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Model predictive traffic control for green mobility*
Tutorial session on traffic control – Extended abstract

Bart De Schutter1

Abstract— This tutorial provides a short overview of model-
based predictive control approaches for traffic management
using multiple performance criteria, including green mobility
performance measures such as reduction of emissions and
reduction of fuel consumption. In this paper we will briefly
discuss the most important aspects of the topic, while also
providing the interested reader with a non-exhaustive list of
references that provide a more in-depth treatment of the
subject.

We start with a brief description of traffic management.
Next, we discuss traffic flow and emission models, with an
emphasis on macroscopic models, as they are well suited for
on-line model-based predictive traffic control, highlighting the
importance of the balance between accuracy and control per-
formance. Next, we focus on the use of model-based predictive
control (MPC) for coordinated control of various traffic control
measures in small-scale freeway networks. Finally, we discuss
various ways to improve the computation speed when solving
the MPC optimization problem.

I. TRAFFIC MANAGEMENT

Traffic jams and congestion do not only cause considerable

costs due to unproductive time losses; they also increase the

probability of accidents and they have a negative impact on

the environment (air pollution, increased fuel consumption)

and on the quality of life (health problems, noise, stress). In

principle, there are several ways to address this problem, such

as constructing new roads or missing links, promoting public

transportation, reducing or shifting the demand, adopting

pricing or reward mechanisms, etc. However, on the short

term, dynamics traffic management is probably one of the

most promising ways to reduce the effects, frequency, and

duration of traffic jams.

Dynamic traffic management involves the use of various

traffic control measures such as dynamic speed limits, on-

ramp metering, dynamic route guidance, traffic signals, lane

closures, tidal flow1, etc. to optimize and control the traffic

flows in urban and freeway networks. For more information

on traffic management the interested reader is referred to [1],

[2], [3], [4], [5], [6].

In this tutorial we will focus on model-based predictive

traffic management for freeways while the companion tuto-

rials [7], [8] will concentrate on respectively speed control

* Work supported by the NWO-NFSC project “Multi-level predictive traf-
fic control for large-scale urban networks” (629.001.011) and the European
COST Action TU1102.
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1Tidal flow involves reversing the direction of one or more lanes during
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approaches to improve freeway traffic flow and urban traffic

management.

II. TRAFFIC MODELS

Traffic models allow to predict the future behavior of the

traffic network and as such they are an important component

in predictive traffic control. Here, we consider two types of

models: (1) traffic flow models, which describe the move-

ment of vehicles and vehicle flows through he network, and

(2) emission and fuel consumption models.

A. Traffic flow models

One can distinguish two major classes of models to de-

scribe the movement of vehicles in a traffic network, namely

microscopic models and macroscopic models.

In microscopic traffic models the movements of individual

vehicles are considered and updated at each time step. On the

one hand, microscopic models are in general able to describe

various traffic phenomena in a very detailed way, but on

the other hand they may be very time-consuming for large-

scale networks and in case the network has to be simulated

repeatedly on-line as is done in model-based predictive traffic

control.

Macroscopic traffic models work at an aggregate level with

the network being discretized in space (via the subdivision

of freeway stretches into segments with a typical length of

500 m to 1 km) and in time (with a typical time step of 10 s).

Macroscopic models then describe the evolution of the traffic

network via aggregate variables for each segment such as the

vehicle density, the vehicle flow, and the average speed. In

general, macroscopic traffic flow models may not be able

to capture all the details of various traffic phenomena, but

on the other hand they can be simulated very efficiently,

which makes them very suitable for use in on-line model-

based traffic control. In this context, the trade-off between

accuracy and computation speed is very important.

Several macroscopic models have been developed for

freeway networks, the most well-known being the first-order2

models of Payne [9] and Lighthill-Whitham-Richards (LWR)

[10], [11], [12], and the second-order METANET model

[13], [14] and its extensions [15].

For an overview of traffic models we refer the interested

reader to [16], [17], [18].

2Here, the order refers to the number of independent state variables.
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Fig. 1. Model-based predictive traffic control

B. Emission and fuel consumption models

Traditionally, traffic management has mainly focused on

the reduction of congestion and on maximizing the through-

put of the network or minimizing the total travel time.

