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Hierarchical control of irrigation canals in the presence of

disturbances: framework and comparison

Anna Sadowska, Bart De Schutter and Peter-Jules van Overloop

Abstract— We study a control problem of delivering water
to farmers through an irrigation canal and introduce a
hierarchical controller with a Coordinator that by employing
Model Predictive Control principles coordinates local canal
reaches by modifying setpoints only when it is needed. Once
the setpoints are set, the Coordinator does not interfere
with the functioning of the local sites and the canal is fully
controlled by local PI controllers located at each gate. There-
fore the communication between the centralized controller
and the local sites is kept minimal, which is motivated by
the communication restrictions that are present in the field
of irrigation. We consider three predictive control designs,
namely a nominal controller, and two robust designs: a
constraint tightening controller adapted to fit our application
and a min-max controller. We present a numerical example to
compare the performance obtained by the three controllers. It
is found that for the given case study with a small disturbance
realization, the nominal controller performs better than
the robust controllers, the behaviors of which prove overly
conservative.

I. INTRODUCTION

Several control strategies have been introduced in the

literature to date for the purpose of controlling irrigation

canals, see e.g. [1], [6], [9], [13], [20], [22]. Despite the

relatively high technological advance in the field of water

resources engineering in theory, in many places the opera-

tion of the canal still resorts to a human operator manually

adjusting the control structures based on his or her own

judgment. However, since the operator changes the settings

based on local observations only, the overall performance

of this method may be compromised. A possible remedy to

this problem is introducing automation to the field of canal

control with the help of various feedforward or feedback

controllers [17]. However, oftentimes the simplest con-

trollers are preferable due to their advantageous quality of

functioning to cost ratio. In fact, possibly the most widely

used controllers are PI controllers applied to control gates

in all reaches along the canal [10], [21]. Their popularity

amongst the practitioners can be attributed to the fact that

they are very simple, do not require an internal model and,

if properly tuned, function satisfactorily.

An important practical feature limiting acceptable con-

trol designs is the fact that in the field of irrigation

communication needs to be paid for and maintained by

the farmers and is thus considered expensive. This is due

to the harsh environment that the communication links are

located in: the radio communication that is employed can

be prone to disturbances and as such should ideally not

be used in the regular control loop but rather infrequently.
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Therefore, we propose to use the local PI controllers at

individual gates to control water levels in the canal – as

sole controllers in the normal operating conditions, thus

eliminating any communication in such circumstances.

However, to improve the performance of the local PI

controllers in order to facilitate speedy water deliveries,

we introduce a hierarchical control structure. Accordingly,

as any of the farmers requests a sudden delivery, a higher-

layer centralized controller – the Coordinator – is invoked

to coordinate the local controllers by modifying their

setpoints, and thus to make the water available to the

farmers faster than when only local PI controllers would

be employed. When only PI controllers are used to control

the canal as it is often done in the current implementations

in the field, there may be a considerable delay between

the moment water released from the head gate reaches

the offtake point where it is requested. To improve this

situation, we propose that as one of the farmers makes a

delivery request, the Coordinator activates and uses Model

Predictive Control [11] to compute its control actions:

the setpoint modification profiles and the head gate flow

profile. Yet, it communicates to the local sites only when

changes are needed. Moreover, with the proposed set-up,

we make sure that even if the communication lines fail

for some time, the control remains acceptable due to the

presence of PI controllers that can operate autonomously.

Since the Coordinator only acts in response to delivery

requests, it is event-driven as opposed to time-driven.

We assume that setpoints may change twice per delivery

per canal reach, and use the Time Instant Optimization

MPC [19], which enables the optimization of the setpoint

switching moments.

To date, a hierarchical control problem in which a

higher-layer controller provides the lower layer with mod-

ified setpoints was studied in e.g. [15] for a power network

and in e.g. [23] for a water system. Moreover, various MPC

approaches can be pursued to deal with the disturbances

in the model equations, see e.g. [2]–[5], [12], [14], [18].

In this paper we consider the dynamic model of the

canal to comprise unknown disturbances, such as leakage,

model mismatches in offtake gate and head gate etc. We

first introduce the hierarchical predictive controller and

afterwards apply three set-ups to tackle the disturbance

terms in the model. In the first instance, we study the

nominal controller. Then, we examine a robust controller

in which hard state constraints are tightened recursively

over the prediction horizon taking into account the upper

bounds of the disturbances as motivated by the results in

[7], [16]. This method is similar to the third method applied

- the min-max MPC, in the sense that they both consider

maximum bounds on the disturbances and hence guarantee

that the resulting input is feasible for the system regardless



of the magnitude of the actual disturbance as long as it

does not exceed the given upper bounds. We compare the

performance yielded by the three controllers.

