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Co-design of traffic network topology and control measures

Zhe Conga,∗, Bart De Schuttera, Robert Babuškaa

aDelft Center for Systems and Control, Delft University of Technology, 2628 CD Delft, The Netherlands

Abstract

The two main directions to improve traffic flows in networks involve changing the network topol-

ogy and introducing new traffic control measures. In this paper, we consider a co-design approach

to apply these two methods jointly to improve the interaction between different methods and to

get a better overall performance. We aim at finding the optimal network topology and the op-

timal parameters of traffic control laws at the same time by solving a co-optimization problem.

However, such an optimization problem is usually highly non-linear and non-convex, and it pos-

sibly involves a mixed-integer form. Therefore, we discuss four different solution frameworks

that can be used for solving the co-optimization problem, according to different requirements

on the computational complexity and speed. A simulation-based study is implemented on the

Singapore freeway network to illustrate the co-design approach and to compare the four different

solution frameworks.

Keywords: Network topology design, Dynamic traffic control, Co-design

1. Introduction

In order to improve the performance of a traffic network, the traffic authorities and policy

makers usually pose this problem in one of the following two forms: changing the network

topology or introducing traffic control measures. Network topology design involves construction

work such as building new links or expanding existing links in the network. The advantage

of this approach is that it can directly and effectively solve the capacity limitation problem,

while the disadvantage is that the implementation may be very expensive and time-consuming,

and sometimes the required free space may be not available. On the other hand, traffic control

measures aim at a more efficient use of the existing infrastructure, without changing the network

topology. However, this approach may be not able to improve traffic flows in some cases, e.g.,

when the total demand exceeds the capacity of the network. Therefore, we introduce a co-design

method that applies the network topology design and the traffic control measures jointly in the

traffic network. Intuitively, a better performance of traffic networks is expected by doing co-

design of network topology and control measures compared to doing each of them separately.

In fact, we will show in this paper that the co-design approach can indeed yield better results in

terms of overall costs. Moreover, the co-design approach can be used to assist in the design of
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Preprint submitted to Elsevier



the network, as it allows to compare different network topologies including variations in types

and locations of traffic control measures.

In this paper, we focus on freeway networks, but the co-design approach can also be easily

adopted to urban traffic networks. In a freeway network, topology design refers to adding or

removing links, or changing the numbers of lanes of links. It seems counterintuitive to remove

links or lanes in order to improve the performance of the network, but the fact is that additional

road capacity can sometimes induce extra traffic demand, and if not accurately predicted and

planned, this extra traffic may lead to the road becoming congested sooner (a well-known ex-

ample is the Braess paradox (Braess et al., 2005)). Moreover, from an environmental point of

view, when freeway networks are built near or through existing communities, the quality of life

in the neighborhoods is decreasing due to noise and pollution. In this case, it could be consid-

ered beneficial for social reasons to remove or reduce links in the network. In summary, network

topology design is a multifaceted problem, where different questions such as environmental im-

pact, budgeting, safety, public inconvenience, etc., have to be considered together. Moreover,

some post-design issues such as network maintenance after construction should be also taken

into account.

Sometimes, it is not necessary to change the network topology in order to improve the perfor-

mance of the network, because it is possible that the available infrastructure in the network is not

effectively used. Traffic congestion can be caused by the fact that drivers choose routes selfishly

or drive in an inappropriate manner. In this case, traffic authorities can introduce traffic control

measures to influence driving behavior so that traffic congestion can be eliminated or at least

reduced. Papageorgiou et al. (1998) illustrate with a simple example that in a congested area,

the total time spent (TTS) in the controlled case is 14% less than in the uncontrolled case, if the

traffic outflow is improved by 5% thanks to appropriate traffic control measures. However, this

consequence also implies that any disturbance that reduces the traffic outflow with a few percents

may significantly increase the TTS, and hence decrease the performance of the network.

While the network topology is not changed once determined for the given design period, the

traffic control measures do need to be adapted to the time-varying traffic situations. Due to this

different time scale, one usually chooses a standard “optimal” setting of the control strategy,

which is static, for the topology design. However, this method is not accurate enough to capture

the dynamic nature of the traffic flows in the network. Therefore, we introduce a so-called pa-

rameterized traffic control approach (Zegeye et al., 2012), where the parameters of the control

laws are optimized according to a pre-defined objective function. The reason for using the pa-

rameterized control is that for some other control approaches such as optimal control or model

predictive control (see Section 2.2.2), the traffic control inputs usually consist of dynamic signals

that vary on a minute to minute basis according to the time-varying traffic situations; however, in

the parameterized control approach, the parameters of the control laws are considered fixed over

the design period, and the control laws generate dynamic traffic signals based on the state of the

traffic network. Moreover, we can even consider a more comprehensive quasi-dynamic setting

(see Section 4.2), where the design period is divided into different sub-periods, and where each

sub-period has a separate group of control law parameters. By using the predicted long-term

future evolution of traffic demand, both the topology and the control law parameters can be op-

timized jointly. It is however important to note that although we use the co-design approach to

determine the parameters of control laws for the traffic control measures, this does not mean that

these parameters should be fixed for the entire design period. Instead, we can still use online

control measures, and regularly retune or optimize the parameters of the control law based on

the real traffic situation, via e.g. standard traffic control strategies, optimal control, or model
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Figure 1: Representative scheme of the co-design problem

predictive control.

The main aim of solving the co-design problem is to find the optimal topology design deci-

sions and the optimal parameters of the control laws. In order to obtain those optimal solutions,

both topology design decisions and traffic control measures are applied to a traffic model, and a

cost is calculated based on the resulting traffic states (typically traffic density, flow, and speed),

and used to evaluate the performance of the traffic system under the impact of topology changes

and traffic control measures (see Figure 1). From the traffic management point of view, the ob-

jectives of the co-design problem can vary from avoiding traffic congestion to increasing network

safety and reliability, and to decreasing fuel consumption and pollution, etc. In this paper, we

consider a total monetary cost that includes the budget of construction and maintenance for the

network, and a valuation of travel time and travel distance. Note that the construction cost is

only spent once, but the maintenance cost is spent every year. Moreover, the price level of the

maintenance is not constant but rising every year because of inflation effects. The value of travel

time is often used for appraisal of road and public transport projects. It should be included in

the monetary cost because it is closely related to the economical factors, e.g., drivers’ wages,

and interest or depreciation of the freight, etc. A full discussion of value of travel time is out of

the scope of this paper, but we refer the interested reader to (DeSerpa, 1971; Wardman, 1998)

for more information on this topic. Moreover, travel distance is taken into account in this paper

as well because it is also related to the economic factors such as fuel consumption and wear of

vehicles.

The main contributions of this paper are:

1. We define a unified problem formulation for co-design of network topology and traffic

control measures. We formulate the co-design problem in a model-based optimization

framework, where the network topology design and traffic control measures are jointly

applied to a traffic model, and a monetary cost is used to evaluate the performance of the

traffic network;

2. We discuss four different solution frameworks for solving the proposed co-design problem,

namely separate optimization, iterative optimization, bi-level optimization, and joint op-

timization, according to different requirements regarding performance and computational

speed.

