off. For
these variables, an MPC algorithm would have to decide



whether or not to change the state of the binary variable
for every time step of the prediction horizon. For one binary
input variable and a prediction horizon of Np steps, this leads
to a combinatorial optimization problem with 2Np possible
solutions.1 When there are more binary input variables and
the prediction horizon is long, the complexity of the opti-
mization problem increases rapidly and this may disqualify
the method from being used in an operational setting.

Another MPC approach to deal with discrete elements in
the system is Time Instant Optimization Model Predictive
Control (TIO-MPC), a method that has been first been used
for traffic control [5]. TIO-MPC has been applied for the
control of hydraulic structures in [20], with a focus on storm
surge barriers in the Dutch Rhine-Meuse delta. The TIO-
MPC algorithm optimizes n time instants t1, . . . , tn over
the prediction horizon Np, where the time instants are the
discrete time steps at which the discrete variables change
their state. The rationale behind this approach is that from a
practical point of view, it is often undesired to have too many
on/off switching of actuators and therefore it makes sense to
define a priori how many switches are allowed within the
prediction horizon. The result of this approach is that the
amount of control variables is reduced.

A TIO-MPC prediction model can be described as [20]:

x̃k = fx(t̃
k, ũk, xk), (6)

with:

x̃k = [(xk+1|k)⊤ (xk+2|k)⊤ . . . (xk+Np|k)⊤]⊤, (7)

ũk = [(uk|k)⊤ (uk+1|k)⊤ . . . (uk+Np−1|k)⊤]⊤, (8)

t̃k = [tk1 tk2 tk3 tk4 ]
⊤, (9)

where xk is the state at time step k, ũk and x̃k are the input
variables and state variables, respectively, and t̃k is a vector
that contains the time instants that need to be optimized
within the prediction horizon Np. The notation k + i|k for
i = 1, . . . , Np describes the sequence of optimized variables
over the prediction horizon Np, evaluated at control step k.
As can be seen in equation 9, four time instants are defined.
To be able to have time instants as decision variables to be
determined by solving the optimization problem, we define:

uk+i|k =

{
umax if i ≤ k1 or k2 ≤ i ≤ k3 or i ≥ k4

0 otherwise
(10)

for i = 0, . . . , Np − 1 and where k1, k2, k3 and k4 are
discrete-time rounded equivalents of the continuous time
instants.

The objective function that needs to be minimized in TIO-
MPC at every time step k is, in a generalized formulation:

J = fJ(t̃
k, ũk, x̃k), (11)

where x̃ and ũ are functions of the decision vector t̃. With
TIO-MPC [20], constraints prescribe the required sequence
of discrete state switching (i.e. t1 < t2 < t3 < t4) and

1For the sake of simplicity, the control horizon is taken to be equal to
the prediction horizon in this paper.

tk tk+1 t

umax

u

tk

umax

tk+1

∆t

Fig. 1: Towards continuous Time Instant Optimization

the minimum and maximum time between time instants. A
change is implemented if tkℓ , ℓ = 1, . . . , n, is scheduled to
occur in the current sample step. Otherwise, no changes are
implemented and the optimization is repeated in the next
sample step in a receding horizon manner.

Given the existence of discrete-time equivalents of the
actual continuous-time instants, the MPC formulation in
[20] ceased to be smooth. Thus, the objective function is
minimized using a derivative-free optimizer such as a pattern
search algorithm. A gradient-based optimizer cannot be used
efficiently because the time instants are in fact discrete
values, causing a stepwise objective function. In this work,
we report on a way to tackle this problem of continuous
time instants, for a discrete-time system, to improve compu-
tational efficiency of the controller.

III. GRADIENT-BASED TIO-MPC

In this section, we introduce a gradient-based implemen-
tation of TIO-MPC for the application in a water system.
We first discuss the concept of TIO-MPC with continuous
time instants. Afterwards, we elaborate on the numerical
implementation of the proposed scheme.

