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Human-in-the-loop control of an irrigation canal using time instant

optimization model predictive control

A. Sadowska, P.-J. van Overloop, J.M. Maestre, and B. De Schutter

Abstract— In the paper we discuss the recently introduced
Mobile Model Predictive Control (Mobile MPC) approach for
an irrigation canal. Mobile MPC is a configuration of MPC
that explicitly incorporates the role of the human operator
traveling between the gates as ordered by a remote centralized
controller. The operator provides the controller with up-to-
date measurements from the locations visited and acts as
the actuator as required by the remote controller. Mobile
MPC provides a solution in between fully manual and fully
automatic canal operation, as the first one may give poor
performance and the second one might be impracticable
in some situations, where it is not possible to rely on
the equipment installed in the field. In the current paper
we improve the performance of the original Mobile MPC
approach by allowing the controller to decide the exact time
instants when the operator should arrive at a specific gate
and change the gate’s settings as well as we include a penalty
in the objective function for the controller to minimize the
workload of the human operator. We show that the new
approach yields enhanced performance in comparison to the
previous method, and we demonstrate the benefits of the new
method as opposed to the previous one in a case study.

I. INTRODUCTION

Irrigation canals are cascade-connected networks con-
sisting of a number of pools with movable gates in between
the pools to transport water downstream from a source to
farmers. Various automatic control methods for irrigation
canals are discussed in [5], [11], [12], [17], [18], [22],
[23]. These control methods may rely on simple solutions
such as PI controllers but may also resort to an application
of more sophisticated control approaches such as model
predictive control (MPC) [4], [14]. MPC is a powerful con-
trol method that has been adapted to a broad spectrum of
applications, including process control, power systems, and
water resources management. However, MPC, similarly to
other automatic control methods, relies on regularly obtain-
ing measurements from the local sites as well as actuators
installed at every gate to apply the required control actions
in every control step. Such a configuration poses a serious
problem if one cannot depend on the equipment left in the
field or if there is simply no equipment in the first place.
Therefore, despite the advances in the field of controlling
an irrigation canal in theory, in practice the functioning
of the canal commonly relies on manual operation by
human operators traveling between the gates and raising
or lowering the gates depending on whether more or less
flow is needed. Such an approach, while very popular for
practical reasons, may result in a rather poor performance
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as the operators can only use local information available to
them in their subjective judgment how the gates’ settings
should change. Consequently, a bridge is needed between
the automatic control methods and the manual human-
operator-based methods in order to provide a practicable
solution yielding an adequate performance.

In fact, control methods where a human factor is incor-
porated in the control system design are quite scarce and
many aspects still have not been studied. However, it has
been argued that introducing human-in-the-loop control
brings a number of benefits to the control design [2]
and is a logical progression of how control systems are
designed [1]. Whereas some work on human interactions
with a control system has been done for certain settings
[3], [9], [10], [13], it remains still an open question how to
integrate in the control problem formulation the important
role played by human operators.

To deal with such a challenging control problem, a
new configuration referred to as Mobile MPC has been
recently proposed [15]. It relies on the explicit considera-
tion of a human operator and is motivated by a practical
observation associated to (not exclusively) the field of
irrigation. Namely, sensors, actuators, or communication
links placed outdoor may be prone to excessive wear
and tear and thus to malfunctioning due to such a harsh
operating environment and little resources for maintenance,
and to a theft or a damage by passers-by. Therefore,
automatic operation of the gates is not always possible
despite the fact that it can bring superior performance
over subjective rule-based control of a human operator.
In Mobile MPC an operator travels between the gates to
serve as both the measuring and the actuating medium, and
communicates with a remotely located controller using a
mobile communication device to send the measurements
and to receive the control actions to be applied and the
next location to go to. In this way, no equipment needs
to be installed at the local sites and instead the operator
carries a simple portable device; moreover, communication
links do not need to be placed either. The central controller
is designed using the principles of the MPC taking into
account the time that is needed to travel from every one
location to another, and the time needed at a site to perform
the job. This controller works in an event-driven manner,
with events associated with the operator arriving at a new
location.