The rest of this paper is structured as follows. Section 2 briefly summarizes the state-of-

the-art on network topology design and traffic control measures. Section 3 presents the problem

statement. We formulate the co-design problem in a mathematical way in Section 4, and propose

four different solution frameworks in Section 5. A simulation-based case study of the Singapore
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freeway network is used to illustrate the proposed approach for solving the co-design problem in

Section 6. Finally, we conclude our work and propose some topics for future work in Section 7.

2. State-of-the-art on topology design and traffic control

2.1. Network topology design

According to different forms of design decision variables, the network topology design prob-

lem can be posed in a discrete form that deals with changing the number of links or lanes, or a

continuous form that deals changing the capacity of links in the network (Yang and Bell, 1998).

2.1.1. Discrete network topology design

The discrete network topology design problem concerns the modification of a traffic network

by changing the numbers of links or lanes, and the design decision variables usually have binary

or integer values. The objective of the discrete network topology design is to make an optimal in-

vestment decision in order to minimize both the total travel cost and total construction cost in the

network. Magnanti and Wong (1984) presented a unified view of modeling the discrete network

topology design problem, and proposed a unifying framework for describing a number of solu-

tion algorithms. Poorzahedy and Turnquist (1982) developed a bi-level programming method,

where the lower level aims at finding a user equilibrium flow pattern in the traffic network, and

the upper level then determines the design decision variables based on the equilibrium flow re-

sulting from the lower level. Chen and Alfa (1991) studied the lower-level problem by using a

logit-based stochastic incremental traffic assignment approach. Gao et al. (2005) proposed a new

solution algorithm for the bi-level problem by using the support function concept. One of the

challenges for the discrete network topology design problem is that one usually has to solve a

nonlinear bi-level mixed-integer optimization problem, which could be extremely computation-

ally complex.

2.1.2. Continuous network topology design

The continuous network topology design problem deals with improvement of the link capac-

ity, and the design decision variables have continuous values. From an implementation point

view, there is not much difference between the discrete network topology design and the contin-

uous network topology design. They have the same objective, and can be formulated in the same

solution framework, e.g., bi-level programming. However, because the design decision variables

are continuous in the continuous network topology design problem, the gradient of the objective

function can be obtained, and gradient-based methods can be used to solve the proposed prob-

lem (Chiou, 2005). Moreover, sensitivity analysis methods (Tobin and Friesz, 1988; Friesz et al.,

1990; Yang, 1997) for the equilibrium network flows can hence also be used.

2.2. Traffic control

Traffic control is a broad topic, so we do not intend to cover all the aspects in this paper. A

comprehensive review on this topic can be found in (Papageorgiou et al., 2003).
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2.2.1. Control measures

We give an overview of control measures that are most frequently used in traffic networks.

• Ramp metering determines the flow rate at which vehicles enter the freeway, and is im-

plemented via traffic signals placed on the on-ramp or off-ramp. The vehicles should stop

when the light turns red, and they can pass when the light turns green. The purpose of ramp

metering is to spread the vehicles that enter the network, and to influence the traffic den-

sities on the mainstream roads in order to prevent a traffic jam or breakdown. Fixed-time

ramp metering was adopted at first, but currently dynamic ramp metering is used more

often (Papageorgiou and Kotsialos, 2002). ALINEA (Papageorgiou et al., 1991) is one of

the best known examples of a dynamic ramp metering strategy.

• Variable speed limits can be used to restrict the traffic speed on the freeway. The im-

plementation involves speed limit signs placed over or besides the roads to display the

maximum allowed speed for the given stretches of roads. The main purpose is to increase

safety by lowering the speed limits upstream of congested areas (Smulders, 1990; Papa-

georgiou et al., 2008). However, it is also used to improve the traffic flows (Williams,

1996).

• Route guidance uses dynamic route information panels or on-board devices to assist

drivers in choosing their routes to the destinations. The original purpose is to inform

the drivers about the current state of the traffic, e.g. travel time or queue lengths on differ-

ent routes, to allow the drivers to take corresponding route choice decisions (Mahmassani

et al., 2003; Bogers et al., 2005). This method can be also used to persuade drivers to

change their route choice in order to obtain a traffic assignment that gives a more optimal

traffic performance from the system point of view (Hu and Mahmassani, 1997).

• Other measures include peak lanes that are only open during peak hours, bi-directional

lanes that change their direction based on the direction of the highest traffic demand, etc.

(Middelham, 2003).

2.2.2. Control frameworks

We compare three different traffic control frameworks.

• Optimal control aims at obtaining a sequence of optimal control signals based on the

system optimum conditions. For a given time horizon Nh, a sequence of control signals

u(0), u(1), . . . , u(Nh − 1) is determined through minimizing a control objective function

subject to constraints. Kotsialos et al. (2002b) used the nonlinear optimal control approach

to generate the splitting rates of traffic flows and the ramp metering rates in freeway traffic

network. Based on this method, Kotsialos and Papageorgiou (2004) developed a software

tool called Advanced Motorway Optimal Control to apply optimal control methods to the

traffic in arbitrary-topology freeway traffic networks.

• Model predictive control (MPC) can be considered to be optimal control applied in a

rolling horizon. The difference is that optimal control has an open-loop structure, while

MPC adopts a closed-loop control approach. More specifically, at each control step kc,

MPC determines a sequence of control signals u(kc|kc), u(kc+1|kc), . . . , u(kc+Np−1|kc) for

the prediction period [kcTc, (kc+Np)Tc], with u(·|kc) the control signal at the corresponding

control step based on the information of the control step kc, Tc the control time length, and

5



demand
Expected

Traffic network

Real traffic network

Disturbance

Control input

Cost

Traffic states

Traffic states

Constru
ction

& Parameters

Parameters

Topology design decisions

Controller

Model-based optimization

Optimization

Optimization layer

Simulation of

traffic system

Figure 2: The overall co-design scheme

Np the prediction horizon. However, only the first control signal u(kc|kc) is applied to

the system, and then the horizon is shifted to the next prediction period. MPC has been

successfully applied to on-line traffic control measures in freeway networks (see Hegyi

et al. (2005a); Bellemans et al. (2006)).

• Parameterized feedback control aims at finding the optimal parameters of the controller,

and the control signals are determined based on the current state of the system via a feed-

back control law at each control step. ALINEA (Papageorgiou et al., 1991) determines the

ramp metering rates via the feedback control law with fixed control parameters. Zegeye

et al. (2012) introduce a dynamic framework for parameterized feedback control, con-

taining two layers: the optimization layer and the control layer. At every control step,

the optimization layer optimizes and updates the parameters of the control laws, and the

control layer then determines the control signals via the control laws. ”

3. Problem statement

Figure 2 shows the overall scheme of the co-design approach for determining the optimal

network topology and the optimal traffic control strategies, involving two main parts — the real

traffic system and the optimization layer.

The real traffic system contains the traffic network and the low-level controllers, such as

traffic signals, ramp metering installations, variable speed limits, dynamic route information

panels, and so on. The control measures are governed by parameterized control laws. The

topology design decisions involve construction work in the network, e.g., building or removing
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lanes or links. Moreover, installing traffic controllers can also be considered as a topology design

issue, e.g., whether to install the controllers, which type of the controllers to choose, and where

to locate the controllers.

The optimization layer is used to determine the optimal network topology design decisions

and the optimal parameters of the control laws. To do so, the real traffic system is simulated by

traffic models in the optimization layer. The traffic simulation is based on:

• the expected daily demand patterns, as well as their long-term forecast,

• the planned topology design decisions and parameters of the control laws.

