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Estimation of the generalized average traffic speed based on

microscopic measurements

A. Jamshidnejada ∗ and B. De Schuttera

aDelft Center for Systems and Control, Delft University of Technology, Mekelweg 2, 2628 CD

Delft, The Netherlands

The average speed of vehicles plays an important role in traffic engineering. In almost any
model-based traffic monitoring, analysis, or control application the average speed is required
as a measure of performance or as an input for traffic models used to simulate fuel consump-
tion, vehicle emissions, or traffic noise. The average speed is also used in algorithms that
estimate the travel time. It also appears in the fundamental equation of traffic where density
is calculated based on the average speed and flow. This article presents a new methodology
for estimating the time-space-mean speed (TSMS), which is an equivalent for the general-
ized speed introduced by Edie (1963). To this aim, first tight upper and lower bounds are
developed for the TSMS using individual vehicle speeds that are obtained via point mea-
surements. To estimate the TSMS from these bounds, and to deal with the cases where the
trajectories of the vehicles might not be straight lines, a convex combination of the upper
and lower bounds is introduced. In order to assess the convex combination and to compare
its performance with other formulas in literature, two real-life data sets corresponding to the
NGSIM data for the I-880 highway in the San Francisco Bay Area, and the A13 data near
Rotterdam-Delft are used. At the end, MATLAB simulations are presented to cover scenarios
that are not included in the available real-life data sets. The results produced by the new
formula, both for the real-life data sets and for MATLAB simulations, are found to be more
accurate compared with other available formulas in literature.

Keywords: average traffic speed; time-space-mean speed; microscopic point measurements;

1. Introduction

The average speed of the vehicles plays an important role in both performance and
control-related works on the traffic. The average speed is in fact required for almost any
model-based traffic application. Most of the traffic simulation models use the average
speed in accident analyses, in economic studies, as an indication of the service level on
the road, or as an input for estimation of other performance indicators such as the fuel
consumption, the vehicle emissions, the travel time, and the traffic noise (May 1990).
Moreover, the average speed is a fundamental variable in traffic. Indeed, the average

speed together with the flow and the density are commonly called the fundamental vari-
ables of traffic, since a basic relationship exists between the flow and the density by means
of the average speed which is known as the fundamental relationship or the fundamental
equation of traffic (Daganzo 1997; Wardrop 1952).
In addition to the discussed importance of the average speed, the availability of a

reliable value of the travel time is important for traffic engineers in applications such as
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Figure 1. Road map of the paper

traffic signal coordination, in ‘before’ and ‘after’ studies of traffic, and also in estimation
of other traffic states (Boyce and Xiong 2007; May 1990). Furthermore, travel time
together with the average speed is used to identify and to assess operational problems
along highways.
Two main methodologies are applied in order to measure or to estimate the travel

time on a road: the direct measurement method and the indirect estimation method
(Mori et al. 2015). In direct measurement, the total travel time between two predefined
reference points is measured after all the vehicles have finished the distance between
these two points. For the measurement, it is necessary to identify the time instant at
which a particular vehicle appears at each of the two reference points. Therefore, the
identifying technologies (being grouped under automatic vehicle identification systems)
are implemented by means of license plates or toll tag IDs (Soriguera and Robusté 2011a).
The indirect travel time estimation is an alternative approach, where the fundamental

traffic variables (i.e., flow, density, and average speed) are measured on a specific point
of the road link and an algorithm is applied for travel time estimation. The travel time
is considered to be the ratio of the length of the road’s section and the average speed
(Soriguera and Robusté 2011a). Thus, for calculating the travel time, the average speed
on the particular section of the road is needed (Soriguera and Robusté 2011a; Han et al.
2010; Wardrop 1952). Later on, in Section 2.3 we will argue that the time-space-mean
speed (TSMS), which is an equivalent for the generalized speed proposed by Edie (1963),
is the best averaging method for the speeds obtained from point measurements or any
other data collecting method that represents the data as trajectories within the time-
space plane.
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Since their introduction in the early 1960’s, inductive loop detectors have been widely
used for the purpose of vehicle detection on roads and for point measurement of the
speeds of vehicles. In fact, according to Klein et al. (2006) inductive loop detectors are
the most popular and the most widely used forms of traffic detection systems. Both
microscopic and macroscopic characteristics of the traffic flow can be obtained using
inductive loop detectors.
Single-loop detectors have been deployed in order to provide information on the traffic