A. Theoretical analysis

The contribution of the work presented here is the exten-
sion of the standard TIO-MPC in such a way that the time
instants become continuous. In this way, the gradient of the
objective function can be derived. The gradient allows the
use of efficient gradient-based solvers. Furthermore, hybrid
schemes including the optimization of time instants and
standard MPC can be easily integrated.

The derivation of continuous time instants is based on a
mass balance between two discrete time steps. In Fig. 1,
the translation from discrete to continuous time instants is
shown. On the left, the control input (the discharge of a
pump) can be freely chosen between 0 and umax on the
discrete interval [tk, tk+1]. On the right, the pump is either
off or operating with discharge umax on the interval [tk, t]
where t is (in this case) the continuous time instant that
the pump is switched off. The water balance on the interval
[tk, tk+1] is equal for both cases, so we can write:

u · (tk+1 − tk) = umax · (t− tk), (12)

or:
u =

umax

tk+1 − tk
· (t− tk). (13)

By applying the chain rule we obtain:

dJ

dt
=

dJ

du

du

dt
=

dJ

du

umax

tk+1 − tk
(14)



and, since ∆t = tk+1 − tk, this results in:

dJ

dt
=

dJ

du

umax

∆t
. (15)

With MPC, the model calculations are only carried out at
the discrete time steps k. To account for this in TIO-MPC,
we need to perform a transformation of the control vector
u similar to the procedure in Fig. 1 in order to be able
to optimize continuous time instants as control input. This
is done by defining the following: let t1 and t2 be the
continuous time instants at which the pumps are switched
on and off respectively, in different intervals [a, b] and [c, d]
where the intervals [a, b] and [c, d] satisfy [a, b] ∩ [c, d] = ∅
and they denote particular sampling intervals when t1 and
t2 occur, respectively. To compensate for the pump being
switched on or off in the middle of a sampling time, which
is not reflected in the discrete-time model of the system,
the pump is assumed to provide a discharge of a part of its
maximum capacity. This way, the overall discharge remains
the same for the discrete-time model and the actual system
with continuous time instants. Consequently, the value of the
flow of a pump within the corresponding sampling interval
is:

uab =
b− t1
b− a

umax (16)

for t1, and
ucd =

t2 − c

d− c
umax (17)

for t2 and ubc = umax. When t1, t2 ∈ [a, b], i.e. they occur
in the same interval, the control corresponds to:

uab =
t2 − t1
b− a

umax. (18)

The transformed discharge profile corresponds to the situa-
tion where u(t) = umax for t1 ≤ t ≤ t2, and 0 otherwise.
By using this control vector, the solver is able to optimize
continuous time instants. The Jacobian or gradient vector can
now be derived, which allows the use of efficient gradient-
based solvers. Note that the real system still can only pump at
maximum discharge or not pump at all. Therefore, once the
optimal continuous time instants have been calculated, the
actuator switches its state at discrete time instants obtained
through rounding the continuous optimized time instants.

B. Numerical implementation

The process model and the objective function have been
configured in RTC-Tools [1], an open source software pack-
age developed by the research institute Deltares for modeling
flow routing processes in real-time control applications.
RTC-Tools applies reverse-mode algorithmic differentiation
[9], [14] to evaluate an adjoint model, resulting in the
analytical gradient of the objective function with respect to
the continuous input variables. The model is linked to an
external solver to obtain the gradient with respect to the time
instants, hence allowing the optimization of time instants
as control inputs. We used Matlab’s constrained nonlinear
solver fmincon, using the interior-point algorithm. As an
initial guess, the time instants were divided equidistantly over

H03 H02 H01 H0

H024

H137

20000m 14000m

Q024

Q137

dg

Q1,electric

Q1,diesel

level
boundary
condition

Water level node Hydraulic structure

Flow branch
(diffusive wave)

Hydraulic structure
branch

(tide)

Q3 Q2

Fig. 2: Schematic overview of the Fivelingo water system.
The two dashed arrows together represent the Damsterdiep
canal

the prediction horizon Np. Using zeros as an initial guess,
the solver is likely to get stuck in (suboptimal) local minima
[6].