The performance is evaluated according to the simulated traffic states, and an optimization

method is used to determine the optimal solutions. Usually, a traffic network is designed to

be used for a long term. However, it will result in an extremely high computational burden to

run the traffic simulation and optimization over the entire design period. Therefore, we choose

a short range, e.g., one day or one month as a representative basic design period. The traffic

simulation and optimization only run in the basic design period, but the resulting solutions are

applied to the real traffic system for the entire design period, or for different time slots of the

entire design period in the quasi-dynamic parameterized control approach (see Section 4.2).

4. Mathematical formulation

4.1. Network topology design

A vector δ is defined as the construction decision variable. As mentioned in Section 2.1, the

network topology design has a discrete form and a continuous form. For instance, the vector δ

in the discrete form can be defined as a decision variable corresponding to adding or removing

links or lanes in the network. In this case, the mth element δm of δ corresponds to the number

of lanes that will be added to or subtracted from link1 m, where δm with a positive value means

addition of lanes, and δm with a negative value means removal of lanes. In this paper, we assume

that the construction decision variable δm may have a negative value, which means that links

or lanes can be blocked in order to improve the performance of the network2. Note that the

value of δm is constrained by the current number of lanes on link m and the available free space:

δ
min
m 6 δm 6 δ

max
m . More specifically, the lower bound value δmin

m should guarantee that the

total number of lanes on link m after construction is non-negative, and the upper bound value

δ
max
m should guarantee that the total number of lanes on link m after construction does not exceed

the physical limitations. Similarly, for the continuous form, the vector δ corresponds to e.g.

expansion or reduction of link capacity, and δm corresponds to the width of lanes that will be

added to or subtracted from link m.

Changing the network topology will definitely influence the traffic flow patterns, which

means that the traffic state x (usually traffic flow, density, and speed) depends on the construction

decision variable δ. Thus, traffic evolution can be described by a difference equation as follows:

x(k + 1) = f (x(k), u(k), d(k), δ) , (1)

1Link m can initially be a virtual link with 0 lanes. In that case, a new link m is considered to be built with δm lanes

(δm > 0).
2Braess et al. (2005) illustrate that adding new links may in some cases deteriorate the performance of the traffic

network.
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where f is the traffic update function, x(k) ∈ R
nx denotes the traffic state vector at simulation

step k, u(k) ∈ Rnu denotes the control inputs vector at simulation step k, and d(k) ∈ Rnd denotes

the disturbance (typically, the traffic demand) at simulation step k.

4.2. Parameterized traffic control

A parameterized traffic control law is generally formulated as:

uc(kc) = h(x(Mkc), d(Mkc), θ) , (2)

where h denotes the control law, uc(kc) ∈ Rnu denotes the control inputs vector at control step kc,

and θ ∈ Rnθ contains all the parameters of the traffic controllers. The integer M is calculated by

M = Tc/T , with Tc the control interval and T the simulation interval. For the sake of simplicity,

we assume that T is an integer divisor of Tc. We make an explicit difference between the control

interval Tc and the simulation interval T , because traffic evolution is a comparatively fast process,

while the control actions are not necessarily updated as fast as the traffic evolution. Therefore,

the relationship between the control inputs uc(kc) and u(k) is captured as u(k) = uc(⌊k/M⌋), where

the operator ⌊·⌋ denotes the largest integer less than or equal to the function argument.

Two examples of the parameterized traffic control measures for the discrete-time, macro-

scopic model are formulated in this section, and will be used for the case study in Section 6.

Note that one can design a parameterized control law for any traffic model, or for any type of

control measure, so the formulation of the control law does not necessarily have to follow the

structures to be presented here.

• A possible control law for ramp metering originates from ALINEA3 (Papageorgiou et al.,

1991):

ro(kc) = min
(

max
(

ro(kc − 1) + θr
o

ρcrit
m − ρm,1(Mkc)

ρcrit
m

, 0
)

, 1
)

, (3)

where ro(kc) denotes the ramp metering rate at the origin o connected to link m at control

step kc, ρm,1(Mkc) denotes the density of the first segment of link m at the simulation step

k = Mkc, ρcrit
m denotes the critical density on link m, and θr

o is the metering parameter to

be designed. A high value of θr
o means that the ramp metering rate is more sensitive to the

change in the traffic density. The functions max(·) and min(·) are used to bound the ramp

metering rate between 0 and 1.

• A possible control law for variable speed limits is formulated as follows (Zegeye et al.,

2012):

vlim
m,i (kc) =min

(

max
(

θ
v
m,0vlim

m,i (kc − 1) + θv
m,1

vm,i+1(Mkc) − vm,i(Mkc)

vm,i+1(Mkc) + κm,v

+ θ
v
m,2

ρm,i+1(Mkc) − ρm,i(Mkc)

ρm,i+1(Mkc) + κm,ρ
, vmin

m

)

, vfree
m

)

, (4)

3In ALINEA, the occupancy, which is defined as the fraction of time that vehicles are detected by the sensors, is used

to determine the ramp metering rate, while in our approach, the traffic density is used in the control law instead. The

reason is that the traffic density is usually used as a state variable in many macroscopic traffic models; however, it is not

easy to be directly measured by the sensors, so the occupancy is often used in practice. Note that there is an approximate

relationship between the traffic density and the occupancy (Athol, 1965): occupancy = density × average vehicle length.
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Figure 3: Sub-periods for quasi-dynamic parameterized traffic control

where vlim
m,i

(kc) denotes the maximum allowed speed of segment i on link m at control step

kc, and κm,v and κm,ρ are parameters preventing denominators from becoming zero. The

constants θv
m,0, θv

m,1, and θv
m,2 are the target parameters to be designed. The maximum

allowed variable speed vlim
m,i

(kc) is bounded by the free flow speed vfree
m and the minimum

speed vmin
m .

In principle, the parameter vector θ should be constant for a relatively long time, i.e., at the

same time scale as the topology design. However, simple static traffic control using the same

parameters over a long period may be inadequate for modern traffic systems. In order to improve

the performance of the traffic controllers, we consider a so-called quasi-dynamic parameterized

traffic control approach. As shown in Figure 3, the entire design period is divided into years, a

year can be divided into seasons, a season can be divided into days, and a day can be even further

divided into different time slots, e.g., morning rush hours, midday non-rush hours, afternoon rush

hours, and evening non-rush hours. We assume that driver behavior and traffic situations such

as weather condition change in different seasons, so a season is considered as the basic unit for

a set of parameters in the quasi-dynamic parameterized control. For one day, the parameters in

different time slots have different values, while for the same time slot, the parameters in different

days have the same value. In this way, we only need to optimize the parameters for one day, but

can apply them for a season. In such a way, for complicated traffic situations, the parameters can

be defined in a much more refined way than in the static traffic control.

4.3. Traffic models

The co-design problem uses a model-based optimization approach to determine the topology

design decisions and the parameters of the traffic control laws. The traffic model used in this

approach consists of two parts: a traffic flow model, and a route choice model. In this paper, as
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an example, we choose the METANET model (Messmer and Papageorgiou, 1990) as the traffic

flow model, the multinomial logit model (Sheffi, 1985) as the route choice model. However, it is

important to note that our approach is generic, so any other traffic flow model and route choice

model can replace the ones used here.