flow (i.e., the number of vehicles passing a specific point on the road per unit time) and
the lane occupancy (i.e., the fraction of the same observation time interval that the loop’s
detection zone is occupied by vehicles). Microscopic traffic flow characteristics including
the time headway1, the vehicle occupancy time, and the spacing can be estimated using
a single-loop detector (Ma et al. 2010). A double-loop detector consists of two single-loop
detectors placed a few meters apart from one another. The main advantage of a double-
loop detector over a single-loop detector is that it provides individual speed data (Wang
and Nihan 2003).
The extensive use of inductive loop detectors in traffic systems all around the world and

the relatively high costs of substituting them with modern detecting instruments have
incited the development of efficient ways for estimating the fundamental traffic variables
based on the information provided by these loop detectors. In this paper, we also propose
a method for estimation of the time-space-mean speed using data from inductive loop
detectors. Compared with the available formulas in the literature for estimation of the
average traffic speed, the proposed method in this paper produces more accurate results,
where the percentage of error produced by the proposed method in some cases could be
up to 14% smaller than the least percentage of error produced by other formulas.
The main contribution of this paper is a new approach based on a microscopic point-of-

view that produces a tight upper and a tight lower bound for the time-space-mean speed.
We use a convex combination of these bounds to find an estimate of the time-space-mean
speed. We then assess and compare the new formula with available formulas in literature
using two real-life data sets, NGSIM for the I-880 highway in the San Francisco Bay Area,
and the A13 data near Rotterdam-Delft. The rest of the paper is organized as follows:
Section 2 describes the problem that is going to be discussed in this paper. In Section 3,
an overview of the previous research on the problem is presented. Section 4 proposes a
new method for finding a tight upper and a tight lower bound. The convex combination
for estimating the time-space-mean speed from the bounds is given in Section 5. Finally,
the results from real-life data sets and also from MATLAB simulations are presented and
discussed in Section 6. Section 7 is allocated to the conclusions and topics for further
research. A road map of the paper is given in Figure 1.

2. Problem definition

We will solve the problem of finding the appropriate average speed (which we will argue
to be the time-space-mean speed (TSMS) in Section 2.3) giving a formula that includes
microscopic data of point measurement type. Most previous research focuses on discov-
ering a reliable way to approximate the average speed using a macroscopic point-of-view
(where the aggregated data is used). An overview of the previous work in this area will
be discussed in more detail in Section 3.

1The time between consecutive vehicle observations at a fixed location is usually called the time headway,

and the distance separations between consecutive vehicles at a given instant is called the distance headway (May
1990) or alternatively the spacing if we follow the terminology used by Daganzo (1997).
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Figure 2. Representation of the section of the trajectory of vehicle i that is enclosed by the area A and is applied
for the generalized definitions of the fundamental traffic variables

In this paper, we will propose a new solution for the problem which originates from a
microscopic point-of-view by dividing the sampling window into smaller cells (see Sec-
tion 4.1), and hence its results are expected to provide a higher accuracy and more
detailed information for the aim of traffic control.
Many of the macroscopic and microscopic features of traffic including the average speed

are defined from three different perspectives, i.e., across the time axis (called the time
variables), across the space axis (the space variables), and in the time-space plane (the
time-space variables). Next, we will present different definitions given for the average
speed in literature.

2.1 Time-mean speed (TMS)

The time-mean speed (TMS) involves averaging across a time interval at a fixed location.
A stationary observer such as a loop detector that has a sampling period of TA and is
placed at a fixed position xloop,A observes the vehicles during its sampling period, TA,
at the position x = xloop,A. Hence, from the given definition, the arithmetic mean of the
speeds observed by the loop detector is the TMS.

2.2 Space-mean speed (SMS)

The SMS involves averaging across a stretch of the road at a specific instant of time.
Therefore, for a traffic detection system such as a traffic camera that provides at a specific
time instant a data set that covers a stretch of road of length LA, the arithmetic mean
of the speeds being observed in the photograph is the SMS.