However, recently sustainability-related performance criteria

and constraints such as e.g., reducing emissions of CO,

CO2, HC, NOx, and reducing fuel consumption have gained

increased attention. In order to accommodate these criteria in

model-based traffic, one also needs models to describe them.

For emissions, several microscopic models have been

developed, most of them using the speed, the acceleration,

and the engine load (as well as vehicle type) as input [19]

such as the VT-micro model [20], the VERSIT+ model [21],

and the models in [22], [23]. For the sake of obtaining a

trade-off between accuracy and computation speed, these

microscopic models can also be integrated with macroscopic

models (see e.g., the VT-macro model of [24]).

Since for fuels like gasoline or diesel, there is a direct,

almost affine relation between the amount of fuel consumed

and the CO2 emissions (see, e.g., [25]), the above models

can also be used to obtain fuel consumption models.

III. MODEL-BASED PREDICTIVE TRAFFIC CONTROL

Model-based predictive control (MPC) [26], [27], [28] is

a control approach that uses a prediction model in combina-

tion with (numerical) optimization to determine the control

signals that optimize a given performance criterion subject

to operational and other constraints over a given prediction

horizon. Of the resulting optimal control sequence, only the

first sample is then implemented on the system. Next, the

horizon is shifted and the whole process is repeated. By

adopting this so-called moving horizon or rolling horizon

approach, feedback is introduced into the control strategy. A

schematic representation of MPC is given in Fig. 1.

In essence, in MPC-based traffic control at each control

time step k an optimization problem of the following form

is solved:

min
ũ(k)

J(ũ(k), x̃(k)) (1)

subject to x̃(k) = M (ũ(k),x(k), d̃(k))

C (x̃(k), ũ(k))6 0

(2)

where J expresses the performance criterion3 (e.g., total

time spent, vehicle loss hours, throughput, emissions, etc.)

over a time period [kT,(k + Np)T ) with T the sampling

time and Np the prediction horizon; ũ(k) = [uT (k) uT (k +
1) . . . uT (k + Np − 1)]T contains the control inputs (ramp

metering rates, speed limits, splitting rates for route guid-

ance, etc.); x(k) is the state (e.g., average speeds, densities,

flows, queue lengths) at time step k; x̃(k) = [x̂T (k+1) x̂T (k+
2) . . . x̂T (k+Np)]

T contains the predicted future state of the

traffic network; and d̃(k) contains the future external inputs

(e.g., traffic demand). Moreover, the function M represents

the traffic model used, and the function C describes the

various constraints on inputs and states. In order to reduce

the number of optimization variables, a control horizon Nc

(with Nc < Np) is defined and the control inputs are taken

constant from k +Nc on: u(k + j) = u(k +Nc − 1) for j =
Nc, . . . ,Np −1.

The resulting optimization problem is in general a non-

linear non-convex optimization problem that can be solved

using multi-start local optimization methods (e.g., sequen-

tial quadratic programming) or global optimization methods

(such as pattern search or genetic algorithms) [29], [30], [31].

In [32], [15] it has been shown how MPC can be used

to coordinate various traffic control measures such as on-

ramp metering, dynamic speeds limits, route guidance, etc.

while minimizing the total time spent subject to e.g., queue

length constraints at the on-ramps, maximum speed limit

variations of time and space, etc. In [24], [33] this work has

been extended to also include green mobility criteria such

as point emissions (i.e., emissions directly emitted at the

freeway locations) as well as dispersion of emissions (due to

e.g., wind).

3In multi-objective context, often a weighted sum of various performance
criteria is used.



Model-based control approaches based on optimal control

are described in [34], [35], [36], [37] Other related results

for model-based freeway control can be found in [38], [39],

[24].

IV. EFFICIENT MPC-BASED TRAFFIC CONTROL

In order to reduce the computation time for solving

the MPC optimization problem several approaches can be

adopted including reducing the search space [40], approxi-

mating the MPC-optimization problem by another problem

that can be solved more efficiently [41], or using simplified

prediction models [42]. A particularly promising approach

is the use of parametrized control [33] where instead of

optimizing the sequence u(k), u(k + 1), . . . , u(k +Np − 1)
a parametrized control law is defined of the form u(k+ j) =
f (x(k + j),θ) and subsequently only the parameter θ is

optimized, resulting in a significantly smaller number of

optimization variables.