As we have a network with multiple destinations involving route choice, we select the des-

tination-dependent version of METANET model. The destination-dependent METANET model

has the following characteristics:

• The traffic network is divided into links corresponding to homogeneous freeway stretches,

and each link m is divided into Nm segments of equal length Lm (typically 500-1000 m);

• The traffic network has three different types of nodes, origin o ∈ O, destination d ∈ D, and

intermediate node n ∈ N, with O, D and N the set of origins, destinations and intermediate

nodes respectively;

• Each segment i of link m is characterized by density ρm,i,d(k) (veh/km/lane), mean speed

vm,i(k) (km/h), outflow qm,i(k) (veh/h) at simulation step k, and number of lanes λm;

• Each origin is described by a traffic waiting queue with length wo,d(k) (veh);

• At each segment, the composition rate γm,i,d(k) denotes the fraction of traffic flow to desti-

nation d on segment i of link m at simulation step k;

• At each intermediate node, the splitting rate βn,m,d(k) expresses the fraction of the total

flow with destination d leaving node n via outgoing link m at simulation step k.

The main equations of the METANET model can be found in the appendix.

The route choice behavior of drivers in the METANET model is described by the splitting

rate βn,m,d(k). In our case, the splitting rate βn,m,d(k) is determined by the travel time according to

the logit model:

βn,m,d(k) =
e−ξn,d tn,m,d(k)

∑

m′∈On

e−ξn,d tn,m′ ,d(k)
, (5)

where tn,m,d(k) denotes the predicted travel time at node n to destination d via link m at simulation

step k, and On denotes the set of outgoing links from node n. The predicted travel time tn,m,d(k)

can be communicated to the drivers via variable message signs, on-board devices, or on-line

traffic information (e.g., radio or other resources). The parameter ξn,d > 0 reflects how drivers

react on a travel time difference between different routes to destination d at node n. The higher

ξn,d, the less travel time difference is needed to convince drivers to choose the fastest route.

4.4. Performance criteria

The objective of the co-design problem is two-fold:

• To improve the traffic flows in the network;

• To reduce the construction and maintenance cost.
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4.4.1. Flow performance criteria

As an illustration, let us interpret improving the traffic flows as minimizing both the total time

spent (TTS) and total distance spent (TDS) by all the vehicles in the network. We define a day

as the representative basic design period. The TTS and the TDS for the given day is formulated

by a monetary valuation, and can be easily calculated for METANET as follows:

JTTS =

∑

k∈K

∑

d∈D

(
∑

m∈M

∑

i∈Im

αtρm,i,d(k)LmλmT +
∑

o∈O

αwwo,d(k)T
)

+ JTTS,endpoint , (6)

JTDS =

∑

k∈K

∑

m∈M

∑

i∈Im

αdqm,i(k)T Lm + JTDS,endpoint , (7)

with αt ($ /h) the monetary cost per unit travel time, αw ($ /h) the monetary cost per unit waiting

time, αd ($ /km) the monetary cost per unit distance, wo,d(k) the number of vehicles to destination

d waiting on origin o at simulation step k, M the set of links of the network, Im the set of segments

on link m, O the set of origins, K the set of simulation steps for the given day, and JTTS,endpoint

and JTDS,endpoint are end point penalties. The factor ρm,i,d(k)Lmλm in (6) indicates the number

of vehicles with destination d in segment i of link m, and hence multiplied by the time interval

T this gives the time spent by the vehicles in the corresponding segment. Similarly, the term

qm,i(k)T in (7) represents the number of vehicles leaving segment i of link m, and multiplied by

the length of segment Lm this gives the distance traveled by the vehicles. Note that because we

consider a representative day as the basic design period, it is possible that some vehicles may be

still traveling in the network, or even waiting at origins at the end of the day. These vehicles will

eventually reach their destination, and hence we should also take the travel time cost and travel

distance cost spent after the end of the representative day into account, and add them to JTTS and

JTDS respectively. This part of the cost is called an end point penalty (Maciejowski, 2002). The

end point penalties JTTS,endpoint and JTDS,endpoint can be computed in several ways, e.g.,

1. We estimate the TTS and the TDS spent by all the vehicles that are still in the network or

at the origins after the end of the representative day:

JTTS,endpoint = α
t
∑

d∈D

(
∑

m∈M

∑

i∈Im

ρm,i,d(kend)Lmλmτm,i,d +

∑

o∈O

wo,d(kend)τo,d

)

, (8)

JTDS,endpoint = α
d
∑

d∈D

(
∑

m∈M

∑

i∈Im

γm,i,d(kend)qm,i(kend)Tℓm,i,d +
∑

o∈O

wo,d(kend)ℓo,d
)

, (9)

with τm,i,d and τo,d the typical travel times that a vehicle in the segment i of link m and

at origin o needs to reach destination d, ℓm,i,d and ℓo,d the typical travel distances that a

vehicle in the segment i of link m and at origin o needs to reach destination d, and kend ∈ K

the last simulation step of K. The typical travel time and distance can be calculated based

on historical data.

2. We use the same expressions of (8) and (9) to calculate the end point penalties, but the

typical travel time τm,i,d(kend) and τo,d(kend) and the typical travel distance ℓm,i,d and ℓo,d are

determined according to the traffic state on the fastest or shortest route at simulation step
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kend:

τm,i,d(kend) =

Nm
∑

j=i+1

Lm

vm, j(kend)
+

∑

l∈rm,d

Nl
∑

j=1

Ll

vl, j(kend)
, (10)

τo,d(kend) =
∑

l∈ro,d

Nl
∑

j=1

Ll

vl, j(kend)
, (11)

ℓm,i,d =

Nm
∑

j=i+1

Lm +

∑

l∈rm,d

Nl
∑

j=1

Ll , (12)

ℓo,d =
∑

l∈ro,d

Nl
∑

j=1

Ll , (13)

where rm,d denotes the fastest or shortest route from the end of link m to destination d, and

ro,d denotes the fastest or shortest route from origin o to destination d.

3. We determine K shortest or fastest loop-less routes (Yen, 1971; Katoh et al., 1982; Hadji-

constantinou and Christofides, 1999) from any link end and any origin to any destination

— provided that some vehicles are still traveling between that link or origin and that des-

tination at the end of the representative day — and then those vehicles are distributed over

these K shortest routes. The end point penalties are then computed by summing the to-

tal travel time cost and the total travel distance cost for all the vehicles remaining in the

network at simulation step kend.

4. We keep simulating the traffic network until all the vehicles have left it, while setting the

demand to zero after the end of the representative day. The end point penalties are directly

yielded according to the simulation results.

One should choose one of these four approaches w.r.t finding a balanced trade-off between the

accuracy and the computation speed when computing the end point penalty.

For each sub-period (e.g., week, season, year) corresponding to the quasi-dynamic approach

of Section 4.2 and Figure 3, by computing the TTS and the TDS for those days using (6) and

(7), and next multiplying the result with the number of days that of the given sub-period, we can

compute yearly monetary TTS and TDS values JTTS,y and JTDS,y for each year y in the full period

under consideration.