2.3 Time-space-mean speed (TSMS)

In this section we will discuss the third average, which is called the time-space-mean
speed or briefly the TSMS. The fundamental traffic equation relates two fundamental
concepts (i.e., the flow and the density), one of which is defined across a time interval
and the other one is defined across a length interval. Considering the ratio of these two
quantities, we need an intermediary variable (with the same unit as the velocity) which
is neither a local nor an instant variable, but a variable that is defined simultaneously
through the time and the space axes. We call this variable the TSMS, which is equivalent

4



with what Edie (1963) calls the generalized speed.
According to the definitions given by Newell (1995) for the flow and density, which

originate from a mathematical and physical perspective, the formulation given by Edie
(1963) is the most appropriate average for traffic speed. Newell (1995) considers a
mathematical interpretation for the traffic density. First a joint probability function
F (x1, x2, . . . , xN ; t) is defined, which is the probability that at time instant t vehicle j,
for all j ∈ {1, 2, . . . , N}, has a position less than xj . Based on the joint probability, the
marginal probability that a specific vehicle, say vehicle i, has a position less than xi is
given by

Fi(xi; t) = F (LA +∆, LA +∆, . . . , xi, LA +∆, . . . ; t) (1)

where LA is the length of the given segment A of the road, and ∆ > 0 (where
max

j=1,...,N,j 6=i
xj ≤ LA + ∆). If this function is differentiable, then the probability density

for the position of vehicle i would be:

fi(x; t) =
∂

∂x
Fi(x; t) (2)

where fi(x; t)dx for the small value of dx is the probability for vehicle i to be between x

and x + dx at time t. The total density at coordinate x at time instant t (which could
also be considered as the instant density apart from the generalized density which will
be defined afterwards) for the nA observed vehicles on the road segment is then:

ρ(x, t) =

nA
∑

i=1

fi(x; t) (3)

In this way we can successfully define density for a road segment of any desired length.
The flow can similarly be defined through the time axis.
A practical way of implementing the mathematical interpretation of the density, the

flow, and correspondingly the average speed for a traffic network is given by Edie (1963)
where the generalized definitions of the fundamental variables are represented. Consider
an arbitrary-shaped area A within the time-space plane for which the covered time in-
tervals at different positions are sub-intervals of [tl tu] and the covered position intervals
at different time instants are sub-intervals of [xl xu] (see Figure 2). Suppose that a part
of the trajectory of vehicle i (i = 1, . . . , nA) is enclosed by the area A such that the pro-
jection of this trajectory onto the time and space axes are ti(A) and di(A) respectively.
Then the generalized density ρ(A) and flow q(A) for the area A are given by:

ρ(A) =
1

|A|

nA
∑

i=1

ti(A), (4)

q(A) =
1

|A|

nA
∑

i=1

di(A) (5)

where di(A) and ti(A) are indeed the distance traveled and the time spent in the area
by vehicle i, and nA is the number of vehicles that have been observed in the area A.
Newell (1995) shows that Edie’s definitions of the generalized fundamental variables

are equivalent with the mathematical definitions of density given by (3) and flow (which
is obtained following the same reasoning as for the density). Finally, inspired by the
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Figure 3. The TMS and SMS versus the TSMS

fundamental traffic equation the generalized average speed, is defined as the ratio of the
generalized flow and density, i.e.,

v(A) =
q(A)

ρ(A)
=

nA
∑

i=1

di(A)

nA
∑

i=1

ti(A)

(6)

2.4 TMS and SMS vs. TSMS

In the following discussion we consider the relationships between the TMS and the SMS
with the TSMS. We will apply definition of the generalized average speed to the following
two cases:

(1) A thin horizontal sampling window with length dx and width TA (see Figure 3(a))
(2) A thin vertical sampling window with length LA and width dt (see Figure 3(b))

The first case could represent the detection zone AH of a loop detector. Due to the fact
that dx is very small, the possibility that a trajectory enters or leaves the window through
its left or right edge is negligible. Hence,

TSMS(AH) =

nAH
∑

i=1

di(AH)

nAH
∑

i=1

ti(AH)