For large-scale networks one can also resort to distributed

or hierarchical control [43], [44], [45], [46].
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[3] P. Kachroo and K. Özbay, Feedback Control Theory for Dynamic

Traffic Assignment, ser. Advances in Industrial Control. Springer,
1999.

[4] M. Papageorgiou, Applications of Automatic Control Concepts to

Traffic Flow Modeling and Control, ser. Lecture Notes in Control and
Information Sciences. Berlin, Germany: Springer Verlag, 1983.

[5] A. Hegyi, T. Bellemans, and B. De Schutter, “Freeway traffic man-
agement and control,” in Encyclopedia of Complexity and Systems

Science, R. Meyers, Ed. New York, New York: Springer, 2009, pp.
3943–3964.

[6] M. Burger, M. van den Berg, A. Hegyi, B. De Schutter, and J. Hellen-
doorn, “Considerations for model-based traffic control,” Transporta-

tion Research Part C, vol. 35, pp. 1–19, Oct. 2013.

[7] A. Hegyi, “An overview of speed control approaches to improve
freeway traffic flow,” in Proceedings of the 2014 European Control

Conference, Strassbourg, France, 2014.

[8] N. Geroliminis, “Large-scale hierarchical control for congested urban
networks,” in Proceedings of the 2014 European Control Conference,
Strassbourg, France, 2014.

[9] H. Payne, “Models of freeway traffic and control,” in Mathematical

Models of Public Systems, ser. Simulation Council Proceedings Series,
G. Bekey, Ed. La Jolla, California, 1971, vol. 1, no. 1, pp. 51–61.

[10] M. Lighthill and G. Whitham, “On kinematic waves: I. Flood move-
ment in long rivers,” Proceedings of the Royal Society of London, vol.
299A, pp. 281–316, May 1955.

[11] ——, “On kinematic waves: II. A theory of traffic flow on long
crowded roads,” Proceedings of the Royal Society of London, vol.
299A, pp. 317–345, May 1955.

[12] P. Richards, “Shock waves on the highway,” Operations Research,
vol. 4, pp. 42–51, 1956.

[13] A. Messmer and M. Papageorgiou, “METANET: A macroscopic
simulation program for motorway networks,” Traffic Engineering and

Control, vol. 31, no. 8/9, pp. 466–470, Aug./Sep. 1990.

[14] A. Kotsialos, M. Papageorgiou, C. Diakaki, Y. Pavlis, and F. Middel-
ham, “Traffic flow modeling of large-scale motorway networks using
the macroscopic modeling tool METANET,” IEEE Transactions on

Intelligent Transportation Systems, vol. 3, no. 4, pp. 282–292, Dec.
2002.

[15] A. Hegyi, B. De Schutter, and H. Hellendoorn, “Model predictive
control for optimal coordination of ramp metering and variable speed
limits,” Transportation Research Part C, vol. 13, no. 3, pp. 185–209,
Jun. 2005.

[16] S. Hoogendoorn and P. Bovy, “State-of-the-art of vehicular traffic flow
modelling,” Proceedings of the Institution of Mechanical Engineers,

Part I: Journal of Systems and Control Engineering, vol. 215, no. 4,
pp. 283–303, Aug. 2001.

[17] M. Brackstone and M. McDonald, “Car-following: A historical re-
view,” Transportation Research Part F, vol. 2, no. 4, pp. 181–196,
2000.

[18] M. Papageorgiou, B. Posch, and G. Schmidt, “Comparison of macro-
scopic models for control of freeway traffic,” Transportation Research

Part B, vol. 17, no. 2, pp. 107–116, 1983.

[19] J. Heywood, Internal Combustion Engine Fundamentals. New York:
McGraw-Hill, 1988.

[20] K. Ahn, A. Trani, H. Rakha, and M. Van Aerde, “Microscopic fuel
consumption and emission models,” in Proceedings of the 78th Annual

Meeting of the Transportation Research Board, Washington DC, USA,
Jan. 1999.

[21] R. Smit, R. Smokers, and E. Schoen, “Versit+ ld: Development of
a new emission factor model for passenger cars linking real-world
emissions to driving cycle characteristics,” in Proceedings of the 14th

Symposium Transport and Air Pollution, Graz, Austria, Jun. 2005, pp.
177–186.