4.4.2. Construction and maintenance performance criteria

Another objective is to reduce the construction and maintenance cost of the network. A linear

construction cost function can be adopted as:

JCC =

∑

m∈M
δm>0

αc
mNmLmδm −

∑

m∈M
δm<0

αr
mNmLmδm , (14)

where αc
m ($ /year) denotes the construction cost per lane per unit length, αr

m ($ /year) denotes

the removal cost per lane per unit length, and Nm denotes the number of segments on link m. The

maintenance cost depends on the number of lanes after construction, and the cost for the first
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year is formulated as:

JMC =

∑

m∈M

αm
m NmLm(λm + δm) , (15)

where αm
m ($ /year) denotes the maintenance cost per lane per unit length.

4.4.3. Overall performance criteria

The overall objective function can be obtained by summing up all the objective functions.

Note that the major difference between the construction cost and the other three costs is that the

construction cost is only spent in the first year, while the other three costs should be considered

every year, and will be increasing annually due to the inflation effect. We assume that the inflation

effect starts at the beginning of every year, so the overall objective function is formulated as:

J = JCC +

Ny
∑

y=1

(1 + r)y−1(JMC + JTTS,y + JTDS,y

)

, (16)

where r denotes the yearly inflation rate, and Ny denotes the number of years during the entire

design period.

4.5. Constraints

Recall that as introduced in Section 4.1 the value of the topology design decision variable δm

is constrained by the number of lanes on link m and the available free space: δmin
m 6 δm 6 δ

max
m .

Moreover, in order to avoid reducing the region of possible solutions, or causing an infeasible

problem, constraints on the parameters of control laws are not directly put on the parameters

themselves, but instead a minimum and a maximum value is added to each control signal as

shown in (3) and (4). For traffic states, all the equality constraints such as the conversation law

of traffic flows have been included in the traffic simulation model, and thus eliminated.

4.6. Overall optimization problem

So far we have introduced the objective functions and the constraints for optimization, to-

gether with the topology design methods, traffic control measures, and traffic models. The overall

optimization problem can be formulated as:

min
θ,δ

J(θ, δ)

subject to y(θ, δ) = 0

z(θ, δ) 6 0 (17)

where J(·) includes all the objective functions, y(·) = 0 includes all the equality constraints, and

z(·) 6 0 includes all the inequality constraints. For the sake of compactness in Section 5, the

constraints of (17) will be denoted via a constraint set C

C = {(θ, δ)|y(θ, δ) = 0 and z(θ, δ) 6 0} . (18)
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(d) Joint optimization

Figure 4: Schematic representation of four solution frameworks

In addition, we define Cθ(δ) and Cδ(θ) as the sets of feasible θ and δ for a given value of δ and θ

respectively, i.e.,

Cθ(δ) = {θ|(θ, δ) ∈ C} (19)

Cδ(θ) = {δ|(θ, δ) ∈ C} . (20)

5. Solution approaches

5.1. Solution frameworks

We have described an optimization formulation (17) in order to solve the co-design problem

of the network topology and traffic control measures. However, optimizing both θ and δ will

potentially result in a high computational burden. Therefore, the development of an efficient

solution approach is required to guarantee successful implementation of the co-design problem.

To solve (17), we discuss four solution frameworks, i.e., separate optimization, iterative opti-

mization, bi-level optimization, and joint optimization (see Figure 4). We introduce each frame-

work in more detail next.

5.1.1. Separate optimization

Separate optimization means that the optimization problem is decomposed into multiple sep-

arate subproblems. This framework has been applied to solve e.g. the machining optimization

problem (Shin and Joo, 1992), and the mesh optimization problem (Hoppe et al., 1993). In our

case, we first determine the optimal topology design decision variable δ by fixing the parameters

of the traffic control law to θfix:

δ
∗
= arg min

δ∈Cδ(θfix)
J(θfix, δ) . (21)

The value of θfix can be chosen according to the default settings of the control laws, or based on

knowledge from experts. After δ∗ is determined, we then only optimize the parameters θ of the
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control laws in the network with the fixed topology:

θ
∗
= arg min

θ∈Cθ(δ
∗)

J(θ, δ∗) (22)

This yields the pair (δ∗, θ∗) as the approximate solution of the optimization problem (17).

5.1.2. Alternating optimization

A more advanced approach compared to separate optimization is iterative optimization. In

iterative optimization, we also solve the optimization problems (21) and (22), but these two

problems are solved iteratively instead of only once. The solution θ∗ from (22) is fed back to

(21) by replacing θfix with θ∗, and in this way, a new solution of δ∗ can be obtained. Generally,

we repeat solving:

δ
∗i+1

= arg min
δ∈Cδ

(

θ
∗i
)

J
(

θ
∗i , δ

)

(23)

θ
∗i+1

= arg min
θ∈Cθ

(

δ
∗i+1

)

J
(

θ, δ∗
i+1

)

(24)

until one of the following stop criteria is satisfied:

1. The maximum number of iteration steps N is reached;

2. The difference of values of δ and θ between two consecutive iteration steps are both smaller

than some predefined threshold: ‖δ∗
i+1

− δ∗
i

‖ < nδ and ‖θ∗
i+1

− θ∗
i

‖ < nθ.

More information about the iterative optimization approach can be found in (Bezdek and Hath-

away, 2002; Boyd et al., 2011).

5.1.3. Bi-level optimization

Bi-level optimization (Candler and Townsley, 1982) divides the optimization problem (17)

into two levels (an inner one and an outer one), where one problem is embedded within another.

Generally, the outer optimization task is commonly referred to as the upper-level optimization

task, and the inner optimization task is commonly referred to as the lower-level optimization task.

These problems involve two kinds of variables, referred to as the upper-level variables and the

lower-level variables. In the given problem setting, it is assumed that for any network topology

(a given δ), there exists a corresponding optimal parameter θ∗(δ) of the control law. Therefore,

in the bi-level optimization, the lower level aims at finding a relationship between δ and θ, and

the upper level aims at determining the network topology.

The relationship between δ and θ can be expressed by a function θ∗(δ), which can be obtained

from the lower level optimization

θ
∗(δ) = arg min

θ∈Cθ(δ)
J(θ, δ) . (25)

In the upper level, the topology design decision is determined according to

δ
∗
= arg min

δ∈Cδ

J(θ∗(δ), δ) , (26)
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with Cδ = {δ|∃θ such that (θ, δ) ∈ C}. The optimal parameter is obtained by:

θ
∗
= θ

∗(δ∗) (27)

5.1.4. Joint optimization

The aforementioned three frameworks deal with the topology design and traffic control mea-

sures one after the other. Unlike them, joint optimization solves (17) by considering both δ and

θ at the same time, which can be obtained by:

(θ∗, δ∗) = arg min
(θ,δ)∈C

J(θ, δ) (28)

5.1.5. Discussion

One should consider the complexity of the co-design problem when choosing the solution

framework. The complexity of the problem changes when the design settings are different. For

instance, choosing a week as the basic design period, in which the expected traffic demand and

traffic situations can be distinguished between weekdays and weekends, can yield more refined

design results than choosing a day as the basic design period. However, the computational burden

of simulation will be also higher by using a longer basic design period. Among the aforemen-

tioned solution frameworks, the separate optimization approach is the easiest approach to imple-

ment. The iterative optimization approach will in general achieve a better performance than the

separate optimization approach, but the computation speed will become slower because of the

iterative procedure. Cantarella et al. (2006) present the iterative optimization approach to solve

a co-design problem with network topology and traffic signal setting. To the best knowledge of

the authors, the co-design problem by using the bi-level optimization approach or the joint opti-

mization approach has not yet been investigated in the literature . In these two approaches, the

topology design and the traffic control can interact with each other well, so the performance is

expected to be improved significantly. However, the computation time will also increase highly.

