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Tractable Robust Predictive Control Approaches for Freeway Networks

Shuai Liu, José Ramón D. Frejo, Alfredo Núñez,

Bart De Schutter, Anna Sadowska, Hans Hellendoorn, Eduardo F. Camacho

Abstract— Robust control aims to maintain predefined
performance specifications for a wide range of uncertainties.
In this paper, we consider the robust control problem for
freeway networks, including the uncertainties explicitly in the
control design step. We use min-max scheme for handling the
uncertainties occurring in freeway networks. In order to
reduce the computational complexity of min-max scheme, we
propose scenario-based min-max Model Predictive Control
(MPC) and scenario-based Receding-Horizon Parametrized
Control (RHPC) in this paper, which solve the complete
robust problem approximately. In addition, a new objective
function is proposed to ensure the satisfaction of queue length
constraints. A case study is implemented to assess the
effectiveness of the proposed approaches. The results show
that nominal MPC and nominal RHPC may result in a better
performance than scenario-based min-max MPC and
scenario-based min-max RHPC. However, nominal MPC and
nominal RHPC cannot ensure the satisfaction of the queue
length constraint. By applying scenario-based min-max MPC
and scenario-based min-max RHPC, the queue length
constraint is satisfied conservatively at the cost of an increase
in the performance index.

I. INTRODUCTION

With the increasing load of freeway networks, traffic

congestion becomes a critical problem, leading to waste of

time, higher risk of accidents, environmental problems, and

so on. Many methods have been proposed in traffic

management for reducing congestion, and on-line

model-based traffic control is one of the most popular

approaches in the literature [1–3]. Nonlinear Model

Predictive Control (MPC) [4] is a model-based control

approach that has been successfully tested in simulations of

traffic systems. However, in real-life traffic networks there

are various types of uncertainties or disturbances, such as

demand uncertainties, model uncertainties, missing

samples, sensor errors, and delays. Including these

uncertainties when determining control strategies offers a

significant potential for obtaining a better control

performance. Hence, it is important to develop robust MPC

approaches for traffic networks that maintain performance

specifications for a given range of uncertainties.

In general, there are two ways to ensure robustness in

nonlinear MPC: one way is based on Lyapunov functions
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and the other on exploiting the optimality of MPC

controllers. Regarding the methods based on Lyapunov

functions, the basic idea is to guarantee that the cost

function is a strictly decreasing Lyapunov function

considering also the effect of uncertainties [5, 6]. Another

way to ensure robustness is based on the optimality of

MPC controllers, and it consists in explicitly considering

the uncertainties in the MPC design step. The inclusion of

the effects of uncertainties in the design of MPC

controllers is a complex problem because it is essential to

deal not only with the optimality of performance, but also

with constraints, for the whole set of possible uncertainties.

Various robust control schemes that include uncertainties in

the MPC design have been proposed in the literature. One

of the most used is the min-max approach, which considers

the effect of uncertainties in the worst case scenario [7, 8].

This way of accounting for uncertainties is intuitive;

however, the solutions obtained are conservative due to the

worst case assumption.

Robust control approaches for traffic have mainly been

developed for urban networks, which are quite different

from freeway networks. In [9], a robust optimal traffic

signal control approach is proposed where the future

demand is assumed to be uncertain. A robust dynamic

system optimal model with an embedded cell transmission

model is formulated, and numerical analysis is performed

on a test network to illustrate the benefits of accounting for

uncertainty and robustness. In [10], an efficient min-max

MPC approach for urban networks is proposed to obtain

green time combinations that minimize the objective

function that corresponds to the worst-case scenarios. This

approach is able to explicitly handle norm-bounded traffic

modeling uncertainty, and has been proved to be an

appropriate choice for traffic control in uncertain urban

networks. In [11], the near-Bayes near-Minimax strategy is

proposed for robust traffic signal control for an urban

network where the uncertainty in the origin-destination

(OD) demands is considered. A good compromise solution

between two different solutions is obtained: one is the

Bayes case in which a probability density is assumed on

the possible OD matrices, and the second is the Minimax

solution, which minimizes the worst possible costs. This

results in a conservative approach with a risk-averse

performance.