Mobile MPC as introduced in [15] is suitable for the
aforementioned settings with human operators taking an
active part in the control process; however its performance
could be improved. The improvement that we propose is
to add another degree of freedom to the controller. More
specifically, we allow the controller to also decide on the
exact time instant at which the operator should perform



CONTROL CENTER

Head Gate
(source)

Pool 1

Gate 1

Pool 2

Gate 2 Outflow

Pool N

Gate N

operator travels between the gates

Fig. 1. Mobile MPC configuration for an irrigation canal.

its job at a specific location as opposed to deriving the
times directly from the information about the traveling
times between the gates and the amount of time needed
at each gate to perform the required activities. By letting
the operator wait sometimes before proceeding to a next
location, the performance can be enhanced as the time
instants at which changes at local sites take place can
be better synchronized with the dynamics of the canal.
Indeed, good performance in terms of maintaining water
levels close to setpoints is important in the considered
application to enable efficient discharge flows to the water
users (offtakes).

We employ here a linear model of a canal [17], [19]
describing the relation between water levels in pools and
flows between the pools so that the flows serve as control
inputs in the model. Using time instant optimization MPC
(TIO-MPC) [6], [21], we parameterize the flows through
the gates in terms of the specific required time instants and
flow changes assigned by the controller. To use continuous
time instants, we use sampled data MPC, as opposed to
[15], where discrete-time MPC was considered. We also
regard more human-related aspects in the control design.
In particular, we add a penalty on a number of location
changes in the path that the operator needs to take, with the
aim to ease the workload of the operator, and we consider a
delay between when a measurement is taken and a control
action is applied as would occur in reality.

In Section II we describe the original Mobile MPC
approach. In Section III we point out some weaknesses
of the original Mobile MPC approach and in response
we introduce the new and improved method for human-
in-the-loop TIO-MPC of an irrigation canal. Section IV
demonstrates the performance of our method and compares
it with the existing solution in a simulation-based case
study. Our concluding remarks are given in Section V.

II. MOBILE MPC

Mobile MPC [15], see Fig. 1, employs a human operator,
who travels along the canal from one gate to another
according to a sequence of gates ordered by the control
center. At each location, the operator takes the measure-
ments, communicates them to the control center using a
mobile device and in return receives new control actions
that should be applied and an instruction where to go next.

The canal is assumed to consist of N pools with indices
from the set I = {1, . . . , N}, and can be described with

a linear discrete-time model

x(k + 1) = Ax(k) +Buu(k) +Bdd(k), (1)

where x(k) ∈ R
n denotes the state, u(k) ∈ R

m the control
input, d(k) ∈ R

p the external input acting on the canal
(e.g. a rainfall), and A, Bu and Bd are matrices of ap-
propriate dimensions (see e.g. [12], [17] for more details).
In particular, the state vector x(k) contains information
about the deviation of the current water level in each
pool with respect to the setpoints and the control input
u(k) = (u1(k), . . . , uN (k))T denotes the flow changes in
each pool at step k. Note that the flows through the gates
relate nonlinearly to specific gate settings. Yet, following
the standard convention, it is assumed throughout this
paper that flows can be directly set up and fixed by the
operator.

Let Np and Nc denote the length of the prediction
and control horizons, respectively, with Nc ≤ Np, and
let Ns be the number of gates to be scheduled for the
operator at the current step k starting at the current location
icurrent(k) ∈ I. Moreover, let M ∈ N

N×N be the matrix
with traveling times between the gates in sample steps,
such that Mi,i = 0 and Mi,j denotes the traveling time
between gate i and j. Denote further the time that is needed
at each gate to perform all required activities (identical for
all gates) by To.