The paper is outlined as follows. In Section II we show

the dynamic model of the canal and discuss principles

of TIO-MPC. In Section III we present the hierarchical

control design and show how the nominal and robust

controllers are applied, and analyze the differences. We

then present a case study in Section IV and conclude the

paper in Section V.

II. PRELIMINARIES

A. Model of an irrigation canal

The flow of water in a canal consisting of N reaches can

be modeled via discretizing and linearizing the nonlinear

partial differential equations, the so-called Saint Venant’s

equations [8], [13], which for reach i ∈ {1, . . . , N} reads

hi(k + 1) = hi(k) +
Tm

ci
(ui−1(k − kdi)− ui(k)

+ di(k) + gi(k)) + wi(k),

ui(k) = ui(k − 1) +KPi(ei(k)− ei(k − 1))

+KIiei(k), (PI controller)

u0(k) = QS(k), (1)

ei(k) = yi(k)− href
i (k),

yi(k) = hi(k) + vi(k),

in which hi denotes water level at the downstream end

of reach i, Tm denotes the sampling period, ci is the

surface area, and kdi is a time delay (in sampling steps)

representing the time required for an inflow from upstream

gate i − 1 to influence the water level at the downstream

end of reach i. For i = 1, the inflow is the flow from

the head gate QS. Moreover, di denotes a water offtake

from the canal due to a request made by the user, gi is a

known disturbance in the reach i due to e.g. rainfall, and

wi is an unknown disturbance. Furthermore, ei denotes the

deviation between hi and the given setpoint href
i , and vi

is a measurement uncertainty.

B. Time Instant Optimization MPC (TIO-MPC)

Time instant optimization [19] is an approach to MPC

that may be used for on/off control structures, in which

for the whole length of the prediction horizon it is first

selected how many times the structure’s state can change.

Then, given the chosen number of changes of the struc-

ture’s state, one optimizes the real-valued time instants

when these changes should occur. This results in a more

computationally efficient optimization problem.

III. HIERARCHICAL EVENT-DRIVEN CONTROL DESIGN

Now we present the design of the hierarchical event-

driven controller, see Figure 1, to control the irrigation

canals to aid water deliveries to the users through the

canal, in which a delivery denotes an offtake in a pool

of a given duration and magnitude. The Coordinator coor-

dinates the local PI controllers by adjusting their setpoints,

which consequently speeds up the delivery process, thereby

making water available to users faster than with local PI

controllers only. To aid presentation of our concept in a

simplified way, we assume that no overlap of the requests

of individual users is allowed in the sense that a new
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Fig. 1. Hierarchical controller proposed in the paper.
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Fig. 2. Examples of admissible setpoint profiles.

delivery can only be requested when water levels in all

reaches have returned back to the steady state after a

previous delivery. However, the method can be extended to

multiple requests when adequate modifications are made.

The timing of the Coordinator works as follows. It is

considered that as a new delivery request is conveyed to the

Coordinator, the time and step counter variables are reset

to 0 and then are incremented until the Coordinator is re-

activated for another delivery etc. We use Ac = Tc/Tm ∈
N, where Tc is the length of the control cycle of the

Coordinator, which is a multiple of the sampling time of

the model Tm.

It is assumed that the model of the irrigation canal is

given by (1) and that for all k we have

wi(k) ∈ W, vi(k) ∈ V, (2)

where W,V ⊂ R are known convex and compact sets

containing the origin.

The Coordinator provides the local controllers with a

block-shaped setpoint profile: it finds a modified value of

the setpoint and the time instants when this modified value

should be switched on and back off to return to the normal

operating value of the setpoint. Examples of possible

setpoint profiles are given in Figure 2. Importantly, the

Coordinator only needs to communicate once to each local

site with the information on how a setpoint profile should

be changed. This is an essential feature because it implies

that there is no need for frequent communication with the

local sites, which is a practical requisite of the system.

The control inputs to be determined by the

Coordinator for each delivery request are UT =(
Q̃T

S, demand, (H
ref, delivery)T , (T on)T , (T off)T

)
, where

Q̃S, demand denotes the optimum profile of the extra

flow from the head gate to the first canal reach:

Q̃S, demand = (QS, demand(0), . . . , QS, demand(Np − 1))
T

.