Some control approaches for freeway networks that take

robustness into account are also available in literature. In

[12], fuzzy intervals are adopted to model traffic

measurements, since prediction methods do not provide all



the information about the traffic dynamics in every scenario

of a real freeway network. In [13], an optimal control

approach for freeway networks is given by solving a set of

recursive coupled Riccati difference equations. However,

robustness is considered by using a min-max scheme,

aiming to reduce the effect of disturbances, and to act

robustly with respect to parameter misidentification.

In this paper, we develop two robust control approaches

for freeway networks: scenario-based min-max Model

Predictive Control (MPC) and scenario-based min-max

Receding-horizon Parametrized Control (RHPC). The

min-max optimization problem is solved by searching

within a limited number of disturbance scenarios for the

maximum objective function value. In addition, a new way

to include queue length constraints and other constraints on

traffic states is proposed to ensure the satisfaction of this

constraint.

This paper is organized as follows. In Section II, we

describe the basic concepts of MPC and robust MPC. In

Section III, we present the traffic flow model METANET

that is used for MPC in this paper. In Section IV we

analyze the disturbances appearing in freeway networks,

and in Section V we design two different robust MPC

approaches for freeway networks. A case study is

implemented to assess the efficiency of the proposed

approaches in the Section VI.

II. ROBUST MPC BACKGROUND

A. Model Predictive Control

Model Predictive Control (MPC) [4] can be used for

on-line traffic management, considering its capability to

deal with nonlinear systems, multi-criteria optimization,

and constraints. Assume that the model of traffic networks

is a discrete-time nonlinear system in the following form:

x(k+1) = f (x(k),u(k),D(k)) (1)

where k is the discrete time step counter, corresponding to

the time instant t = kT with T the simulation time step, x

is the system state (e.g. flow, density, and speed), u is the

control input (e.g. ramp metering rate and variable speed

limit), and D is the non-controllable input (e.g. demand).

There are two main elements in MPC: dynamic model

prediction and a receding horizon scheme. The essence of

dynamic model prediction is that the future performance of

the controlled system is included in the objective function

J(x̃(k), ũ(k), D̃(k)) of the closed-loop control problem. The

variables in the objective function are respectively the

prediction x̃(k) of the states over the prediction period with

the length of Np, the control inputs ũ(k) over the control

period with the length of Nc, and the non-controllable input

D̃(k) over the prediction period:

x̃(k) = [xT (k+1), . . . ,xT (k+Np)]
T (2)

ũ(k) = [uT (k), . . . ,uT (k+Nc −1)]T (3)

D̃(k) = [DT (k), . . . ,DT (k+Np −1)]T (4)

where x̃(k) is the future state over the prediction period Np,

the control input u(k + l) equals to u(k + Nc − 1) for

l = k +Nc, . . . ,k +Np, and the non-controllable input D̃(k)
is assumed to be known.

The MPC problem at time step k can be formulated as a

nonlinear optimization problem:

min
ũ(k),x̃(k)

J(x̃(k), ũ(k), D̃(k))

subject to

x(k+ l +1) = f (x(k+ l),u(k+ l),D(k+ l)),

l = 0,1, . . . ,Np −1,

x(k) = xk,

u(k+ l) = u(k+Nc −1), l = Nc, . . . ,Np −1,

x(k+ l) ∈ X, l = 1,2, . . . ,Np,

u(k+ l) ∈ U, l = 0,1, . . . ,Nc −1 (5)

where xk is the state at time step k, X is the set containing

all the feasible state values, U contains all the feasible

control inputs values, and both X and U are determined by

the physical and operational conditions of the controlled

system. Solving this nonlinear optimization problem gives

an optimal control sequence. The receding horizon scheme

adapted in MPC means that only the first element u(k) of

optimal input sequence ũ(k) is applied to the controlled

system. Then the prediction horizon is moved to the next

control step, and the control inputs are optimized again.

