
Delft University of Technology
Delft Center for Systems and Control

Technical report 14-036

Distributed model predictive control for
rescheduling of railway traffic∗

B. Kersbergen, T. van den Boom, and B. De Schutter

If you want to cite this report, please use the following reference instead:
B. Kersbergen, T. van den Boom, and B. De Schutter, “Distributed model predictive
control for rescheduling of railway traffic,” Proceedings of the 17th International IEEE
Conference on Intelligent Transportation Systems (ITSC 2014), Qingdao, China, pp.
2732–2737, Oct. 2014. doi:10.1109/ITSC.2014.6958127

Delft Center for Systems and Control
Delft University of Technology
Mekelweg 2, 2628 CD Delft
The Netherlands
phone: +31-15-278.24.73 (secretary)
URL: https://www.dcsc.tudelft.nl

∗ This report can also be downloaded via https://pub.bartdeschutter.org/abs/14_036

https://doi.org/10.1109/ITSC.2014.6958127
https://www.dcsc.tudelft.nl
https://pub.bartdeschutter.org/abs/14_036

Distributed Model Predictive Control for Rescheduling of Railway Traffic

Bart Kersbergen1, Ton van den Boom1 and Bart De Schutter1

Abstract— In this paper we introduce two distributed model
predictive control (DMPC) methods for the rescheduling of
railway traffic. In each step of the DMPC approach dispatching
actions are determined that reduce the amount of delay in the
network as much as possible by solving a mixed integer linear
programming (MILP) problem. The constraints of the MILP
are based on a model of the railway traffic and network and
the possible dispatching actions.

In the first method each subproblem consists of the complete
constraint matrix and the solver tries to minimize the central-
ized cost function, but can only change a limited number of
binary variables (which correspond to the dispatching actions).
By limiting the number of binary variables each subproblem
is easier to solve than the centralized problem. For the second
method each subproblem consists of only a part of the problem
and the solver minimizes a local cost function, and it can only
change the binary variables for that part of the problem. This
reduces the complexity of the subproblems even further, but
the solver can not determine the effects of the binary variables
on the solution quality of the other subproblems.

Both methods significantly reduce the time needed to de-
termine the dispatching actions. The average time needed to
compute the solution is 11.56 times shorter when using method
1 and 39.11 times shorter when using method 2. The solution
found is on average only 0.63 % less optimal for method 1 and
1.27 % less optimal for method 2.

I. INTRODUCTION

In many countries in the world large, complex, and very
busy railway networks have been built. Especially in North-
West Europe, China, and Japan the railway networks are used
near the maximum capacity. As a result, very little buffer and
slack time is available to recover from delays. Every day
small delays occur in almost all railway networks, but in
these heavily used railway networks small delays may cause
many extra delays in large parts of the network because of the
small buffer and slack times. In order to effectively deal with
these delays dispatchers reschedule trains, break connections,
or even cancel trains. Currently most dispatchers take these
decisions based on their experience, a given set of ground
rules, and a limited overview of the network situation.

In recent years many researchers have been developing
dispatcher support systems [1], [2], [3], [4], [5], [6] to help
the dispatchers determine which actions to take. Most of
these approaches model a part of the network (from one
station or track up to several railway stations and the tracks
between them) as a microscopic model. The microscopic
model allows for very accurate modeling of the railway
network but results in a large and complex model. In [7]

1B. Kersbergen, T.J.J. van den Boom and B. De Schutter are with the
Delft Center for Systems and Control, Delft University of Technology, The
Netherlands.

it was shown that for rescheduling a macroscopic model can
be sufficiently detailed.

In many of the dispatching support systems model pre-
dictive control (MPC)[8] is used to determine the optimal
dispatching actions based on a prediction of the evolution of
the state of the system under control, using a model of that
system. Recently the use of MPC has been extended from
discrete-time systems to discrete-event systems [9] opening
a whole new set of systems to be controlled with MPC.

For very complex or large systems it is not always feasible
to design one centralized controller to control the entire
system. It is sometimes better to split the system into several
smaller parts and to control these parts individually. For
such systems MPC has been extended to distributed model
predictive control (DMPC) [10], [11]. Another approach is
multi-level control as proposed in [2], [3], where multiple
local controllers are connected to each and a supervisory
controller ensures the border constraints between two local
controllers are satisfied. With DMPC there is no supervisory
controller and the local controllers have to coordinate with
each other to ensure the border constraints are satisfied.