Therefore, an appropriate solution framework should be selected to provide a balance between

the performance and the computation speed according to the design requirements.

5.2. Optimization algorithms

In general, the co-design problem will result in a non-linear, non-convex optimization prob-

lem. To tackle such a problem, different optimization algorithms can be applied.

• For real-valued problems, i.e., when the topology design has a continuous form and the

parameters of the control law have continuous values, we can use multi-start sequential

quadratic programming (Boggs and Tolle, 1995), pattern search (Hooke and Jeeves, 1961),

simulated annealing (Kirkpatrick et al., 1983), genetic algorithms (Bäck, 1996), and so on;

• For mixed-integer problems, i.e., when the topology design has a discrete form or the pa-

rameters of the control law have discrete values, genetic algorithms and simulated anneal-

ing are also suitable. Moreover, other mixed-integer nonlinear programming approaches

(Belotti et al., 2013) such as branch-and-bound algorithms (Lawler and Wood, 1966),

branch-and-cut algorithms (Tawarmalani and Sahinidis, 2005), outer approximation method

(Duran and Grossmann, 1986), and Benders decomposition method (Geoffrion, 1972) can

be used as well.
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Figure 5: The central and eastern parts of the Singapore expressway network

6. Case study

6.1. Set-up

We illustrate the four proposed solution frameworks to the co-design problem introduced in

Section 5.1 in a simulation of the central and eastern parts of the Singapore expressway network

(Figure 5), which is one of the busiest areas in Singapore, including the central business district

and the international airport. This area contains 40 one-way highway links (with the parameters

of each link presented in Table 1), 8 origins (o1–o8), and 8 destinations (d1–d8).

The topology design decision is to determine whether new links should be constructed or

existing links should be removed, or whether the numbers of lanes on the existing links should

be changed. According to the simulation scenario (see Section 6.3), we assume that new links

41 and 42 can be built between nodes 12 and 13, and new links 43 and 44 can be built between

nodes 16 and 17, as shown by dash lines in Figure 5. The upper bound on the number of lanes

for each new link is set as 2. Moreover, we may change the numbers of lanes on links 9, 17, 23,

25, 32, and 33, which are main roads around the central business district. The upper bound of

the number of lanes for each existing link is set as 4. As traffic control measures, ramp metering

installations are put at origins o2, o4, o5, and o7, and variable speed limits are installed on link

32, as well as link 41 if it is built. Only the segments on the second half of link 32 and 41 are

controlled by the dynamic speed limits, which is similar to the settings considered by Hegyi et al.

(2005b). Eventually, we have a co-optimization problem with 10 integer optimization variables

and 10 continuous optimization variables.

6.2. Optimization and model parameters

The cost of construction of highway projects could be affected by several factors, such as

terrain type (mountainous or flat), material type (concrete or asphalt), development type (rural
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Table 1: Parameters of links in the Singapore expressway network

Link index Length (km) No. of lanes Nodes Capacity (veh/h)

1, 2 3.0 3 9, 10 6000

3, 4 3.5 4 10, 17 8000

5, 6 13.0 4 11, 4 8000

7, 8 2.0 4 3, 4 8000

9, 10 1.0 3 8, 11 6000

11, 12 2.0 3 6, 8 6000

13, 14 8.0 3 2, 6 6000

15, 16 6.5 3 2, 3 6000

17, 18 2.0 4 6, 5 8000

19, 20 7.0 3 1, 2 6000

21, 22 7.5 2 1, 5 4000

23, 24 3.5 2 5, 7 4000

25, 26 2.5 2 7, 16 4000

27, 28 11.0 4 6, 3 8000

29, 30 1.0 4 15, 4 8000

31, 32 3.0 3 12, 9 6000

33, 34 3.0 4 13, 5 8000

35, 36 3.0 3 14, 1 6000

37, 38 2.0 2 9, 16 4000

39, 40 1.0 4 11, 17 8000

or urban), and so on. According to a report by the U.S. General Accounting Office (2003), the

unit cost of building a stretch of highway ranged from about $2.5 million per km to $16 million

per km in 25 U.S. states in 2002. In this case study, we set the construction cost αc
m = $10

million per lane per km, and the removal cost αr
m = $5 million per lane per km. The maintenance

cost for the first year is αm
m = $1 million per lane per km, and it will increase every year at

the rate of r = 0.04. The total length of the entire design period is set as Ny = 20 years. For

other parameters, we assume that the travel time cost is equal to the waiting time cost, defined as

αt
= αw

= $10 per h per vehicle, and the travel distance cost is set as αd
= $1 per km per vehicle.

The destination-dependent METANET model (see Appendix) is used to simulate the traffic

flow evolution, and we use the traffic control laws (3) and (4) in this case study. The model

parameters are defined as follows (Hegyi et al., 2005a): simulation time step length T = 10 s,

free flow speed vfree
m = 120 km/h, lower bound of speed limit vmin

m = 50 km/h, critical density

ρcrit
m = 33.5 veh/km/lane, maximum density ρmax

m = 180 veh/km/lane, flow capacity qcap = 2000

veh/h/lane. Other parameters can be found in (Kotsialos et al., 2002a) or (Hegyi et al., 2005a).

6.3. Scenario

We consider four different traffic inflows in the network (see Figure 6(a)) from origins o2, o4,

o5, and o7, and all of them have the same destination d1.

• For traffic flows from o2 and o4, we define a high traffic demand profile: it starts with a

flow of 200 veh/h at 12.00 a.m., reaches the first peak of 4000 veh/h at 6.30 a.m., gradually
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Figure 6: Traffic scenario considered in the simulation experiment

decreases to 2000 veh/h at 10.00 a.m., reaches the second peak of 4000 veh/h at 5.30 p.m.,

decreases to 200 veh/h at 9.00 p.m., and maintains this level until midnight;

• For traffic flows from o5 and o7, we define a low traffic demand profile: it starts with a

flow of 0 veh/h at 12.00 a.m., reaches the first peak of 1000 veh/h at 6.30 a.m., decreases

to 100 veh/h at 10.00 a.m., reaches the second peak of 1000 veh/h at 5.30 p.m., decreases

to 0 veh/h at 9.00 p.m., and maintains this level until midnight.

In order to create traffic congestion at the peak hours, we add a large pulse with a maximum

value of 75 veh/km/lane to the downstream density of the network at each peak-hour period, as

shown in Figure 6(b). These pulses can generate a back-propagating wave and make the traffic

in the network more busy.

6.4. Simulation results

We use the four solution frameworks to solve the co-design problem for the Singapore ex-

pressway network, and compare the results. In order to prevent that the results from different

solution frameworks would be fully determined by the optimization algorithm, two optimiza-

tion algorithms are used to benchmark all the solution frameworks: one is a genetic algorithm

implemented in the ga function of the Matlab Global Optimization Toolbox, and the other is

an outer approximation branch-and-bound algorithm implemented in the minlp function of the

TOMLAB Mixed-Integer Nonlinear Programming toolbox for Matlab. The default parameters

settings of the ga function are used in this case study. More information about parameter tuning

of genetic algorithms can be found in Eiben et al. (1999); Lobo et al. (2007).