IV. CASE STUDY

The Fivelingo water system is located in the North-East
of the Netherlands and is managed by the regional water
board Noorderzijlvest. It is a low-lying polder system, where
pumps discharge water from secondary canals into a so-
called belt canal. This man-made canal, also known as the
Damsterdiep, is about 25 kilometers long and connects the
city of Groningen with the sea at the harbor of Delfzijl. There
is a pumping station at the outlet, consisting of an electric
and a diesel pump. During low tide, water can be released
through an undershot gate.

A. Process model

The coarse nonlinear MPC model we present here is an
extension of the model used in [17]. The model consists of
storage nodes and branches with a spatial discretization on
a staggered grid, as described in Section II. The Fivelingo
water system consists of three storage nodes, in order to take
into account water level gradients between the central node
(representing the average water level in the Damsterdiep
canal) and the storage node upstream of the outlet to the sea
at the harbor of Delfzijl, representing the tide. The level-
storage relations of the storage nodes are derived from a
detailed SOBEK hydrodynamic model [7] by aggregating
the available storage from the primary canals. See [6] and
references therein for a full description of the model used.

In the work presented here, the model is extended with
two polder canals that discharge water into the Damster-
diep canal using pumps that are operated either on or off,
making it a hybrid system. In the MPC model, this was
modeled by adding two storage nodes and two pumps. Time
Instant Optimization MPC is applied for these two pumps.
A schematization of the resulting model is given in Fig. 2.

Since the water system is a typical polder-belt canal
system, the main goal of the controller is to minimize
the water level deviations from setpoint in the belt and
polder canals, while avoiding potential flooding events by
anticipating on expected disturbances. A second goal, which



applies mainly to day-to-day operations, is to achieve energy
and cost savings on pumping by:

1) Making efficient use of the available storage in the
system.

2) Creating storage in the system by pre-releasing water
prior to an expected disturbance that coincides with an
’expensive’ pumping period.

3) Releasing as much of the water surplus as possible
through the gate at low tide.

A third goal is to minimize wear and tear of hydraulic
structures by limiting the changes in pump flow and gate
height. All goals can be described mathematically in the
following objective function that needs to be minimized:

min
t̃n,Q,∆dg

Jk =

Np∑
i=1

m∑
j=1

We,j (e
k+i|k
j )2

+

m∑
j=1

WeNp ,j (e
k+Np|k
j )2

+

Np∑
i=1

l∑
j=1

W∆Q,j (∆Q
k+i|k
j )2

+

Np∑
i=1

l∑
j=1

WQ,j Q
k+i|k
j

+

Np∑
i=1

p∑
j=1

W∆dg,j (∆d
k+i|k
g,j )2,

(19)

where Q
k+i|k
j is the pump flow [m3 s−1] that follows from

the time instants, t̃n = (t1, . . . , tn) is the vector of time
instants, where n denotes the number of time instants used,
e
k+i|k
j is the water level deviation from the setpoint [m],
∆Q

k+i|k
j is the change in pump flow [m3 s−1], ∆d

k+i|k
g,j is the

change in gate setting [m], m the number of flow branches
between storage nodes [−], l is the number of pumps [−], p
is the number of gates [−], We,j is the penalty on the water
level deviation from setpoint for a storage node, ek+Np|k

j is
the water level error [m] at the end of the prediction horizon,
WeNp ,j is the penalty on this error [−], WQ,j is the penalty
on the change in pump flow [−], WQ,j is a penalty on pump
flow and W∆dg,j is a penalty on the change of the gate height
setting [−]. The objective function is subject to physical and
operational constraints, which limit the (change in) pump
flow and gate settings.