We build on the work of [12], [13], [14], [15] where
the railway network and traffic is modeled as a discrete-
event system and the dispatching problem is solved using
a centralized model predictive controller. We extend on that
work by proposing two DMPC methods to determine the
dispatching actions for the system. With these DMPC meth-
ods we can reduce the time needed to solve the dispatching
actions compared to the previously used MPC method.

In Section II the railway traffic and network model is
described. In Section III we explain how the model pre-
dictive controller is constructed. The two DMPC methods
are explained in IV. The performance of the two DMPC
methods is compared to the centralized MPC approach for
a case study of the Dutch Railway Network in Section V.
Finally in Section VI we discus the result, draw conclusions,
and discuss our future research plans.

II. RAILWAY TRAFFIC AND NETWORK MODEL

We model the railway traffic and network as a discrete-
event system. The events of the system are the arrivals and
departures of trains at stations and junctions. Because the
railway traffic and network models we consider are very
large we have to make a trade-off between the level of detail
we model and the size of the model. Therefore we model
the railway traffic and network on a macroscopic level. The
stations and their interlocking areas are modeled as single
points in the network. We assume stations have sufficient
capacity to handle all trains that arrive at the station and

that rerouting through station areas is done locally and is
without deadlocks. Each track connecting stations and/or
junctions to each other is modeled as a single element. The
signaling system to ensure a safe distance between trains
is not modeled explicitly either. Instead a safe distance is
ensured by constraints on the arrival and departure times of
the trains. The simplification in the modeling of the station
areas and the tracks significantly reduces the size of the
model, but also decreases the accuracy of the model. The
model however is still sufficiently accurate for the purpose
of rescheduling of railway traffic. It has been shown in [7]
that a macroscopic model can be sufficient for the purpose
of rescheduling. In this paper the basics of the railway traffic
model we will use are described. For a complete description
of the model, the interested reader is referred to [12], [13],
[14].

The events are connected to each other through several
constraints. There are five types of constraints, where each
type models a different part of the railway system. The types
of constraints are:

• continuity constraints that connect the arrival and de-
parture events of a single train at a station,

• running time constraints that describe the train moving
from one station to another,

• headway and separation constraints that ensure a safe
distance between trains on the same track,

• connection constraints that ensure passengers can trans-
fer from one train to another,

• timetable constraints that ensure trains do not depart too
early.

The first four types of constraints have the same general
form:

xi ≥ xj + τij , (1)

where xi, xj ∈ R are the event times and τij ∈ R is the
minimum process time (dwell, running, headway, separation,
or connection time). The timetable constraints have the
following form:

xi ≥ ri, (2)

where ri ∈ R is the scheduled departure (or arrival) time.
The trains depart and arrive as soon as all constraints are
satisfied.

Since the headway constraints define a minimum time
difference between the events of two trains on the same
track, they also define the order in which the trains traverse
the tracks. A different order of trains requires a different
set of headway constraints. Changing the order of the trains
must therefore be done by activating and deactivating sets of
headway constraints, which can be done by adding control
variables to the headway constraints. Constraints with control
variables have one of the following two general forms:

xi ≥ xj + τij + uijβ (3)
xi ≥ xj + τij + (1− uij)β, (4)

where uij ∈ {0, 1} is the binary control variable and β ≪ 0
is a large negative value. If the binary variable is zero, the
first constraint coincides with (1), while the second constraint
does not influence the value of xi, since a large negative
value is added to the constraint, and as a result the second
constraint is always satisfied. If the binary variable is one, the
first constraint does not influence the value of xi, because
of the large negative value added to it, while the second
constraint coincides with (1). Control variables can also be
added to connection constraints allowing us to break or keep
connections.

The event time xi is then in general determined by an
equation of the form:

xi = max
(
ri, max

xj∈X1
i

(xj + τij) ,

max
xk∈X2

i

(xk + τik + uikβ) ,

max
xl∈X3

i

(xl + τil + (1− uil)β)
)

(5)

where X1
i is the set of events for which the constraints on

xi have the form of (1), X2
i is the set of events for which

the constraints on xi have the form of (3), and X3
i is the set

of events for which the constraints on xi have the form of
(4).