B. Robust Model Predictive Control

The non-controllable inputs are usually assumed to be

equal to known nominal values when predicting the future

evolution of the system states. In case the real values of the

non-controllable inputs and the nominal values are

significantly different, the performance of MPC will be

reduced.

Consider now the inclusion of uncertainties ω(k) in the

dynamic evolution of the discrete-time nonlinear system, as

follows:

x(k+1) = fω(x(k),u(k),D(k),ω(k)) (6)

with x(k), u(k), and D(k) as in (1), and where ω(k) is the

vector representing uncertainties. The predicted trajectories

given by the nonlinear model will depend on the realization

ω̃(k) of the uncertainties over the prediction period with

ω̃(k) = [ωT (k), . . . ,ωT (k+Np −1)]T (7)

As the numerical solution of the robust MPC problem is

computationally very intensive, and the realization of the

uncertainties ω̃(k) is not previously known, different

approaches can be used to approximate the original robust

MPC problem. One of these approaches is the min-max

approach, in which the optimization of the cost is based on

considering the possible worst-case scenario. Therefore, the

min-max formulation [7] is



min
ũ(k),x̃(k)

max
ω̃(k)∈W

{

Jω(x̃(k), ũ(k), D̃(k), ω̃(k))
}

(8)

subject to

x(k+ l +1) = fω(x(k+ l),u(k+ l),D(k+ l),ω(k+ l)),

l = 0,1, . . . ,Np −1, (9)

x(k) = xk, (10)

u(k+ l) = u(k+Nc −1), l = Nc, . . . ,Np −1, (11)

x(k+ l) ∈ X, l = 1,2, ...,Np, (12)

u(k+ l) ∈ U, l = 0,1, ...,Nc −1 (13)

where W represents the set of all the possible realizations of

uncertainties over the prediction horizon.

III. TRAFFIC FLOW MODEL: METANET

In this paper, we choose METANET as a prediction

model for traffic flow, note however that other models can

be used as well. The METANET model [14] is a

second-order macroscopic traffic flow model, in which

links are used for representing freeway stretches, and nodes

are used for representing on-ramps, off-ramps, and changes

in geometry. Each link (denoted by m) is divided into

several segments (denoted by i) of equal length Lm (e.g. 1

km), and each segment is characterized by basic traffic

states: traffic outflow of vehicles qm,i(k) (veh/h), segmental

density of vehicles ρm,i(k) (veh/km/h), and space-mean

speed of vehicles vm,i(k) (km/h).

The evolution of the basic traffic states is described as

qm,i(k) = ρm,i(k)vm,i(k)λm (14)

ρm,i(k+1) = ρm,i(k)+
T

Lmλm

(qm,i−1(k)−qm,i(k)) (15)

vm,i(k+1) = vm,i(k)+
T

τ
(V (ρm,i(k))− vm,i(k))

+
T

Lm

vm,i(k)(vm,i−1(k)− vm,i(k))

−
T η

Lmτ

ρm,i+1(k)−ρm,i(k)

ρm,i(k)+κ
(16)

V (ρm,i(k)) = vfree,m exp

[

−
1

am

(

ρm,i(k)

ρcrit,m

)am
]

(17)

where λm is the number of lanes in link m, τ , η , κ , and

am are model parameters, V (ρm,i(k)) is the desired speed at

density ρm,i(k), vfree,m is the free flow speed, ρcrit,m is the

critical density.

In addition to the original model, a way to include variable

speed limit is as follows [1]:

V (ρm,i(k)) = min

(

vfree,m exp

[

−
1

am

(

ρm,i(k)

ρcrit,m

)am
]

,

(1+α)vcontrol,m,i(k)

)

(18)

in which 1+α is a non-compliance factor, and vcontrol,m,i(k)
is the speed limit of segment i of link m.
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Fig. 1: Real demands and nominal demand

The outflow qo of an on-ramp origin o is determined by

qo(k)=min

[

do(k)+
wo(k)

T
,Coro(k),Co

(

ρmax,m −ρm,1(k)

ρmax,m −ρcrit,m

)

]

(19)

in which Co is the capacity flow of on-ramp origin o, ρmax,m

is the maximum density of the link m that is connected to

the on-ramp, and ro ∈ [0,1] is the on-ramp metering rate.