=
dx · nAH

nAH
∑

i=1

dx

vAH,i

=
1

1
nAH

nAH
∑

i=1

1

vAH,i

(7)

and

TMS(AH) =
1

nAH

nAH
∑

i=1

vAH,i (8)

where nAH
is the number of vehicles detected by the loop detector during TAH

. Thus,
for a thin horizontal sampling window the TSMS corresponds the harmonic mean of
the detected speeds, while the TMS is the arithmetic mean of the speeds. This is also
discussed extensively by Treiber and Kesting (2013).
The sampling window of case two could be the observation area of a camera. Due to the
fact that dt is very small, the possibility that a trajectory enters or leaves the window
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Figure 4. Specifying a sampling window for a sampling road section in the time-space plane to estimate the TSMS

through its bottom or top edge is negligible. Thus we have,

TSMS(AV) =

nAV
∑

i=1

di(A)

nAV
∑

i=1

ti(AV)

=

nAV
∑

i=1

dt · vAV,i

dt · nAV

=
1

nAV

nAV
∑

i=1

vAV,i (9)

and

SMS(AV) =
1

nAV

nAV
∑

i=1

vAV,i (10)

where nAV
is the number of vehicles observed in the photograph captured by the camera.

Then the TSMS at a specific instant of time corresponds the arithmetic mean of the
observed vehicles, which by definition is equal to the SMS. Therefore, for a thin vertical
rectangle the TSMS and the SMS are equivalent.

2.5 Defining the sampling windows for estimation of the TSMS

From the discussions in Section 2.3, the TSMS is the required average speed for the traffic
applications addressed in Section 1. Since for the TSMS traffic information is averaged
on an area over two dimensions (i.e., space and time axes), and since we will use the
trajectories of the vehicles to consider features of the traffic stream, we should work in
the time-space plane. We will consider a rectangular window in the time-space plane that
represents the road segment under consideration during one sampling period. From now,
we will simply call this rectangular time-space window the sampling window.
Consider the road section illustrated in Figure 4(a), where two consecutive loop de-

tectors are positioned at the downstream and upstream of the section. Suppose that the
sampling period of the loop detectors is TA, and the distance between the two loop de-
tectors, i.e., the length of the black dashed string, is LA. Then the length and the width
of the sampling window will respectively be LA and TA (see Figure 4(b)).
The downstream loop detector collects data in its detection zone, which is illustrated by

the thin dotted rectangle at x = xloop1 in Figure 4(b). Under such a configuration where
point measurements are available at discrete points on the road where the loop detectors
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are installed, the challenge is to find an approach to estimate the average speed during
each sampling period through the length LA. In the next section, we discuss previous
work on estimating the average speed.

3. Overview of previous work

For stationary traffic if we define the flow locally (i.e., at a fixed location), and the same
way define the density instantly (i.e., at a specific time instant), then the SMS and the
TSMS are equivalent, and the ratio of the local flow and instant density would be the
SMS (Daganzo 1997). Most literature considers a way to estimate the SMS, while in this
paper we consider the general case where traffic is not necessarily stationary. Therefore,
the generalized definition of the speed, i.e., the TSMS, should be applied.
Wardrop (1952) develops a relationship between the SMS and the TMS using a macro-

scopic point-of-view:

TMS = SMS +
σ2
SMS

SMS
(11)

where σ2
SMS is the standard deviation of the space distribution of speeds. However, since

in the case of a loop detector the only available information is the TMS, it is not straight-
forward to estimate σ2

SMS.
Han et al. (2010) discuss a theoretical approach in combination with an empirical

method to solve (11) for the SMS using the definition of σ2
SMS. The applied procedure is

as follows:

σ2
SMS = E

[

(vi − SMS)2
]

= E[v2i ] + SMS2 − 2SMS · TMS
(12)

where vi is the speed of the ith vehicle passing through the loop detector, and E[.] denotes
the expected value operator. The above relation is applied to (11) and the resulting
quadratic equation is solved to eventually result in:

SMS =
3TMS±

√

9TMS2 − 8E[v2i ]

4
(13)

In (13) the value of E[v2i ] is unknown. Han et al. (2010) propose a quadratic relationship
between E[v2i ] and E[vi]:

E[v2i ] = a · TMS2 + b · TMS + c (14)

where a previously collected set of data from the loop detectors should be used to estimate
the constant coefficients a, b, and c empirically.
Dailey (1999) presents an algorithm to estimate the mean speed using data from a

single-loop detector. Dailey (1999) considers the statistical nature of the measurements
made by single-loop detectors and presents an algorithm which estimates the speed. The
two typical measurements, i.e., the flow q and the occupancy o, are taken into account:

o =
1

T

q·T
∑

i=1

li

vi
(15)
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where li is the effective length (i.e., the length of the vehicle + the length of the detection
zone) of the ith vehicle, and T is the duration of the measurement.
Furthermore, the speed and the length of the vehicles are random variables that could

be rewritten as the summation of their mean value (respectively v̄ and l̄) and the deviation
(respectively ∆vi and ∆li). Using these expressions, Dailey (1999) obtains the following
equation for the mean speed, v̄:

o
T

l̄
v̄3 − qv̄2 − qσ2

v = 0 (16)

Note that Dailey (1999) does not distinguish between the TMS, the SMS, and the TSMS
and only uses the notation v̄ in general. Two estimation methods are introduced by
Dailey (1999). The first one that solves (16) to find the real root v̄ is called the ‘root
finding ’ method, which is based on the deterministic values and which yields an unbiased
estimator for v̄ assuming idealized noiseless measurements. The second method is the
‘filtering ’ method, which considers rel measurements. This method is represented as an
algorithm that gives an estimate of v̄, and also provides a reliability test for the computed
average speed.
Rakha and Zhang (2005) also propose a relationship between the TMS and the SMS

using an approach similar to Dailey (1999) for the statistics of the measurements. Con-
trary to the formula given by Wardrop (1952) where the TMS is solved from the SMS,
for the formula proposed by Rakha and Zhang (2005), the SMS is estimated from the
TMS:

SMS ≃ TMS−
σ2
TMS

TMS
(17)

In (17) for estimation of the SMS, we need to know the value of the TMS and also
σ2
TMS. However, regular loop detectors only report the value of the TMS to the traffic

management center. Therefore, Soriguera and Robusté (2011b) propose to assume a
normal distribution for the vehicle speeds in order to find an estimate for σTMS that can
be used in (17). A confidence interval is also derived by Soriguera and Robusté (2011b)
for the estimated value of the SMS.

4. New formulas for a tight upper and a tight lower bound for the TSMS
based on a microscopic point-of-view: theory and formulation

Since traffic monitoring and control decisions are made based on the information available
from point measurements at the location of the loop detectors, from trajectory data, or
from floating car data (FCD), it is critical to make some approximations. The main
objective is to make these assumptions more accurate. Not only is a good estimate of
the TSMS desired for traffic control and performance evaluation, but we may also need
to predict this value for a short upcoming time interval such that the control center can
take the appropriate actions in real time. To this aim, a microscopic approach is selected
in this article. Next, we present a new solution for the problem described in Section 2.

4.1 Division of the sampling window into grid cells

Consider the sampling window of dimensions TA and LA shown in Figure 5 that contains
the trajectories of the vehicles that have been observed by the loop detector installed at
the downstream of the road section. The number of the observed vehicles is NA, and the
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corresponding microscopic data that can be extracted from the loop detector during one
sampling period are:

VA = {vA,i | i = 1, 2, . . . , NA},

HA = {hA,i−1 | i = 1, 2, . . . , NA}
(18)

where vA,i and hA,i−1 are respectively the velocity of the ith observed vehicle, and the
time headway between the (i−1)th and the ith vehicle (Note that for i = 1, hA,0 indicates
the time duration from the beginning of the observation cycle until the first vehicle is
observed).
From the above measurements, we obtain the following information:

vA,min = min
i=1,...,NA

(vA,i),

vA,max = max
i=1,...,NA

(vA,i),

hA =
1

NA

NA
∑

i=1

hA,i−1

(19)

where vA,min, vA,max, and hA are the minimum and maximum velocities of the observed
vehicles and the mean time headway.
The sampling window is first divided into nA grid cells of length LA and width hA (see

Figure 6), where:

nA :=

⌈

TA

hA

⌉

(20)

where ⌈·⌉ denotes the ceiling function. Note that the two parameters nA and NA are not
necessarily equal. However, if we assume to have TA,res < hA, where TA,res is the time
duration from the last observation until the end of the observation period (see Figure 5),
then we will have:

NA =
1

hA

NA
∑

i=1

hA,i−1 =
1

hA
(TA − TA,res)

if TA,res<hA,
========⇒
since NA∈N

NA =

⌈

TA

hA

⌉

:= nA (21)

that is nA and NA are equal. So from now, we assume to have nA = NA.