III. MODEL PREDICTIVE CONTROL

A model predictive controller determines the optimized
control inputs at discrete-time instants t(k) for k = 0, 1,
At each time instant t(k) the optimized control inputs,
computed at time instant t(k − 1), that are in [t(k), t(k +
1)), are implemented. Furthermore the controller receives
information about the current state of the system that is
to be controlled. Together with a model of the system this
information is used to calculate new optimized control inputs
based on the effects of the control inputs have on the
evolution of the state of the model. At t(k + 1) the whole
process is repeated. The model predictive controller therefore
only has the time between two time instants to determine the
optimized control inputs.

When we talk about the model predictive controller in the
rest of this paper we only consider determining the control
inputs for a single step, and we will not go into detail on
how the information from the system is gathered or how the
control inputs are updated when new information is obtained.
In [16] a tool is described that gathers the system information
and uses historical data to predict the future process times
and future conflicts between trains. In [17], [8] it is explained
how the control inputs are implemented and updated step
after step.

To determine the optimal dispatching actions a mixed
integer linear programming (MILP) problem is constructed
and solved. In [13], [15] it is explained how this MILP can be
determined. The MILP problem has the following structure:

min
z

c z

s.t. Az ≤ b

with

z =
[
x⊤ u⊤]⊤

c =
[
cx cu

]
A =

[
Ax Au

]
where x are the continuous variables (in our case the arrival
and departure times of the trains), u are the binary variables
(in our case the dispatching actions), cx and cu are the
weights for the continuous and binary variables respectively,
Ax is the part of matrix A that is multiplied by x, and Au is
the part of matrix A that is multiplied by u. The inequality
Az ≤ b contains the constraints from Section II. The weights
cx and cu are chosen such that the cost function is a measure
for the total delay in the network. In the case study we will
give the exact cost function.

For large railway networks finding the optimal solution
to the MILP problem may take a long time, since solving
MILP problems is considered NP-hard [18] and the worst
case time needed to solve it is generally assumed to increase
exponentially with the size of the problem. Because of that
it may take more time to solve the problem than there is
time available for determining the control inputs for the next
step. We have therefore developed two distributed model
predictive control methods.

IV. DISTRIBUTED MODEL PREDICTIVE CONTROL

In DMPC the system is divided into a number of sub-
systems and each subsystem is controlled by its own model
predictive controller. The controllers determine the optimal
control inputs for the subsystems while interacting with
the controllers of the other subproblems to ensure global
feasibility and good global performance.

The advantage of dividing the system into subsystems
is that finding the control inputs for the subsystems is in
general much easier than finding the control inputs using the
centralized MPC approach. The downside is that the control
inputs found may be suboptimal for the complete system.

In this section we propose two DMPC methods to find the
dispatching actions for the whole network.

Before the two DMPC methods are explained we will first
reorder the rows and columns of the constraint matrix A and
reorder the variables in vector z, such that the structure of A
gets as close as possible to a block diagonal structure with n
blocks, where n is the number of subsystems. The constraint
matrix has the following structure after reordering:

min
z

[
c̃1 c̃2 . . . c̃n

] [
z̃⊤1 z̃⊤2 . . . z̃⊤n

]⊤
(6)

s.t.

A1,1 A1,2 . . . A1,n

A2,1
. . . A2,n

...
. . .

...
An,1 An,2 . . . An,n

z̃1
z̃2
...
z̃n

 ≤

b̃1
b̃2
...
b̃n

 (7)

where c̃i, z̃i, b̃i for i ∈ {1, . . . , n} are vectors of appropriate
size, Ai,j for i ∈ {1, . . . , n}, j ∈ {1, . . . , n} are matrices of

appropriate size, and

z̃i =
[
x̃⊤
i ũ⊤

i

]⊤
Ai,i =

[
Ai,i,x Ai,i,u

]
Ai,j =

[
Ai,j,x 0

]
for i ∈ {1, . . . , n} and j ∈ {1, . . . , n}/{i}, and where x̃i

and ũi are vectors of appropriate size.
This reordering is based on the following goals:
• The constraints that have an element in Ai,j should only

depend on continuous variables.
• The number of elements in Ai,j should be minimized.
• The difference in the number of elements in the diagonal

matrices Ai,i, for i ∈ {1, . . . , n}, should be minimized.
• The difference in the number of binary and contin-

uous variables between the vectors z̃i and z̃j , for
i ∈ {1, . . . , n} and j ∈ {1, . . . , n}/{i} should be
minimized.