Both the queue length at a mainstream origin and the

queue length at a on-ramp origin are described by a simple

queue model:

wo(k+1) = wo(k)+T (do(k)−qo(k)) (20)

where wo(k) is the queue length, and do(k) is the origin

demand.

IV. DISTURBANCE ANALYSIS FOR FREEWAY NETWORKS

In MPC for freeway networks, it is important to

appropriately include non-controllable inputs (D̃). These

inputs include the origin demands, the on-ramp demands,

and for METANET also the upstream speed for the first

segment and the downstream density for the last segment .

These inputs are used for predicting the future traffic states

in MPC for freeway networks. Here we only focus on the

uncertainty in the traffic demand.

In conventional MPC for freeway networks, the nominal

demand is used for predicting the future evolution of traffic

states. The estimation of the nominal demand can be done in

several ways. One easy way is to use the average of historical

demand profiles as the nominal demand for the future. It is

also possible to scale or shift the nominal demand according

to on-line measurements in order to get a better estimation.

Here we consider a setting where the average of historical

demand profiles is used as the nominal demand for the future.

Fig. 1 shows the real mainstream demands of the Dutch

A13 freeway near Rijswijk on several Fridays in 2013 and

2014 and the nominal demand that is generated from these

real demands. All the real demands are plotted with the same

color, and the nominal demand is plotted with a different

color. We can see that most of the demand values fall within a

certain confidence band around the nominal demand profile.

V. ROBUST MPC FOR FREEWAY NETWORK

In MPC control for freeway networks, one often uses the

Total Time Spent (TTS) as performance index. Here we

use TTS as the performance index, and METANET model

is used as the prediction model. We choose Ramp Metering



(RM) and Variable Speed Limits (VSL) as control

measures, because they are easy to implement, and they

can result in a large decrease in TTS. The objective

function without considering the robustness is

J(kc) = ξTTS

TTS(kc)

TTSnom

+ξramp

kc+Nc−1

∑
j=kc

∑
o∈Oramp

(rctrl
o ( j)− rctrl

o ( j−1))2

+ξspeed

kc+Nc−1

∑
j=kc

∑
(m,i)∈Ispeed

(

vctrl
m,i( j)− vctrl

m,i( j−1)

vfree,m

)2

(21)

where kc is the control time step counter, corresponding to

time instant t = kcTc with Tc the control time step, TTSnom

is the value of the TTS for some nominal control profile,

ξTTS is the positive weight for the normalized TTS, rctrl
o (k)

is the ramp metering rate at origin o at control step kc with

ro(k) = rctrl
o (kc) for k = Mkc + 1, . . . ,(M + 1)kc, vctrl

m,i(k) is

the variable speed limit in segment i of link m at control

step kc with vcontrol,m,i(k) = vctrl
m,i(kc) for

k = Mkc +1, . . . ,(M+1)kc, where M = Tc/T is assumed to

be an integer, the second term and the third term in (21)

penalize the variations of the control inputs with ξramp and

ξspeed as corresponding nonnegative weights, Oramp

represents all metered origins, and Ispeed represents all the

segments with speed limits.

The TTS can be defined as follows:

TTS(kc)= T

(kc+Np)M−1

∑
j=kcM

(

∑
(m,i)∈Iall

ρm,i( j)Lmλm +∑
o∈Oall

wo( j)

)

(22)

where Iall is the set of indices of all pairs of segments and

links, and Oall is the set of indices of all origins. The traffic

state variables, which are necessary for computing the

objective function (21), are predicted using a nominal

demand profile (or an on-line updated version of this

profile) in nominal MPC. However, if the demands are

constantly very different from the predicted values, the

performance of the controller is expected to be reduced.