Knowing the base flow in the canal QS, base, from

QS, demand(j), j = 0, . . . , Np − 1, we can determine

the overall flow from the head gate to be used in (1) as

QS(jAc+i) = QS, base+QS, demand(j), i = 0, . . . , Ac−1
starting from k = 0 i.e. the moment the Coordinator is

triggered until the end of the prediction horizon Np.



Further control inputs in are Href, delivery =
(href, delivery

1 , . . . , href, delivery
N )T , T on = (ton1 , . . . , tonN )T ,

and T off = (toff1 , . . . , toffN )T , where href, delivery
i ∈ R, and

where in the spirit of TIO-MPC, toni ∈ R and toffi ∈ R are

the switching time instants such that

href
i (k) =

{
href, normal
i if k ≤ koni or k ≥ koffi ,

href, delivery
i otherwise,

(3)

with koni =
[
ton
i

Tm

]
and koffi =

[
toff
i

Tm

]
, where [x] denotes the

value of x ∈ R rounded to the nearest integer assuming

a round-half-up rule. Moreover, href, normal
i is the normal

operating level of the setpoint in canal reach i.

For the Coordinator to fulfill its task, the following cost

function is proposed

J =α

AcNp∑

j=1

(uN (j − 1)−QS, base)
2

(4)

+

N∑

i=1

AcNp∑

j=1

[
γ1

(
max(hi (j)− hmax,des

i , 0)
)2

(5)

+ γ2

(
min(hi (j) + hmin,des

i , 0)
)2

]
(6)

+

N∑

i=1

AcNp∑

j=1

β
(
hi (j − 1)− href

i (j − 1)
)2

(7)

+

N∑

i=1

µ
(
href,normal
i − href

i (NpAc − 1)
)2

, (8)

in which α, γ1, γ2, and β are positive weighting co-

efficients, and uN denotes the flow through gate N .

Therefore, the Coordinator will modify the head gate and

the setpoints, thus enabling speedy deliveries, in a way to

minimize the disruptive effect of the Coordinator’s actions

on the canal when a sudden delivery request occurs.

The hard constraints are as follows:

hmin
i ≤ hi(ℓ) ≤ hmax

i , (ℓ = 1, . . . , NpAc), (9)

hmin
i ≤ href,delivery

i ≤ hmax
i , (10)

toffi ≥ toni + Tm, (11)

toni ≥ 0 (12)

QS, demand(n) ≥ 0, (n = 0, . . . , Np − 1), (13)

0 ≤ QS(m) ≤ Qcapacity, (m = 0, . . . , NpAc − 1),
(14)

for all i ∈ {1, . . . , N}. Furthermore, (3) is also treated as a

hard constraint defining the possible shape of the setpoint

profiles.

We study three control designs. The nominal controller

disregards the effect of possible disturbances when evaluat-

ing the cost function. In contrast, the second approach uses

approximate values of the state and an approximate model

when calculating state predictions. At the same time, the

controller tightens the hard constraints applied to the state

estimates to ensure that the control actions found by the

Coordinator guarantee that the actual state remains within

the feasible bounds. The third controller is based on an

application of the standard min-max MPC.

A. Nominal controller

In the case of the nominal controller, the noise terms

wi(k) and vi(k), i = 1, . . . , N are neglected in (1). Hence,

the model of the canal (1) is used with wi(k) = 0 and

vi(k) = 0, i = 1, . . . , N for all k.

The functioning of the nominal controller can be detailed

as follows. The Coordinator is triggered when a new

delivery needs to be accounted for. It then uses the noise-

free model to find the optimal control action U subject

to constraints (3) and (9)–(14). Then, the optimal setpoint

profiles defined by the triple (toni , toffi , href,delivery
i, ), i =

1, . . . , N , are sent to the local sites and the optimal profile

of head gate flow QS is set up according to Q̃S,demand.

B. Constraint tightening controller

In this approach, the main idea, based on the results

presented in [7], [16], is to tighten the constraint set (9) to

accommodate for the unknown effects of the disturbances

wi(k) and vi(k) and thus to achieve robust constraint

satisfaction. We denote p̃i,j(k) = (pi(k − j), . . . , pi(k))
T

for a variable pi(k) and 1α = (1, . . . , 1)T ∈ R
α×1 for a

positive constant α.