The optimal control problem in Mobile MPC relies on
solving at each control step the following mixed-integer
programming problem

min
Ũ(k),p(k)

Np−1∑

j=0

(
xT(k + j + 1|k)Qx(k + j + 1|k) (2)

+ uT(k + j|k)Ru(k + j|k)
)
,

s.t. x(k + j + 1|k) ∈ X , for j = 0, . . . , Np − 1, (3)

u(k + j|k) ∈ U , for j = 0, . . . , Np − 1, (4)

p(k) ∈ Picurrent(k),Ns,To,M (k), (5)

a(p(k), k + j|k) 6= i =⇒ ui(k + j|k) = 0, (6)

x(k + j + 1|k) = Ax(k + j|k) +Buu(k + j|k)

+Bdd(k + j|k). (7)

Here, Ũ(k) = (uT(k|k), . . . , uT(k + Np − 1|k))T, with
u(k+j|k) = (u1(k+j|k), . . . , uN (k+j|k))T. The notation
(k1|k2) is used to denote predictions for step k1 made
at step k2 ≤ k1. Constraints (3) and (4) represent the
operational constraints on state and input, respectively.
Moreover, p(k) ∈ N

Ns denotes the desired path as found
at step k, which must be a subset of all paths of length Ns

starting from the current location, icurrent(k), which is the
first element of p(k). In addition, Picurrent(k),Ns,To,M (k)
denotes a set of all admissible paths of length Ns that
are accessible from the current place icurrent(k) which is
indeed the first element of all admissible paths, given the
duration To and the traveling times M with repetitions
permitted. Importantly, the path variable is defined so that
whenever the operator finishes working at one location,
he/she is immediately sent to the next one with no waiting
in between. Further, a(p(k), k + j|k), j = 0, . . . , Np − 1,
denotes the availability of the operator at step k+ j given
a selected path p(k). It returns 0 if the operator is free
at prediction step k + j. If the operator is working at
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Fig. 2. (a) Problems that may appear in the standard approach to Mobile
MPC: because t1 6= t2, the water level deviates temporarily from the
setpoint. (b) Adequate performance when the new approach to Mobile
TIO-MPC proposed in the paper is applied: since t1 = t2, no deviation
in the water level with respect to the setpoint is observed.

prediction step k + j, the availability function returns
the index of the gate where the operator is. Using the
availability function a(·, ·|k) in (6), the input sequence
Ũ(k) is determined in that if the operator is not at gate
i at step k + j, the value of ui(k + j|k) needs to be 0.
Otherwise, if the operator is at a given gate, the specific
input ui(k+j|k) needs only to satisfy (4). The sets X and
U in (3) and (4), respectively, are convex sets determined
by physical and operational limitations of the system,
such as maximal and minimal permissible water levels.
In addition to Mobile MPC, the head gate is controlled
using standard MPC with a control step Tc. Standard MPC
for the head gate and Mobile MPC for the pools are
coordinated and solved together when an operator appears
at a local site at an integer multiple of the control step Tc,
i.e. when the MPC problem for the head gate is solved.

III. MOBILE TIO-MPC FOR IRRIGATION CANALS WITH

HUMANS IN THE LOOP

We now examine some weaknesses of the Mobile MPC
method introduced in Section II and consequently we
introduce a new method - Mobile TIO-MPC - that offers a
performance improvement upon the original Mobile MPC.

A. Problem with Mobile MPC

To ensure effective water offtake flows to the users in
the canal pools, water levels need to be maintained around
the setpoints. We discuss now the situation depicted in
Fig. 2(a). In the picture, the water level at the downstream
end of a pool is shown as a function of time. Assume
that at time t1 the operator modifies the flow through the
gate in a pool thus increasing the outflow from the pool.
However, the flow change should ideally happen at time
t2 > t1 because e.g. this is the time instant when an extra
inflow due to an earlier flow change at the upstream gate
arrives at the location. This causes the water level to drop
temporarily starting from time t1 because an increased
outflow from a pool occurs before an increased inflow

to that pool arrives to the downstream end of a pool to
compensate it. The situation starts to improve at time
t2 when the extra inflow presents itself at the location.
Understandably, if the gate change could occur exactly
when the extra inflow from the upstream gate appears,
i.e. t1 = t2, the water level would not drop, as shown
in Fig. 2(b). However, the solution presented in Section II
only allows for this if the corresponding travel times be-
tween the gates are exactly matching, with no possibility to
let the operator wait for a while in between two locations to
obtain the aforementioned synchronization and to enjoy its
benefits. This observation has motivated our development
of the new, improved algorithm i.e. Mobile TIO-MPC
for an irrigation canal, where the precise time instants
of the human operator’s actions are determined by the
controller and synchronized with the system’s dynamics,
thus improving the achievable performance.