[22] P. Boulter, T. Barlow, I. McCrae, S. Latham, D. Elst, and E. van der
Burgwal, “Road traffic characteristics, driving patterns and emis-
sion factors for congested situations,” TNO Automotive, Department
Powertrains-Environmental Studies & Testing, Delft, The Netherlands,
Tech. Rep., 2002, oSCAR Deliverable 5.2.

[23] Z. Samaras and L. Ntziachristos, “Average hot emission factors for
passenger cars and light duty trucks,” Aristotle National University of
Thessaloniki, Greece, Tech. Rep. 9811, Jun. 1998, deliverable 7 of the
MEET project.

[24] S. Zegeye, B. De Schutter, J. Hellendoorn, E. Breunesse, and A. Hegyi,
“Integrated macroscopic traffic flow, emission, and fuel consumption
model for control purposes,” Transportation Research Part C, vol. 31,
pp. 158–171, Jun. 2013.

[25] M. Oliver-Hoyo and G. Pinto, “Using the relationship between vehicle
fuel consumption and CO2 emissions to illustrate chemical principles,”
Journal of Chemical Education, vol. 85, no. 2, pp. 218–220, Feb. 2008.

[26] J. Maciejowski, Predictive Control with Constraints. Harlow, UK:
Prentice Hall, 2002.

[27] E. Camacho and C. Bordons, Model Predictive Control in the Process

Industry. Berlin, Germany: Springer-Verlag, 1995.

[28] J. Rawlings and D. Mayne, Model Predictive Control: Theory and

Design. Madison, Wisconsin: Nob Hill Publishing, 2009.

[29] P. Pardalos and M. Resende, Eds., Handbook of Applied Optimization.
Oxford, UK: Oxford University Press, 2002.

[30] C. Audet and J. Dennis, Jr., “Analysis of generalized pattern searches,”
SIAM Journal on Optimization, vol. 13, no. 3, pp. 889–903, 2002.

[31] L. Davis, Ed., Handbook of Genetic Algorithms. New York: Van
Nostrand Reinhold, 1991.

[32] A. Hegyi, B. De Schutter, and J. Hellendoorn, “Optimal coordination
of variable speed limits to suppress shock waves,” Transportation

Research Record, no. 1852, pp. 167–174, 2003.

[33] S. Zegeye, B. De Schutter, J. Hellendoorn, E. Breunesse, and A. Hegyi,
“A predictive traffic controller for sustainable mobility using parame-
terized control policies,” IEEE Transactions on Intelligent Transporta-

tion Systems, vol. 13, no. 3, pp. 1420–1429, Sep. 2012.

[34] A. Kotsialos, M. Papageorgiou, and A. Messmer, “Optimal coordinated
and integrated motorway network traffic control,” in Proceedings of

the 14th International Symposium of Transportation and Traffic Theory

(ISTTT), Jerusalem, Israel, Jul. 1999, pp. 621–644.

[35] A. Kotsialos, M. Papageorgiou, M. Mangeas, and H. Haj-Salem,
“Coordinated and integrated control of motorway networks via non-
linear optimal control,” Transportation Research Part C, vol. 10, no. 1,
pp. 65–84, Feb. 2002.

[36] R. Carlson, I. Papamichail, M. Papageorgiou, and A. Messmer,
“Optimal mainstream traffic flow control of large-scale motorway
networks,” Transportation Research Part C, vol. 18, no. 2, pp. 193–
212, Apr. 2010.

[37] A. Di Febbraro, T. Parisini, S. Sacone, and R. Zoppoli, “Neural
approximations for feedback optimal control of freeway systems,”
IEEE Transactions on Vehicular Technology, vol. 50, no. 1, pp. 302–
312, Jan. 2001.

[38] X.-Y. Lu, T. Qiu, P. Varaiya, R. Horowitz, and S. Shladover, “Com-
bining variable speed limits with ramp metering for freeway traffic



control,” in Proceedings of the 2010 American Control Conference,
Baltimore, Maryland, Jun.–Jul. 2010, pp. 2266–2271.

[39] G. Gomes and R. Horowitz, “Optimal freeway ramp metering using the
asymmetric cell transmission model,” Transportation Research Part C:

Emerging Technologies, vol. 14, no. 4, pp. 244–262, 2006.
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