For simplicity, at time step k we take the estimate

ĥi(k|k) to be equal to the measured output

ĥi(k|k) = yi(k), (15)

where we use the notation (k1|k2) to highlight that it is

the estimate for step k1 using the information available at

step k2. In general ĥi(k|k) is not equal to the actual value

of the state variable hi(k) and so if we take ĥi(k|k) =
hi(k) + ǫi(k|k), in which ǫi(k|k) is the estimation error,

this error clearly is

ǫi(k|k) = vi(k). (16)

Considering the known bounds (2), we can specify that

ǫi(k|k) ∈ Ei(k|k) = V. (17)

To obtain further state estimates hi(k + j|k), i =
1, . . . , N , j = 1, . . . , AcNp, we use the model of the canal

(1) using ĥi(k|k) as the initial condition, and discount the

effect of unknown disturbances, i.e. we set wi(k+j|k) = 0
and vi(k + j|k) = 0, j = 0, . . . , AcNp − 1. Moreover, for

each step we check how much such an estimate may differ

from the actual state. In doing so, it is assumed that known

values from the past (i.e. past measured output and delayed

inflow, which de facto depends on past measured output)

are taken as is since they have already occurred and as

such do not introduce any uncertainty to the model. We

introduce

e∗i (k) =

{
yi(k)− href

i (k) if k ≤ kcurrent,
hi(k) + vi(k)− href

i (k) if k > kcurrent.
(18)

where kcurrent denotes the current model sample step at

which the formula is calculated. Using the above variables

and the recursive formula of a PI controller as in (1), we

have

u∗

i (k + j) = (19)



ui(k) if j = 0,
ui(k) +KPIie

∗

i (k + j) + ξ(j)KIi1
T
j−1ẽ

∗

i,j−2(k + 1)
−KPie

∗

i (k) if j ≥ 1,

and similarly

u∗

i−1(k − kdi + j) = (20)







ui−1(k − kdi + j) if kdi ≥ j,
ui−1(k) +KPI(i−1)e

∗

i−1(k − kdi + j)
+ξ(j − kdi)KI(i−1)1

T
j−kdi−1ẽ

∗

i−1,j−kdi−2(k + 1)

−KP(i−1)e
∗

i−1(k) if kdi < j,

where KPIi = KPi +KIi and ξ(j) = min(1, j − 1). We

start from evaluating the state predictions and approximate

predictions for step k + 1 and obtain (cf. (1))

hi(k + 1) = hi(k) + zi(ui−1(k − kdi)− ui(k) (21)

+ di(k) + gi(k)) + wi(k),

and

ĥi(k + 1|k) = ĥi(k|k) + zi(ui−1(k − kdi)− ui(k)

+ di(k) + gi(k)), (22)

where zi = Tm

ci
and all terms on the right-hand sides

except wi(k) are measured or known. Consequently, the

estimation error ǫi(k + 1|k) = ĥi(k + 1|k)− hi(k + 1) is

ǫi(k + 1|k) = ǫi(k|k)− wi(k) (23)

and thus

ǫi(k + 1|k) ∈ Ei(k + 1|k) = Ei(k|k)⊕ (−1)W, (24)

where ⊕ denotes the Minkowski summation (A ⊕ B =
{a + b | a ∈ A, b ∈ B}). In general, using formula (1)

recursively, we have for j = 1, . . . , AcNp − 1

hi(k + j + 1) = hi(k) + zi(u
∗

i−1(k − kdi + j) (25)

− u∗

i (k + j) + di(k + j) + gi(k + j)) + wi(k + j)

and

ĥi(k + j + 1|k) = ĥi(k + j|k) + zi(ŭ
∗

i−1(k − kdi + j)

− ŭ∗

i (k + j) + di(k + j) + gi(k + j)), (26)

where we use

ŭ∗

i (k + j) = ui(k) +KPIiêi(k + j|k) (27)

+ ξ(j)KIi1
T
j−1

˜̂ei,j−2(k + 1|k)−KPiei(k)

and

ŭ∗

i−1(k − kdi + j) = (28)




ui−1(k − kdi + j) if kdi ≥ j,
ui−1(k) +KPI(i−1)êi−1(k − kdi + j|k)

+ξ(j − kdi)KI(i−1)1
T
j−kdi−1

˜̂ei−1,j−kdi−2(k + 1|k)

−KP(i−1)ei−1(k) otherwise,

and êi(k1|k2) = ĥi(k1|k2) − href
i (k1). Basically, the

formulas for ŭ∗

i (k + j) and ŭ∗

i−1(k − kdi + j) are the

noise-free counterparts of u∗

i (k+j) and u∗

i−1(k−kdi+j),
respectively. The estimation error for each step (k+j+1|k)
in the future, j = 1, . . . , AcNp − 1, can be determined by

subtracting (25) from (26):