The first goal ensures the structure of the non-diagonal
matrices Ai,j . The second goal ensures that the interaction
between the continuous variables in two different vectors
z̃i and z̃j is minimized. The third and fourth goal ensures
that the difference in the number of constraints, binary, and
continuous variables for the subproblems resulting from this
reordering is minimized.

The first goal can be achieved by grouping the variables
of constraints of the form (3) and (4) in the same vector
z̃i. Since headway, separation, and breakable connection
constraints are of the form (3) or (4), the continuous and
binary variables of these constraints must be grouped in
the same z̃i. That only leaves running, dwell, and unbreak-
able connection constraints. Since the headway constraints
between the departures of two trains on the same track
and the arrivals of two trains depend on the same variable,
the continuous (and binary) variables of both the arrival
and departure headway constraints must be grouped in the
same z̃i. As a result the continuous variables of the running
time constraints are already in the same z̃i. That leaves
only the variables of continuity and unbreakable connection
constraints to be in different vectors z̃i and z̃j .

If we look at the railway model this means that the
continuous variables of the constraints describing the trains
traversing a track, the headway, and separation constraints
between the trains on that track should all be in the same
z̃i. The first step should thus be to group the variables and
constraints per track, resulting in T vectors of variables and
T diagonal matrices and T 2 − T non-diagonal matrices,
where T is the number of tracks in the model. If a breakable
connection constraint exists between the variables of two
vectors z̃i and z̃j , the two vectors should be combined into
z̃k, also resulting in a new matrix Ak,k:

z̃k =
[
z̃⊤i z̃⊤j

]⊤
Ak,k =

[
Ai,i Ai,j

Aj,i Aj,j

]
The other three goals are achieved simultaneous by further

reducing the number of vectors z̃i to n by combining them.

By combining the vectors the total number of elements in all
the non-diagonal matrices Ai,j is reduced, but the remaining
matrices will be larger. The vectors, for which the continuous
variables are connected to each other through the largest
number of constraints, are combined first, while ensuring that
none of the final n vectors and resulting diagonal matrices
is much smaller or larger than the others.

The grouping of the variables for the reordering can be
determined before hand since the general problem structure
does not change for different scenarios. As a result reorder-
ing the constraint matrix can be done very quickly while
rescheduling.

A. Distributed Method 1

Based on this reordered constraint matrix two methods
for solving the problem in a distributed manner are now
developed. For the first method each subproblem optimizes
the centralized cost function while considering all constraints
of the centralized problem, but for subproblem i all con-
tinuous variables, denoted by x, and the binary variables
in z̃i, denoted by ũi, can be used to optimize the cost
function. The other binary variables in z are determined by
the other subproblems and cannot be changed by subproblem
i. As a result the number of binary variables that can be
changed is greatly reduced. A direct consequence of this is
that the MILP problem will be much easier to solve. The
subproblems are then solved in sequence. A feasible initial
solution can always be found. Indeed, the simplest feasible
solution is the solution when the train orders do not change
and no connections are broken, then all binary variables will
be zero, and only the arrival and departure times are updated
in order to avoid conflicts and deadlocks on open tracks. The
method can be summarized as follows:

Each subproblem can be written as:

min
x,ũi

c z (8)

s.t. Az ≤ b (9)

where u/{ui} is determined by the other subproblems.
The steps to determine the solution are:
1) Define an initial estimate for z denoted by ẑ
2) Use ẑ as an initial solution for subproblem i in (8) and

(9), for i = 1, and solve it. Denote the solution as ẑi

3) Update the estimate: ẑ = ẑi

4) Repeat steps 2 and 3 for i = 2, . . . , n.
5) Repeat steps 2, 3, and 4 until ||ẑ − ẑi|| < ∆ for i =

1, . . . , n, where ∆ < 0.0001.
The initial solution can be determined by a heuristic method,
or can be the result found by setting all binary variables to
zero, which can be determined very fast.

Since a feasible initial solution can always be found, and
all subproblems consider the centralized problem, but can
only change a limited number of binary variables, a feasible
solution for the centralized problem will always be found in
step 2. Furthermore every feasible solution found is used
as a starting solution for the next subproblem. Therefore
every subproblem either improves the found solution or

cannot find a better solution than the current solution. If no
better solution than the current solution is found, the current
solution is used for the next subproblem. Once the stopping
criteria is reached, the algorithm stops.