The results of the four solution frameworks by using ga and minlp are displayed in Tables

2 and 3, and for comparison, we plot the total cost of the four solution frameworks by using

the two optimization algorithms in Figure 6.4. In this figure, we can see that for each solution

framework the total cost is almost the same by using the ga and minlp functions, except that in

the separate optimization framework, the total cost by using the minlp function is a little higher

than the one by using the ga function. Therefore, we can conclude that the simulation results are

mainly determined by the solution framework, not by the optimization algorithms. Moreover,
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Table 2: Simulation results by using ga

Solution framework Total cost J ($) construction decision δ control parameters θ

Separate optimization 4.6431 · 1010

δ9 = −2 δ25 = −1 θ
r
2 = 0.61 θ

v
31,1 = 2.36

δ12 = −2 δ41 = 2 θ
r
4 = 0.73 θ

v
31,2 = 0.04

δ17 = −4 δ42 = 0 θ
r
5 = 0.10 θ

v
41,0 = 1.92

δ23 = −2 δ43 = 2 θ
r
7 = 1.65 θ

v
41,1 = 1.78

δ24 = −2 δ44 = 0 θ
v
32,0 = 1.37 θ

v
41,2 = 2.80

Alternating optimization 3.6430 · 1010

δ9 = −1 δ25 = −1 θ
r
2 = 13.72 θ

v
31,1 = 337.81

δ12 = −3 δ41 = 2 θ
r
4 = 12.75 θ

v
31,2 = 1127.17

δ17 = −3 δ42 = 0 θ
r
5 = 18.62 θ

v
41,0 = 1.62

δ23 = −2 δ43 = 2 θ
r
7 = 8.99 θ

v
41,1 = 104.37

δ24 = −2 δ44 = 0 θ
v
32,0 = 1.49 θ

v
41,2 = 2311.53

Bi-level optimization 3.6428 · 1010

δ9 = −1 δ25 = −1 θ
r
2 = 13.23 θ

v
31,1 = 917.19

δ12 = −3 δ41 = 2 θ
r
4 = 11.95 θ

v
31,2 = 760.89

δ17 = −3 δ42 = 0 θ
r
5 = 8.17 θ

v
41,0 = 1.76

δ23 = −2 δ43 = 2 θ
r
7 = 14.50 θ

v
41,1 = 226.12

δ24 = −2 δ44 = 0 θ
v
32,0 = 1.55 θ

v
41,2 = 2858.39

Joint optimization 3.6399 · 1010

δ9 = −3 δ25 = −1 θ
r
2 = 17.20 θ

v
32,1 = 315.06

δ12 = −2 δ41 = 0 θ
r
4 = 13.21 θ

v
32,2 = 264.98

δ17 = −4 δ42 = 0 θ
r
5 = 10.94 θ

v
41,0 = 0.73

δ23 = −2 δ43 = 0 θ
r
7 = 10.53 θ

v
41,1 = 375.66

δ24 = −2 δ44 = 1 θ
v
32,0 = 1.19 θ

v
41,2 = 2677.94

Solution framework

Separate optimization Iterative optimization Bi-level optimization Joint optimization

T
o

ta
l 
c
o

s
t 

J
 ($

)

×10 10

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

ga

minlp

Figure 7: Comparison of total cost of four solution frameworks by using the ga and minlp functions
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Table 3: Simulation results by using minlp

Solution framework Total cost J ($) construction decision δ control parameters θ

Separate optimization 4.739 · 1010

δ9 = −2 δ25 = −1 θ
r
2 = 1.97 θ

v
31,1 = 0.06

δ12 = −2 δ41 = 2 θ
r
4 = 0.73 θ

v
31,2 = 0.91

δ17 = −4 δ42 = 0 θ
r
5 = 0.01 θ

v
41,0 = 1.12

δ23 = −2 δ43 = 2 θ
r
7 = 0.35 θ

v
41,1 = 1.77

δ24 = −2 δ44 = 0 θ
v
32,0 = 1.47 θ

v
41,2 = 0.86

Alternating optimization 3.6435 · 1010

δ9 = −1 δ25 = −1 θ
r
2 = 12.09 θ

v
31,1 = 144.35

δ12 = −3 δ41 = 2 θ
r
4 = 13.95 θ

v
31,2 = 617.42

δ17 = −3 δ42 = 0 θ
r
5 = 10.62 θ

v
41,0 = 1.30

δ23 = −2 δ43 = 2 θ
r
7 = 14.03 θ

v
41,1 = 215.63

δ24 = −2 δ44 = 0 θ
v
32,0 = 1.71 θ

v
41,2 = 1848.33

Bi-level optimization 3.6435 · 1010

δ9 = −1 δ25 = −1 θ
r
2 = 13.08 θ

v
31,1 = 285.77

δ12 = −3 δ41 = 2 θ
r
4 = 8.86 θ

v
31,2 = 1230.33

δ17 = −3 δ42 = 0 θ
r
5 = 10.62 θ

v
41,0 = 1.49

δ23 = −2 δ43 = 2 θ
r
7 = 16.01 θ

v
41,1 = 293.56

δ24 = −2 δ44 = 0 θ
v
32,0 = 1.03 θ

v
41,2 = 1474.57

Joint optimization 3.6435 · 1010

δ9 = −1 δ25 = −1 θ
r
2 = 12.59 θ

v
31,1 = 197.78

δ12 = −3 δ41 = 2 θ
r
4 = 17.63 θ

v
31,2 = 761.87

δ17 = −3 δ42 = 0 θ
r
5 = 13.46 θ

v
41,0 = 1.34

δ23 = −2 δ43 = 2 θ
r
7 = 13.21 θ

v
41,1 = 323.92

δ24 = −2 δ44 = 0 θ
v
32,0 = 1.23 θ

v
41,2 = 1273.11
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it is clear to show that the separate optimization framework results in a much higher total cost

than the other three frameworks, which means that the separate optimization framework cannot

guarantee the optimal solution of the co-optimization problem. The other three frameworks

yield almost the same solution in this case study, especially for the total cost and for the topology

design decisions. In Tables 2 and 3, for the construction decision δ, the subscript of each variable

corresponds to the index of the link, and the value of each variable indicates the modification of

the numbers of lanes on the link, i.e., positive values mean adding lanes, negative values mean

removing lanes, and zero values mean no change. For the control parameter θ, the superscript ‘r’

means that the variable is a parameter for the on-ramp control law, and the superscript ‘v’ means

that the variable is a parameter for the variable speed limits control law. Since the variable speed

limits control law has three parameters, we use 0, 1, and 2 in the subscript to distinguish these

three parameters. In Table 2, the joint optimization yields different topology design decisions

than the iterative optimization and the bi-level optimization, and the total cost is also slightly

lower than the one obtained by the other two frameworks. In Table 3, the iterative optimization,

the bi-level optimization and the joint optimization yield the same topology design decisions,

but different control parameters. However, the values of the total costs of these three solution

frameworks are identical for the first five digits. Therefore, in this scenario, the topology design

has a more dominant impact on the performance of the traffic network than the traffic control.