10
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Figure 6. Dividing the grid cells into three parts in order to find a lower and an upper bound of the TSMS

At this point we introduce a new parameter called the cell speed, which depends on
the dimensions of the sampling window and which is defined by:

vA,c =
LA

hA
(22)

Note that the cell speed is the least required speed for traveling the complete length LA

of the road within one grid cell. Now we determine the integer value mA such that:

mA − 1 ≤
vA,c

vA,min
< mA ⇒ mA =

⌊

LA

hAvA,min

⌋

+ 1 (23)

Similarly, the integer value MA is determined such that:

MA − 1 ≤
vA,c

vA,max
< MA ⇒ MA =

⌊

LA

hAvA,max

⌋

+ 1 (24)

4.2 Equal time headway distribution

In Figure 6, a sampling window is shown that is divided into nA grid cells, such that
at the left bottom corner of each grid cell one and only one vehicle is located. Here, we
assume the case for which the time headways of the vehicles are all the same and equal
to the mean time headway value1.
We divide the vehicles into two sets based on the grid cell that they are at. We call

these two sets the ‘first ’ and the ‘second ’ set. By the first set we refer to the vehicles in
the first nA −mA + 1 grid cells, and by the second set we mean the vehicles within the
last mA − 1 grid cells.
Furthermore, the second set will also be divided into two subsets called the first and

the second subsets, where the first subset includes the first mA −MA + 1 vehicles of the
second set and the second subset includes the remaining MA − 2 vehicles (see Figure 6).
From (23) we have:

vA,min >
vA,c

mA

(25)

1Note that in (Jamshidnejad and De Schutter 2014) it is shown that the results obtained in Sections 4 and 5
of this paper are still valid for the case of non-equal time headway distribution.
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which indicates that the vehicles that face mA or more number of grid cells in front of
them will travel a distance greater than or at least equal to LA during the observation
time interval. From Figure 6, the vehicle with index nA−mA+1 and all its predecessors
in A (i.e., the first set) fulfill this condition. Consequently, those vehicles that enter
the detection zone within the first (nA − mA + 1)hA seconds of the observation time
interval will always leave the sampling window A through its upper edge, while for the
vehicles that enter the detection zone in the last (mA − 1)hA seconds of the observation
time interval, the trajectories might intersect the right edge of the sampling window.
Therefore, we need to consider the vehicles in the second set more carefully. We expand
(6) as

v(A) =

nA−mA+1
∑

i=1

LA +

mA−1
∑

i=1

tnA−i+1 · vA,nA−i+1

nA−mA+1
∑

i=1

LA

vA,i

+

mA−1
∑

i=1

tnA−i+1

(26)

Next, we will determine a lower bound and an upper bound for (26).

4.2.1 Lower bound

To find a lower bound for v(A) in (26), we consider the case for which all vehicles
within the second group will move with vA,min. The TSMS for such a case is definitely
a lower bound for any other possible scenario in which the first set of the vehicles move
with their real speed values, while we change the speeds of the vehicles in the second set.
For this situation, all vehicles in the second set will stay within A until the end of the
observation period. Therefore,

tnA−j+1 = jhA, j = 1, 2, 3, . . . , mA − 1 (27)

For the generalized mean speed given by (26) the following holds:

v(A) ≥

nA−mA+1
∑

i=1

LA + hA

mA−1
∑

i=1

i · vA,nA−i+1

nA−mA+1
∑

i=1

LA

vA,i

+ hA

mA−1
∑

i=1

i

(28)

To continue, we find an upper bound for the denominator using the definition of MA in
(24). For the first nA −mA + 1 vehicles entering the area we can write:

hA ≤
LA

(MA − 1)vA,i

⇒ (nA −mA + 1)hA ≤
1

(MA − 1)

nA−mA+1
∑

i=1

LA

vA,i

(29)