B. Distributed Method 2

For the second DMPC method each subproblem only con-
siders a part of the MPC problem in (7). Subproblem i only
optimizes the binary and continuous variables in z̃i. It does
not consider or model the effects of its choices on the other
subproblems. The other binary and continuous variables are
determined by the other subproblems and cannot be changed
by subproblem i. Each subproblem can be written as:

min
z̃i

c̃i z̃i (10)

s.t. Ai,iz̃i ≤ bi −
∑

j∈{1,...,n}/{i}

Ai,j z̃j (11)

where z̃j , for j ∈ {1, . . . , n}/{i} are determined by the other
subproblems.

The steps to determine a near optimal feasible centralized
solution are:
1) Define an initial estimate for z denoted by ẑ
2) For subproblem i assume z̃j for j ∈ {1, . . . , n}/{i}

is known and equal to ˆ̃zj and solve subproblem i for
i = 1. Denote the solution as ˆ̃zii .

3) Update the estimate ˆ̃zi = ˆ̃zii .
4) Repeat steps 2 and 3 for i = 2, . . . , n.
5) Repeat steps 2, 3, and 4 until ||ˆ̃zi − ˆ̃zii || < ∆ for i =

1, . . . , n, where ∆ < 0.0001.
A feasible solution can always be found in step 2, since
setting all binary variables to zero will always result in a
feasible solution, the delays however may be much higher in
that case.

The advantage of this method is that the subproblems are
even smaller and easier to solve. However, since all subprob-
lems only consider a part of the network the subproblems
have no way of taking into account the effects of their control
actions on the other subproblems. It is therefore likely that
the solutions found will be less optimal than those found
with method 1. The case study of the next section will show
that the algorithm converges for all scenarios we have ran. In
our future work we will prove that, under certain conditions
method 2 always converges .

V. CASE STUDY

We have tested the two proposed DMPC methods for
a case study based on the Dutch railway network with
the timetable of 2011. The largest part of the network is
considered, the tracks from Leiden via Gouda to Woerden
(and back) has been left out, the tracks from Baarn to Den
Dolder (and back), as well as the tracks from Almelo to
Zwolle (and back), and the tracks that are not electrified.
But the trains on these parts of the network are mostly
unconnected to the rest of the network. All types of passenger
trains are included. The only dispatching action in this case
study is the reordering of trains.

The two DMPC methods are tested for 1000 scenarios,
where we randomly delayed 10% of the trains with random
delays based on a Weibull distribution with scale parameter
8 and shape parameter 0.8. During one scenario the MPC
controller has to determine the optimal dispatching actions
of one cycle of the model, which corresponds to one hour of
the timetable. The resulting MILP problem is split up into
four smaller subproblems, based on the method explained in
Section IV. The structure of the constraint matrix is shown in
Figure 1. The case study was run on an AMD quad core CPU
running at 4GHz with 16GB memory on Windows 7 running
Matlab® R2013b, and using Gurobi 5.6.0[19] to solve the
MILP problem.

500 1000 1500 2000 2500 3000 3500 4000 4500
2150021000205002000019500190001850018000175001700016500160001550015000145001400013500130001250012000115001100010500100009500900085008000750070006500600055005000450040003500300025002000150010005000

Fig. 1. Structure of the constraint matrix A. Matrix A has 21658 rows and
4602 columns. The dots correspond to non-zero elements in the matrix.

The cost function for all problems is the sum of delays:

c z = [11×nx 0.0001 · 11×nu]

[
x
u

]
, where 11×m is a 1 by m

vector containing only ones, nx is the number of continuous
variables, and nu is the number of binary variables. We
added a small weight to the dispatching actions to ensure
that if multiple solutions result in the same sum of delays
the solution with the least number of dispatching actions is
chosen.

The total number of constraints is 21658. Of these 21658
constraints only 48 connect the four subproblems. The num-
ber of constraints, binary, and continuous variables of the
centralized problem and the subproblems are given in Table
I for DMPC method 1 and in Table II for DMPC method 2.

TABLE I
SPECIFICATIONS OF THE MILP PROBLEMS FOR DMPC METHOD 1

Problem Number of Continuous Binary
constraints variables variables

Centralized 21658 1930 2672
1 21658 1930 683
2 21658 1930 673
3 21658 1930 711
4 21658 1930 605

We will compare the solution found using the DMPC
methods to the solution found with the centralized optimiza-
tion problem. The increase in delays compared to the optimal
solution is determined for all scenarios, as well as the time
needed to find the solution.