B. New control approach description

Given the importance of maintaining water levels in an
irrigation canal close to their setpoints to enable adequate
offtake performance, we propose to enlarge the solution
space in the Mobile MPC problem (2)-(7). Hence, we
explicitly consider as a control input to be found by the
predictive controller the time variable that specifies the
time instant when the operator should arrive at a given
gate and communicate the measurements to the control
center. Therefore, that time variable does no longer have
to necessarily follow directly from the traveling times
between any two locations as in the solution presented in
Section II, but extra gaps are also permitted to improve the
performance.

Because of the human operator’s presence in the system,
we also consider an additional penalty on the number of
location changes on the specific path that the operator
needs to take. The idea behind this is to relax the working
conditions of the operator, since it is the operator who
has to travel to all locations to take measurements and
to change the gates’ settings. Furthermore, driven by
reality, the control algorithm introduced here takes into
consideration the fact that there is a delay between the
moment that the measurements are taken and the moment
when a control action is applied.

We use continuous sampled-data MPC [8], [16], [20],
which naturally complements the use of real variables as
time instants (see [7] for an alternative approach). To that
end, instead of using a discrete-time model of a canal (1),
we use an equivalent continuous time model

ẋc(t) = Acxc(t) +Bc,uuc(t) +Bc,ddc(t), (8)

where the tag ’c’ is added to distinguish the variables of
the continuous-time model (8) from those of the discrete-
time model (1). Similarly to the discrete-time model, the
control input in (8) can be written as a collection of N

elements uc(t) = (uc,1(t), . . . , uc,N (t))
T for N gates in

the canal.
To introduce the time instants as control inputs, we use

the concept of TIO-MPC [6], [21], which is an approach
that was first introduced for traffic control, and was later
applied in water management to control discontinuous
control structures (e.g. pumps that can only be either on
or off). Such control structures would normally dictate



posing the MPC problem as a mixed-integer programming
problem with 0-1 states to be determined for the whole
prediction horizon. In contrast, when using TIO-MPC for a
discontinuous control structure, the time instants when the
changes to the structure’s state should occur are optimized
for a selected number of changes, resulting in a real-valued
programming problem.

Recall that the path variable defined in (5) contains Ns

elements of Ī = I \ {1} (excluding the first gate i.e. the
head gate) as follows:

p(t) = (p1(t), . . . , pNs
(t))T, pℓ(t) ∈ Ī,

and specifies the sequence of indices of the gates that the
operator should go to from the current location p1(t) =
icurrent(t). We note that the indices in the path variable p(t)
may be repeated, as indeed it may be worthwhile to visit
a subset of possible locations a few times. For tractability
reasons and in particular to reduce the search space, we
limit the set of locations that could be visited with the help
of introducing an integer parameter Nlimit. Any following
location scheduled for the operator pℓ+1(t) can be at most
Nlimit locations away from the preceding location pℓ(t),
i.e.

|pℓ+1(t)− pℓ(t)| ≤ Nlimit, ℓ = 1, . . . , Ns − 1. (9)

Denote by

T (t) = (T1(t), . . . , TNs
(t))T, Tℓ(t) ∈ R,

the time instants when the operator should arrive at the
Ns gates to apply the necessary changes. Since the first
element of the sequence p(t) is fixed to p1(t) = icurrent(t),
the first element of the sequence T (t) is accordingly fixed:
T1(t) = t. Denote further the Ns control actions to be
executed by the human operator by