ǫi(k + j + 1|k) = ǫi(k + j|k) + zi(ŭ
∗

i−1(k − kdi + j)

− u∗

i−1(k − kdi + j)− ŭ∗

i (k + j) + u∗

i (k + j)), (29)

from which we find that

ǫi(k+j+1|k) ∈ Ei(k+j+1|k) =: Ei(k+j|k)⊕E i(k+j+1|k),
(30)

in which E i(k + j + 1|k) is defined as

E i(k + j + 1|k) = zi
(
KPIi(Ei(k + j|k)⊕ V) (31)

⊕ ξ(j)KIi

1⊕

ℓ=j−1

(Ei(k + ℓ|k)⊕ V)
)
⊕W

⊕ (−zi)





0 if kdi ≥ j,
KPI(i−1)(Ei−1(k − kdi + j|k)⊕ V)⊕

ξ(j − kdi)KI(i−1)

⊕1
ℓ=ℓ0

(Ei−1(k + ℓ|k)⊕ V)
otherwise,

where ℓ0 = −kdi + j − 1 and
⊕b

j=a Aj = Aa ⊕ . . .⊕Ab.

The way to proceed from here is to determine the

optimal control actions of the Coordinator U using the

approximate model ĥi(k + j|k), i = 1, . . . , N to evaluate

the cost function (4)–(8) and to optimize it subject to

constraints (3) and (9)–(14). However, to compensate for

the difference between the actual state predictions hi(k+j)
and the approximate state predictions ĥi(k + j|k), i =
1, . . . , N , j = 1, . . . , AcNp and de facto ensure that the

actual state remains within the feasible bounds (9), we

recursively tighten (9) using the derived bounds of the

estimation errors ǫi(k+ j +1|k). Therefore, let us rewrite

constraint (9) as hi(ℓ) ∈ Hi = [hmin
i , hmax

i ]. In view of

the above discussion, the modified constraints for every

i ∈ {1, . . . , N} are

ĥi(k + j + 1|k) ∈ Ĥi(k + j + 1|k) (32)

with Ĥi(k|k) = Hi ⊖ Ei(k|k), (33)

Ĥi(k + j + 1|k) = Ĥi(k + j|k)⊖ E i(k + j + 1|k),
(34)

where ⊖ denotes the Minkowski difference (A ⊖ B =
{x |x+ b ∈ A, ∀b ∈ B}). This process ensures feasibility

of the solution.

C. Min-max MPC

The standard min-max MPC approach [18] aims at

finding a control action U for the worst possible realization

of the disturbances over the whole prediction horizon given

the bounds (2). Then, the optimization problem becomes:

min
U

max
Wi(k)
Vi(k)

i=1,...,N

J in (4) − (8) (35)

subject to (3), (9) − (14) and (2), (36)

where the sequences Wi(k) and Vi(k) for i = 1, . . . , N
are defined as Wi(k) = (wi(k), . . . , wi(k +AcNp − 1))T

and Vi(k) = (vi(k), . . . , vi(k +AcNp − 1))T .

D. Discussion

The robust controllers, i.e. the constraint tightening con-

troller and the min-max MPC guarantee feasibility of the

solution provided that it exists. The nominal controller does

not verify whether or not the solution satisfies the state

constraints. However, for a very long prediction horizon

or overly stretched definitions of sets W and V , we may

end up using the constraint tightening controller with an

empty constraint set Ĥi(k+ j+1|k) for some j, resulting

in no feasible solution, whereas in reality we may still be

well within the constraints.

At the same time the solution provided by the con-

straint tightening and min-max predictive controllers might

turn out to be rather conservative, thus compromising

the performance of the controller. In addition, the min-

max MPC approach is known to be computationally very

challenging and is executed online. Similarly, computations

of the tightened constraint sets may be demanding. Yet, as

this is only done once offline, the constraint tightening
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approach has an edge over the standard min-max MPC in

that respect.

IV. CASE STUDY

Now we present a small numerical example to illustrate

how the different controllers work and to compare their

performance. For brevity, we do not explicitly write units

in the text but SI units are assumed throughout this section.