TABLE II
SPECIFICATIONS OF THE MILP PROBLEMS FOR DMPC METHOD 2

Problem Number of Continuous Binary
constraints variables variables

Centralized 21658 1930 2672
1 5724 512 683
2 5410 490 673
3 5704 504 711
4 4820 424 605

In Figures 2 are box plots1 that show the increase in
delays, in minutes (a) and in percentage (b), of the solution
found with the DMPC methods compared to the centralized
solution for the 1000 scenarios. In Figure 3 are box plots
illustrating the time needed to find the optimal solution for
the DMPC methods and the MPC method. In Table III the
results are shown numerically.

0

1

2

3

4

5

6

7

8

9

10

DMPC 2DMPC 1
In

cr
ea

se
 in

 d
el

ay
 (%

)

0

20

40

60

80

100

120

140

160

180

200

DMPC 2DMPC 1

In
cr

ea
se

 in
 d

el
ay

 (m
in

)

(a) (b)

Fig. 2. Box plots1 of the increase in delays (minutes in (a) and percentage
in (b)) as a result of using DMPC method 1 and method 2.

100

101

102

103

104

DMPC 2DMPC 1Centralized

tim
e

(s
)

Fig. 3. Box plots1 of the time needed to solve problem using the centralized
MPC, DMPC method 1, and DMPC method 2 on an AMD quad core CPU
running at 4GHz with 16GB memory.

The average computation time of DMPC method 1 is 11.56
times shorter than the computation time of the centralized
approach, the maximum computation time needed is 171

1Box plots divide the results into four equally sized parts: the 25% of the
results with the lowest values are indicated by the lower vertical dashed line
and bottom horizontal solid line. The 25% of the results with the highest
values are represented by the upper vertical dashed line and top horizontal
solid line. The other 50% is shown in the (blue) rectangle between the two
dashed vertical lines, where the median of the results is presented by the
(red) horizontal line splitting the box in two.

TABLE III
RESULTS FOR THE CENTRALIZED AND DISTRIBUTED METHODS

Average Maximum Average Maximum
increase increase computation computation

of the sum of the sum time time
of delays of delays (s) (s)

MPC N/A N/A 60.23 7121
DMPC 1 12.7 min 168 min 5.21 41.63

0.63% 7.64%
DMPC 2 25.1 min 207 min 1.54 12.44

1.27% 9.75%

times shorter. Of the 1000 scenarios the distributed method
found a solution, that was at most ∆ less optimal than the
optimal solution for the centralized problem in 535 cases,
where ∆ < 0.0001. On average the second DMPC method
is 39.11 times faster than the centralized approach and the
maximum time needed is 572 times shorter. Of the 1000
scenarios the distributed method found a solution, that was
at most ε less optimal than the optimal solution for the
centralized problem in 201 cases, where ε < 0.0001. The
downside of the second approach is that the solutions found
result in a bit more delay than the solutions found with the
first method. On average the increase in delays is doubled
and the maximum increase in delays is 1.28 times higher.
However, the second method is on average 3.40 times faster
than the first method and the maximum time needed to solve
the problem is 3.34 times lower.

Both proposed DMPC methods find very good solutions,
while the computation time is a lot lower than the computa-
tion time of the centralized approach.

VI. DISCUSSION

To be able to implement the system in reality we need to
be able to show that the controller will be able to find good
feasible solutions within a short time frame for any scenario.
With the two distributed methods introduced in this paper we
have shown that this is possible.

With method 1 each subproblem considers the global
problem but each subproblem can only modify a limited
number of binary variables. With method 2 each subproblem
only considers a part of the global problem and does not
consider the rest of the problem.

Whether method 1 or 2 should be used depends on the
requirements on the computation time and how far from the
global optimum the found solutions can be. Method 1 gives
better solutions than method 2, but method 2 is about 3.4
times faster. If global optimality is a hard requirement then
the centralized approach should be used.

The next step of our research will be to try and prove
that method 2 always converges and the stopping criteria is
reached for every possible scenario. So far we have shown
that for all of the 1000 scenarios that we ran it converged.
Based on this it seems likely that it indeed converges for
any scenario and it should therefore be possible to prove
convergence.

As we have mentioned the subproblems in method 2
do not consider the effects of their control actions on the
other subproblems. In our future work we will therefore

also develop methods to include a measure of the effects
of the control actions on the other subproblems in to the
subproblems of method 2, and by doing so improving the
solution that the method finds.