uhuman(t) = (uhuman
1 (t), . . . , uhuman

Ns
(t))T, uhuman

ℓ (t) ∈ R,

where, following the introduced convention, uhuman
1 (t) de-

notes the action to be applied at the present gate icurrent(t),
which, contrary to p1(t) and T1(t), is not fixed but is
to be found by the controller at time t. We use p(t),
T (t), and uhuman(t) to parameterize the control input
Ũc(t), which, similarly to the profile Ũ(k) in the discrete-
time case in Section II, denotes the trajectories of the
control input uc(t) from the activation time t until the
end of the prediction horizon t+NpTc. Consequently, the
following parameterization of the input uc,i(t) for the given
prediction horizon results

uc,i(τ |t) =

{
uhuman
ℓ (t)δ(τ − (Tℓ(t) + Td)) if i = pℓ(t),

0 otherwise,
(10)

for τ ∈ [t, t + NpTc] and in which δ denotes the Dirac
impulse function. The new parameter Td ∈ R represents
the time delay between when a measurement is taken, and
a control action is applied. Hence, the operator should
arrive at gate pℓ(t) at time Tℓ(t) to take measurements
and communicate the measurements to the controller, and
at time Tℓ(t) + Td the gate position should be changed
according to uhuman

ℓ (t). Afterwards, the operator has To

time units to finish the required activities at the current
gate, before proceeding to the next gate (cf. (17)).

With the help of the path variable p(t), the number of
location changes scheduled for the operator who travels
from one gate to another can be determined. We want to

minimize the number of location changes within the con-
trol horizon, as it represents the workload for the human
operator on a prospective predicted path p(t). Let nNc

(t)
denote the number of elements in the path variable p(t)
that are scheduled within the control horizon. i.e. such that
Tℓ(t) ≤ t+NcTc. It can be found by solving a constrained
integer programming problem nNc

(t) = argmaxℓℓ subject
to Tℓ ≤ t + NcTc and 2 ≤ ℓ ≤ Ns. We assume that
nNc

(t) ≥ 2, which means that at least one action apart
from the one to be done presently needs to be scheduled
within the control horizon (so T2(t) ≤ t + NcTc) to en-
force a minimal state update frequency. Consequently, the
additional penalty Joperator(t) on the number of location
changes that the operator needs to do within the prediction
horizon is expressed as

Joperator(t) =

nNc−1∑

s=1

1ps+1(t) 6=ps(t) (11)

and serves the purpose of minimizing the workload of the
operator. The indicator function 1A returns 1 if event A

is true and 0 otherwise. Further, the cost function in (2) is
reformulated to match the continuous-time settings

JMoMPC(t) =

∫ t+NpTc

t

(
xT

c (τ |t)Qxc(τ |t) (12)

+uT

c (τ |t)Ruc(τ |t)
)
dτ.

The optimal control problem to be solved at each new
location the operator visits is then

min
p(t),T (t),uhuman(t)

JMoMPC(t) + αJoperator(t), (13)

subject to

xc(τ |t) ∈ X , ∀τ ∈ [t, t+NpTc], (14)

uc(τ |t) ∈ U , ∀τ ∈ [t, t+NpTc], (15)

ẋc(τ |t) = Acxc(τ |t) +Bc,uuc(τ |t) (16)

+Bc,ddc(τ |t), ∀τ ∈ [t, t+NpTc],

Tℓ+1(t) ≥ Tℓ(t) + To + Td +Mpℓ(t),pℓ+1(t), (17)

for ℓ = 1, . . . , Ns − 1,

T1(t) = t, p1(t) = icurrent(t), (18)

T2(t) ≤ t+NcTc, (19)

and (9), (10), (20)

in which α is a positive parameter weighting the impor-
tance of the objective JMoMPC(t) against Joperator(t) in
the multi-objective optimization problem. At every new
location, the current measurements are sent to the control
center and used by the controller to solve (13)-(20). The
controller then furnishes the operator with the required
modifications uhuman

1 (t) to be executed at the current
location icurrent(t) and provides the operator with the new
location p2(t) to go to as well as the specific time instant
T2(t) when the operator should arrive at the next scheduled
gate.

Similarly to the approach presented in Section II, in
the approach introduced in this section the head gate is
controlled using standard MPC with a control step Tc.
Accordingly, the head gate flow is coordinated with the
solution to Mobile TIO-MPC problem (13)-(20).