7. Conclusions and Future Work

In this paper, we have introduced a co-design method that jointly optimizes the network topol-

ogy and traffic control parameters. We have proposed four different solution frameworks for such

a co-design problem, namely separate optimization, iterative optimization, bi-level optimization,

and joint optimization. One should choose the appropriate framework according to the compu-

tational complexity requirements. Generally, the separate optimization is the easiest and fastest

approach, but the optimal solution usually cannot be guaranteed. The iterative optimization and

the bi-level optimization can achieve a better performance than the separate optimization, but

their computation speed will decrease due to the increasing computation complexity. The joint

optimization has the highest computation complexity, because it usually needs to deal with a

nonlinear mixed-integer optimization problem. However, the performance can be expected to be

improved significantly. To sum up,the most appropriate solution framework should be selected

by aiming at a balance between the performance and computation speed based on the design

requirements. Moreover, we have tested these four solution frameworks in a simulation-based

case study — the Singapore expressway network — by using two different optimization algo-

rithms. The results show that the joint optimization, the bi-level optimization, and the iterative

optimization can result in a superior performance than the separate optimization.

There are several directions in which the current research work could be extended. First, in

this paper, we assume a typical daily traffic demand in the network, which, however, may differ

from the real traffic demand. Therefore, it would be interesting to do the sensitivity analysis of the

design solutions with respect to the uncertainty in the real traffic demand. Second, we are going

to perform an extensive assessment of the four solution frameworks for various network set-ups,

future demand scenarios and optimization algorithms. For future work, we will consider to use

multi-objective optimization methods instead of the aggregated objective functions. Third, some

other traffic models will be used for comparison, such as the cell transmission model (Daganzo,

1994), the Fastlane model (van Lint et al., 2008), the intelligent driver model (Treiber et al.,

2000), and so on .
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Appendix: METANET

In this appendix, the main equations of the destination-dependent METANET model (Mess-

mer and Papageorgiou, 1990; Kotsialos et al., 2002b,a) are provided. All symbols used below

are defined in Table 4. For the sake of compactness, their definitions will not be repeated in the

text.

The outflow of each segment is given by

qm,i(k) = ρm,i(k)vm,i(k)λm .

The partial traffic density in each segment for each destination is

ρm,i,d(k + 1) = ρm,i,d(k) +
T

Lmλm

(γm,i−1,d(k)qm,i−1(k) − γm,i,d(k)qm,i(k)) .

The total density in each segment is

ρm,i(k) = γm,i,d(k)ρm,i,d(k) .

The speed on each segment is

vm,i(k + 1) = vm,i(k) +
T

τ

(

V(ρm,i(k)) − vm,i(k)
)

+

T

Lm

vm,i(k)
(

vm,i−1(k) − vm,i(k)
)

−
ηT

τLm

ρm,i+1(k) − ρm,i(k)

ρm,i(k) + κ
.

The speed-density relationship in case of variable speed limits is

V(ρm,i(k)) = min

(

vfree
m exp

[

−
1

am

(ρm,i(k)

ρcrit
m

)am
]

, (1 + αm)vlim
m,i

(⌊

k

M

⌋))

.

The partial queue length at each origin for each destination is

wo,d(k + 1) = wo,d(k) + T (γo,d(k)do(k) − γo,d(k)qo(k)) .

The total queue length at each origin is

wo(k) =
∑

d∈D

wo,d(k) .

The outflow of each origin is

qo(k) = min

[

do(k) +
wo(k)

T
,Coro

(⌊

k

M

⌋)

,Co

(

ρmax
m − ρm,1(k)

ρmax
m − ρcrit

m

)]

.
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symbol unit meaning

qm,i(k) [veh/h] traffic outflow of segment i of link m at simulation step k

ρm,i(k) [veh/km/lane] traffic density in segment i of link m at simulation step k

ρm,i,d(k) [veh/km/lane] partial traffic density for destination d

vm,i(k) [km/h] traffic mean speed for segment i of link m at simulation step k

wo,d(k) [veh] partial queue length at origin o to destination d at simulation step

k

wo(k) [veh] queue length at origin o at simulation step k

qo(k) [veh/h] outflow of origin o at simulation step k

βn,m,d(k) [-] splitting rate of traffic flow with destination d from node n to

outgoing link m at simulation step k

γm,i,d(k) [-] fraction of traffic flow to destination d on segment i of link m at

simulation step k

Qn,d(k) [veh/h] total flow to destination d that enters the node n at simulation step

k

γo,d(k) [-] fraction of demand from origin o to destination d at simulation

step k

ro(kc) [-] ramp metering rate at the origin o at control step kc

vlim
m,i

(kc) [km/h] maximum allowed speed of segment i on link m at control step kc

λm [-] number of lanes of link m

Nm [-] number of segments on link m

Lm [km] length of segments of link m

ρmax
m [veh/km/lane] maximum density of link m

am [-] model parameter for link m

αm [-] non-compliance factor of drivers for speed limits on link m

T [s] simulation time interval

τ [s] model parameter

η [km2/h] model parameter

κ [veh/km/lane] model parameter

D [-] set of destinations in the traffic network

Co [veh/h] on-ramp capacity under free-flow conditions

In [-] set of incoming links of node n

Table 4: Symbols used for METANET
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The node equations are

Qn,d(k) =
∑

m′∈In

qm′,Nm′
(k)γm′,Nm′ ,d(k)

qm,0(k) =
∑

d∈D

βn,m,d(k)Qn,d(k)

γm,0,d(k) =
βn,m,d(k)Qn,d(k)

qm,0(k)
.

Additional details and extensions can be found in (Messmer and Papageorgiou, 1990; Hegyi

et al., 2005a).

Appendix: Genetic algorithms

In a genetic algorithm, a population of candidate solutions to an optimization problem is

evolved toward optimal solutions. Each candidate solution has a set of properties that can be

combined and mutated. The evolution usually starts from a population of randomly generated

individuals, and it is an iterative process. In each generation, the fitness of every individual in the

population is evaluated, usually based on the value of the objective function in the optimization

problem being solved. The best individuals are selected from the current population, and then

recombined and randomly mutated to form a new generation. The new generation of candidate

solutions is used in the next iteration of the algorithm. Commonly, the algorithm terminates

when either a maximum number of generations has been attained, or a satisfactory fitness level

has been reached for the population.

A typical genetic algorithm is shown in Algorithm 1:

Algorithm 1 Basic structure of the genetic algorithms

Input: size of total population λ, size of parent population µ, mutation probability p, maximum

number of generations G

1: Initialization: Randomly generate a population of λ individuals at generation 0, denoted as

x
(0)
λ

2: for g = 0, 1, . . . ,G − 1 do

3: Compute fitness f (x) for each x ∈ x
(g)
λ

4: Select µ best individuals from x
(g)
λ

based on fitness, denoted as x
(g+1)
µ

5: repeat

6: Select two individuals from x
(g+1)
µ as parents according to their fitness (the better fitness,

the bigger chance to be selected)

7: Cross over the parents to form new offsprings

8: Mutate the new offsprings with a probability p

9: until (λ − µ) new offsprings are generated

10: Place the µ parents and the (λ − µ) offsprings in the next generation x
(g+1)
λ

11: end for

Output: The best offspring solution at generation G: x
(G)
λ,best
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