REFERENCES

[1] M. M. Dessouky, Q. Lu, J. Zhao, and R. C. Leachman, “An exact
solution procedure to determine the optimal dispatching times for
complex rail networks,” IIE Transactions, vol. 38, no. 2, pp. 141–152,
2006.

[2] F. Corman, A. D’Ariano, D. Pacciarelli, and M. Pranzo, “Centralized
versus distributed systems to reschedule trains in two dispatching
areas,” Public Transport, vol. 2, pp. 219–247, 2010.

[3] ——, “Dispatching and coordination in multi-area railway traffic
management,” Computers & Operations Research, vol. 44, no. 1, pp.
146 – 160, 2014.

[4] J. Törnquist Krasemann, “Design of an effective algorithm for fast
response to the re-scheduling of railway traffic during disturbances,”
Transportation Research Part C: Emerging Technologies, vol. 20,
no. 1, pp. 62–78, 2012.

[5] G. Caimi, M. Fuchsberger, M. Laumanns, and M. Lüthi, “A model
predictive control approach for discrete-time rescheduling in complex
central railway station areas,” Computers and Operations Research,
vol. 39, no. 11, pp. 2578–2593, 2012.

[6] L. Meng and X. Zhou, “Simultaneous train rerouting and rescheduling
on an n-track network: A model reformulation with network-based
cumulative flow variables,” Transportation Research Part B: Method-
ological, vol. 67, no. 0, pp. 208–234, 2014.

[7] P. Kecman, F. Corman, A. D’Ariano, and R. M. Goverde, “Reschedul-
ing models for railway traffic management in large-scale networks,”
Public Transport, vol. 5, no. 1-2, pp. 95–123, 2013.

[8] C. E. Garcı́, D. M. Prett, and M. Morari, “Model predictive control:
Theory and practice - a survey,” Automatica, vol. 25, no. 3, pp. 335–
348, 1989.

[9] T. J. J. van den Boom and B. De Schutter, “Modelling and control
of discrete event systems using switching max-plus-linear systems,”
Control Engineering Practice, vol. 14, no. 10, pp. 1199–1211, Oct.
2006.

[10] M. Farina and R. Scattolini, “Distributed predictive control: A non-
cooperative algorithm with neighbor-to-neighbor communication for
linear systems,” Automatica, vol. 48, no. 6, pp. 1088–1096, 2012.

[11] W. Dunbar, “Distributed receding horizon control of dynamically
coupled nonlinear systems,” IEEE Transactions on Automatic Control,
vol. 52, no. 7, pp. 1249–1263, July 2007.

[12] T. J. J. van den Boom, B. Kersbergen, and B. De Schutter, “Structured
modeling, analysis, and control of complex railway operations,” in
Proceedings of the 51st IEEE Conference on Decision and Control,
Maui, Hawaii, Dec. 2012, pp. 7366–7371.

[13] B. Kersbergen, T. J. J. van den Boom, and B. De Schutter, “On implicit
versus explicit max-plus modeling for the rescheduling of trains,” in
Proceedings of the 5th International Seminar on Railway Operations
Modelling and Analysis (RailCopenhagen), Copenhagen, Denmark,
May 2013, pp. 467–481.

[14] ——, “Reducing the time needed to solve the global reschedul-
ing problem for railway networks,” in Proceedings of the 16th In-
ternational IEEE Conference on Intelligent Transportation Systems
(ITSC2013), The Hague, The Netherlands, Oct. 2013, pp. 791–796.

[15] J. Rudan, B. Kersbergen, T. van den Boom, and K. Hangos, “Perfor-
mance analysis of milp based model predictive control algorithms for
dynamic railway scheduling,” in Proceedings of the European Control
Conference 2013 (ECC), July 2013, pp. 4562–4567.

[16] P. Kecman and R. Goverde, “Adaptive, data-driven, online prediction
of train event times,” in 16th International IEEE Conference on
Intelligent Transportation Systems (ITSC2013), Oct 2013, pp. 803–
808.

[17] B. De Schutter and T. van den Boom, “Model predictive control for
max-plus-linear discrete event systems,” Automatica, vol. 37, no. 7,
pp. 1049–1056, 2001.

[18] C. H. Papadimitriou and K. Steiglitz, Combinatorial Optimization:
Algorithms and Complexity. Upper Saddle River, NJ, USA: Prentice-
Hall, Inc., 1982.

[19] “Gurobi optimizer reference manual,” 2014. [Online]. Available:
http://www.gurobi.com