The use of a nonlinear process model in the TIO-MPC
problem leads to a loss of convexity [15]. For this reason
it may be harder to find a (sufficiently good) solution, and
if a solution is found it is not guaranteed to be the global
optimum. Therefore, the gradient-based solver uses a multi-
start optimization algorithm.

B. Control setup

The prediction model uses historical data of the tide and
lateral inflow over the period February 17-27, 2012. With 48-
hour time series and a control time step of 5 minutes, this

TABLE I: Specifications of computer and software used for
simulations

Processor Intel Core i3 350M @ 2.27 GHz
Memory 4.00 GB DDR3
Operating system Windows 7 Home Premium SP1 64-bit
Matlab version R2013a 32-bit
Solver fmincon, using Interior-Point algorithm

TABLE II: Simulation results

ntotal [−] nTIO [−] J [−] RMSE137 [m] CPU time [s]

1732 2 1994.5 0.1297 76.7
1736 4 742.2 0.0773 106.1
1744 8 367.2 0.0471 35.1
1760 16 190.0 0.0241 57.6

results in prediction horizon Np = 576. With only continuous
optimization variables, this would lead to an optimization
problem with 2880 variables. However, since we use TIO-
MPC the amount of optimization variables is reduced.

The objective function value, root mean square error
(RMSE) of the predicted water levels and CPU time serve
as performance indicators. The computation time depends on
the specific computer that is being used for the optimization,
see Table I. In this article, only the results of one open-loop
experiment is shown. For additional results, the reader is
referred to [6].

C. Results

The novel continuous TIO-MPC algorithm is able to
adequately optimize both continuous and discrete control
input. The results of experiments using different numbers
of time instants are summarized in Table II, where ntotal is
the total amount of (continuous and discrete) variables, nTIO
is the number of time instants used per discrete variable, J is
the objective function value and RMSE137 is the root mean
square error of the water level in node H137.

It was observed that the CPU time is not necessarily higher
with increasing numbers of time instants. This can be caused
by non-convexity of the optimization problem, causing the
solver to end up in a local minimum based on the supplied
initial value. Fig. 3 shows the results of an experiment with
8 time instants for the discrete control input, where the time
instants have been divided equidistantly over the prediction
horizon as an initial guess.

It can be observed from Fig. 3 that the controller exploits
the gravity flow through the gates during low tide. For each
discrete variable, eight optimized time instants translate into
four pumping intervals. Using these intervals, the deviation
from setpoint is minimized over the prediction horizon Np.

The experiments show that using more time instants gen-
erally leads to better performance in terms of the objective
function value. This makes sense because there are more
degrees of freedom. Using a multi-start optimization and
supplying the solver with an educated guess of an initial point
for the optimization may prevent the solver from getting
”stuck” in the first (suboptimal) local minimum it encounters.
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Fig. 3: Open loop simulation results of the gradient-based
TIO-MPC experiment using 8 time instants, where hobs is
the observed water level at sea, h and Q are the water levels
and flows in various nodes, Q1,g, Q1,e and Q1,d represent the
flows at the outlet from the gate, electric pump and diesel
pump, respectively. The subscript sp denotes a setpoint.

It was observed that a better solution in terms of the
objective function J , RMSE and CPU time is found in the
experiments where an initial guess has been supplied.

V. CONCLUSIONS

In this paper, we have derived a method to employ contin-
uous time instants for a discrete-time model. The continuous
time instants allow the use of efficient gradient-based solvers.
The potential of the proposed TIO-MPC algorithm with
continuous time instants and supplied analytical gradient
has been illustrated using a simulation-based case study of
the Fivelingo water system. The approach is very promising
regarding computational efforts, making it suitable for real-
time control applications in hybrid systems.

Future work will focus on closed-loop simulations to
assess the effects that the tuning parameters such as Np, Nc,
sampling time and weighting gains have on the performance.
Also, performance comparison with alternative approaches
will be done in the future.
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