The idea is to design an MPC controller to compute a

control input that will improve the behavior of the

controlled system by taking the uncertainties into account.

In order to limit the computational burden, we consider a

scenario-based min-max scheme. Based on this scheme, we

propose two tractable robust approaches for freeway

networks.

A. Scenario-Based Min-Max MPC

We can apply the min-max MPC for freeway networks.

Here we give a way to realize the min-max approach1:

J(x̃(kc),ũ(kc), D̃(kc)) =

max
ω̃(kc)∈Ω̃

{

Jω(x̃(kc), ũ(kc), D̃(kc), ω̃(kc))
}

(23)

1Note that in Section II we assume Tc = T . Now we consider the general
case with Tc 6= T .

where the set Ω̃ = {ω̃1, ..., ω̃H} ⊂W comprises H possible

scenarios that will be considered for the control design.

This set can be constructed by building a library of

possible disturbance profiles.

In freeway networks, the queue lengths at on-ramps are

often constrained. Queue length and equity of ramp

metering schemes based on the queue length management

and maximum queue constraint are discussed in [15]. In

this paper, we adopt a queue length penalty which is a kind

of soft constraint like in [16, 17] to ensure that queue

lengths exceeding the permissible maximum queue lengths

are penalized and queue length constraints are satisfied as

much as possible under uncertainties. The objective

function of the closed-loop control problem is defined as

J(x̃(kc), ũ(kc), D̃(kc)) = max
ω̃(kc)∈Ω̃

{

Jω(x̃(kc), ũ(kc), D̃(kc), ω̃(kc))

+ γ ∑
o∈Oramp

max

(

max
(kc+Np)M−1

j=kcM wo( j)

wmax,o
−1,0

)}

(24)

where wmax,o is the permitted maximum queue length at on-

ramp o, and the weight γ is a large positive number to ensure

that the queue length constraint is satisfied for all ω̃(kc). By

including the queue length penalty, we can ensure that J is

optimized only when the constraint is not violated. The inner

max operator of the queue length penalty is used to impose a

soft constraint on the queue length and thus to only penalize

queue lengths exceeding the maximum permissible lengths.

Note that in this newly proposed scheme, state constraint

(12) is moved into the objective function (24).

B. Scenario-Based Min-max Receding-Horizon

Parametrized Control (RHPC)

The RHPC approach is developed by Zegeye et al. [18]

based on the receding-horizon control scheme and

parametrized control law, in which the parameters are

optimized instead of full input sequence ũ(kc). The variable

speed limit and the ramp metering rate are defined as

follows:

vctrl
m,i(kc +1) =θm,0(kc)vfree,m +θm,1(kc)

vm,i+1(kc)− vm,i(kc)

vm,i+1(kc)+κv

+θm,2(kc)
ρm,i+1(kc)−ρm,i(kc)

ρm,i+1(kc)+κρ
(25)

rctrl
o (kc +1) = rctrl

o (kc)+θm,3(kc)
ρcrit,m −ρm,1(kc)

ρcrit,m
(26)

in which κv and κρ small positive values to prevent the

divisors to be 0, and θm,0, θm,1, θm,2, and θm,3 are the

parameters to be optimized.

In order to limit variable speed limit and ramp metering

rate within respective lower bound and upper bound, we

propose to apply the following scheme:

vctrl
m,i(kc +1) = max(min(vctrl

m,i(kc +1),vmax),vmin) (27)

rctrl
o (kc +1) = max(min(rctrl

o (kc +1),rmax),rmin) (28)
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Fig. 2: Real demands and nominal demands used for case study

where vmax the maximum speed, vmin the minimum speed,

rmax is the maximum ramp metering rate, and rmin is the

minimum ramp metering rate.