The difference between the new approach introduced in
this paper and the earlier approach of [15] (see Section II)
is that the new method allows for more freedom in terms
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Fig. 3. Offtake profile in the case study.

of when the actuation takes place. In contrast, the method
presented in Section II requires that the system is actuated
whenever there is a possibility for this, i.e. the operator has
finished work at one location and so is free to carry out new
tasks. The small motivating example given in Section III-A
shows that it is crucial for systems like this with limited
and event-triggered measurements and actuation provided
by the operator to actuate the system at the right time given
the system dynamics.

IV. NUMERICAL EXAMPLE

In this section we give simulation results of the new
method presented in the paper for human-in-the-loop con-
trol of an irrigation canal and compare its performance
with that of the previously introduced method [15], which
is shown to outperform the manual-only operation. In the
implementation, we approximate the continuous sampled-
data model (13)-(20) with a discrete-time model using
control step of Tc = 5 minutes. To compare the methods,
we use the a posteriori cost function defined as

Jpost,MoMPC =

Nf∑

k=1

(
xT(k)Qx(k) + uT(k)Ru(k)

)
,

where Nf = 288 denotes the total number of simulation
steps, which corresponds to 24 hours. The weighting
matrices are Q = 0.01I and R = 0.0001I . In addition,
we evaluate how many location changes are ordered to
the operator in the original method and in the newly
proposed one (cf. (11)). We thus consider the following
complementary performance index

Jpost,operator =

noverall∑

s=1

1poverall
s+1

6=poverall
s

,

where poverall = (poverall1 , . . . , poverallnoverall
)T, poveralls ∈ Ī, is

the sequence of all noverall gates visited by the operator
during the simulation.

As in [15], we simulate a scenario with Ns = 5, Np =
72, and Nc = 30. We use a model of an existing irrigation
canal located in Dez in Iran and consisting of 13 gates
(including the head gate). A number of disturbance offtakes
are employed in the canal to assess the proposed method,
see Fig. 3.

Figs. 4 and 5 depict the system behavior with the new
method: Fig. 4 shows resulting deviations in the water
levels with respect to the given setpoints and Fig. 5
shows the flows through the gates. The comparison with
the method in [15] is given in Table I. As expected,

TABLE I

COMPARISON BETWEEN THE PERFORMANCE OBTAINED WITH THE

ORIGINAL METHOD AND THE NEW PROPOSED APPROACH.

original method newly proposed method

Jpost,MoMPC 71.17 8.59
Jpost,operator 101 46
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setpoints.

the new method results in a better performance than the
originally proposed solution. The results also indicate that
in closed-loop operation, the operator’s work is more
relaxed with fewer location changes to take for the newly
proposed method. Hence, the case study demonstrates that
the new method introduced in the paper attains a twofold
improvement. First, the closed-loop performance is better
in terms of meeting the canal operation criteria (cf. (12)).
Second, the improved performance comes together with
eased working conditions of the operator, which improves
the quality of work of the human operator.

V. CONCLUSIONS

We have proposed a new method based on MPC for an
irrigation canal with a human operator explicitly included
in the control design. The operator travels along the
canal and provides measurements and actuation. We have
introduced a control method, which uses the time instants
of when the operator’s actions should take place as the
optimization variables to synchronize the time instants with
the system dynamics and thus achieve a good performance.
The performance of the new method in comparison to the
original solution are demonstrated in a simulation-based
case study. This confirms the improved performance that
the new method offers over the previous method.

We have aimed to minimize the workload of the human
operator by using a penalty on the number of location
changes that the operator needs to take in order to ease
the working conditions of the operator. We also explicitly
model a delay between the moment when the operator
takes the measurements and sends them to the controller,
and when the control action is applied. In the future,
more human-related aspects such as inaccuracy of the
human actions will be added to the control design to bring
the problem formulation and the proposed solution closer
to the realistic situation. Moreover, estimation techniques
will be studied and adapted or extended to the particular
settings to update the state of the whole system based on
measurements from the individual locations.
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