We use a virtual canal consisting of N = 4 canal

reaches. The parameters used in simulations are as follows:

Tm = 180, Tc = 3Tm, Ac = 3, KPi = 0.85, KIi = 0.02,

Np = 8 (equivalent to 24 sample steps of the model),

α = 21, β = 4, γ1 = γ2 = 1, µ = 6, c1 = 740, c2 = 843,

c3 = 730, c4 = 867, kd1 = kd3 = kd4 = 1, kd2 = 2,

∀ i: href,normal
i = −0.6, hmin

i = −1.2, hmax
i = −0.1, and

Qcapacity = 2. Moreover, the disturbances are modeled as

random numbers satisfying −0.005 ≤ wi(k) ≤ 0.005 and

−0.005 ≤ vi(k) ≤ 0.005.

The delivery request used in the simulations occurs in

Reach 3 and has the magnitude of 0.1. It takes place from

k = 18 to k = 27.

To compare the performance of the controllers, we

consider the a posteriori performance index Jpost defined

as

Jpost = α

Tf/Tm∑

k=1

(uN (k)−QS, base)
2
+

N∑

i=1

Tf/Tm∑

k=1

β (ei(k))
2
,

(37)

where Tf = 50Tc is the duration of the simulation.

We start by discussing the constraint tightening con-

troller. As it turns out, because of the particular nature

of the tightening process, the method proves unsuitable

for the given Np. The reasons for that is the open-loop

implementation and the cascaded nature of an irrigation

canal, which imply that the constraint tightening yields

too much accumulation of uncertainty for further reaches

and thus the constraint set is rendered empty after 21

prediction steps, see Figure 3. Another factor contributing

to the constraint set ending up being empty, is the fact that

with an event-driven controller even for a small case study

like this one, the prediction horizon needs to be rather

long since the optimization problem is not solved in the

receding horizon manner as it is customary in MPC, but

only once per delivery.

The other two methods, the nominal and min-max

controllers, do not suffer from such a problem. We present

the evolution of the water levels and the corresponding

setpoints in all reaches in Figure 4 and in Figure 5 we

depict the inflow from the head gate as found by the Coor-
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Fig. 4. Water levels (dashed line) and setpoints (solid line) for all reaches
for (a) the nominal controller and (b) min-max controller.
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Fig. 5. Flow from the head gate.

dinator in the case of the nominal and min-max controllers.

The values of the performance indicator Jpost are given in

Table I. It is seen that the min-max controller performs

worse than the nominal controller, which can be explained

by the fact that the min-max controller is inclined to

choose more conservative and hence more performance-

compromising control actions than the nominal controller,

which assumes no disturbances. However, the nominal

controller does not necessarily provide a feasible solution

in the presence of disturbances.

For the sake of completeness, we also consider a pre-

diction horizon of Np = 6 (i.e. 18 sample steps), which is

short enough to prevent the feasible sets Hi from becoming

empty. The corresponding solutions are given in Table

I. Again, the nominal controller outperforms the other

two, but the constraint tightening robust controller yields

a similar value of Jpost. Yet, with larger disturbances,

the performance of the nominal controller is likely to

deteriorate and in particular a control action returned by

the solver as feasible may disobey the constraints in reality.

At the same time, the two discussed robust designs may

not be able to find a feasible solution altogether because

of their conservative approach. This indeed advocates the

analysis of more flexible control methods that would result



TABLE I

PERFORMANCE COMPARISON

Np nominal constraint tightening min-max

8 8.88 – 14.80

6 9.33 10.41 17.90

in a satisfactory performance with little computation effort.

V. CONCLUSIONS

We have introduced a hierarchical event-driven con-

troller that enables speedy water deliveries to users through

an irrigation canal. The hierarchical controller consists of

local upstream PI controllers in the lower control layer, and

a higher-layer controller coordinating the local controllers

and acting in response to delivery requests only, therefore

necessitating only minimal communication. This is an im-

portant feature as in the field of irrigation communication

is considered expensive.

We have examined and compared three different set-ups

to deal with the uncertainties: the nominal controller, the

constraint tightening controller and the min-max controller,

all based on MPC. It has been shown that in the particular

set-up considered in the paper, the nominal controller out-

performs the two other strategies but without guaranteeing

feasibility, while the two robust controllers resulted in

more cautious control actions. As it is expected that less

conservatism can be achieved, without compromising on

the feasibility guarantee, if the specific nature of the distur-

bances is analyzed in more depth, in the future we want to

examine other methods to deal with model uncertainties,

e.g. examining explicitly the particular stochastic nature of

the disturbances [3]–[5].
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