VI. SIMULATION EXPERIMENT

A. Analyzed Network

A benchmark network reported in [1] is chosen as case

study. This network consists of two links, one origin, one

on-ramp, and one destination. The lengths of link 1 and link

2 are respectively 4 km and 1 km. Both links consists of two

lanes, and are divided into homogeneous segments with the

length of 1 km. The origin connects to the main road, the

single-lane on-ramp is located in between link 1 and link 2,

and the destination has unrestricted outflow. Variable speed

limits are applied in the third and fourth segments of link 1,

and the on-ramp is metered.

The model parameters are taken from [1]: τ=18 s,

κ=40 veh/km/lane, η=60 km2/h, ρmax=180 veh/km/lane,

a1=a2=1.867, vfree,1=vfree,2=102 km/h, ρcrit,1=ρcrit,2=102

veh/km/lane, and α=0.1.

The queue length at O2 is assumed to be limited to 100 veh

to avoid spill-back to a surface street intersection. As for the

control parameters, we select ξTTS = 1, ξramp=ξspeed = 0.001,

T = 10 s, Tc = 60 s, Np = 7, Nc = 5, and γ = 100.

The nominal demand profiles and the real demand profiles

are shown in Fig. 2. The real demand is generated by adding

disturbances to the nominal demand. The disturbances are

generated from the real data of A13 freeway network in the

Netherlands.

B. Results

Six different control approaches are implemented: MPC

using real demands for predicting, nominal MPC,

scenario-based min-max MPC, RHPC using real demands

for predicting, nominal RHPC, and scenario-based

min-max RHPC. The control problem here is a nonlinear

optimization problem, and we solve it with sequential

quadratic programming. In scenario-based min-max MPC

and scenario-based min-max RHPC, it is assumed that

there are 10 random noise scenarios subjecting to the lower

bound and upper bound of all probable disturbances. The

corresponding results are shown in Table 1.

According to Table 1, when real demands are used for

predicting in MPC and RHPC, TTS can be optimized with

queue length constraint satisfied. Nominal MPC and

nominal RHPC result in a similar TTS with MPC and

RHPC using real demands. However, the queue length

Table 1 Simulation results

Scenario TTS (veh·h) TTSimprove Maximum queue
length (veh)

No control 594.3 0
MPC + Real demands 554.6 6.7% 100

Nominal MPC 557.5 6.2% 113
Min-max MPC 574.3 3.4% 97

RHPC + Real demands 562.7 5.3% 100
Nominal RHPC 567.5 1.4% 33
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constraint cannot be satisfied in nominal MPC and nominal

RHPC. For scenario-based min-max MPC and

scenario-based min-max RHPC, the queue length at the

on-ramp always stays below 100 veh. Note however that

the TTS is larger in comparison with nominal MPC and

nominal RHPC. This is caused by the fact that the real

demands do not always lead to the worst case, and the

scenario-based min-max approach is conservative. The

queue length curves for different control scenarios are

shown in Fig. 3.

VII. CONCLUSIONS

In this paper, we have developed scenario-based

min-max MPC and scenario-based min-max RHPC for

freeway networks. Thereby, we have mainly considered the

disturbance in the traffic demands. In these approaches, we

have optimized the worst-case scenario over a limited

number of disturbance scenarios. Moreover, an objective

function is proposed to ensure that queue length constraints

are satisfied as much as possible. A case study is

implemented to assess the effectiveness of the proposed

approaches. The results show that for the given settings

nominal MPC and nominal RHPC result in a smaller TTS

than scenario-based min-max MPC and scenario-based

min-max RHPC. For the given case study, nominal MPC

and nominal RHPC cannot ensure that the queue length

constraint at the on-ramp is always satisfied; however, this

constraint are satisfied by scenario-based min-max MPC

and scenario-based min-max RHPC.

In the future, we will focus on probabilities of

disturbance scenarios and statistical among them; other

disturbances such as turning rates at junctions will be

considered. We will also explore other more suitable

parametrized control laws, simulate more scenarios and

layouts, compare with queue override scheme, and develop

new robust approaches, including robust approaches that

are better in avoiding congestion than nominal approaches.
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