Substituting hA for i = 1, 2, . . . , nA −mA + 1 in the denominator of (28) with its upper
bound from (29), and vA,i, i = nA − mA + 2, . . . , nA in the numerator with the lower
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bound of vA,min from (23) a lower bound for v(A) is obtained:

v(A) >

(

nA−mA+1
∑

i=1

LA

)

+ hA

(

mA−1
∑

i=1

i

)

LA

mAhA
(

nA−mA+1
∑

i=1

LA

vA,i

)

+
1

(MA − 1)(nA −mA + 1)

(

nA−mA+1
∑

i=1

LA

vA,i

)

mA−1
∑

i=1

i

(30)

Finally, after simplification we get the following lower bound for v(A):

vlower(A) =
nA − mA − 1

2

(nA −mA + 1) + mA − 1
2

(

mA
MA − 1

)HA,1→nA−mA+1 (31)

in which HA,1→nA−mA+1 stands for the harmonic mean of the speeds of the first nA −
mA + 1 vehicles.

4.2.2 Upper bound

To find an upper bound for v(A) in (26), the case is considered in which all vehicles
within the second set move with vA,max. The TSMS for any other scenario (that has
different speed values in the second set of the vehicles, but the same speeds for vehicles
in the first set) will not exceed the TSMS for the scenario considered here. From (24) we
know:

vA,max <
vA,c

MA − 1
(32)

From (32) and Figure 6 for those vehicles that are located in the first subset (i.e., in the
first mA −MA + 1 grid cells of the second set) a distance larger than or at least equal
to LA will be traveled during the sampling period TA, whereas for vehicles in the second
subset (i.e., in the last MA − 2 grid cells of the second set) the traveled distance will be
less than LA.
Accordingly, to calculate an upper bound for v(A), the second term of the numerator

of (26) is split into two terms:

v(A) <

(

nA−mA+1
∑

i=1

LA

)

+ (mA −MA + 1)LA +
1

MA − 1

(

MA−2
∑

i=1

i

)

LA

(

nA−mA+1
∑

i=1

LA

vA,i

)

+ (mA −MA + 1)(MA − 1)hA +

(

MA−2
∑

i=1

i

)

hA

(33)

where the following expressions, which are obtained from Figure 6, for the traveled time
and the traveled distance of vehicles in the last MA − 2 grid cells have been substituted
in (26):

tnA−j+1 = jhA

dnA−j+1 = vA,nA−j+1 · tnA−j+1 =
j

MA − 1LA
for j = 1, 2, . . . ,MA − 2

Applying (23) to find a lower bound for hA in the denominator, we obtain an upper
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Figure 7. Sampling windows A and B with the same data sets (i.e., speed values, number of vehicles, and length
of the window), but different time headways (we have αi > 1 and αixi = LA)

bound for v(A):

vupper(A) =
nA −

MA

2
+ 1

(nA −mA + 1) +
(MA − 1)

2mA

(2mA −MA)

HA,1→nA−mA+1 (34)

4.3 Tightening the lower and upper bounds

In this section we use (31) and (34) with the aim of finding bounds that are very tight.
Suppose that we have the data sets given by (18) from which we can derive the maximum
and minimum speeds, vA,max and vA,min, and the mean time headway, hA, given by (19).
Equations (31) and (34) yield a lower and an upper bound for the TSMS for sampling
window A. Therefore, we can write:

vlower(A) ≤ TSMS(A) ≤ vupper(A) (35)

Now we construct a new sampling window B (see Figure 7) with all speed data the same
as that of A, but with the headway equal to a different constant, i.e.,

hB = hA +∆h (36)

and

LB = LA, TB = nAhB (37)

and we want to find ∆h such that:

vlower(B) ≤ TSMS(A) ≤ vupper(B) (38)

Note that nA = nB. From Figure 7 we see that for ∆h > 0 some of the vehicles that
are located in the second set for A, might be located in the first set for B. Let W be the
number of vehicles from the second set of A that are in the first set for B. Therefore, we
have:

mB = mA −W (39)

Now w e consider the upper and lower bounds separately, so we denote the extended
sampling window for the upper bound by Bu and for the lower bound by Bl. In addition,
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let Wu and Wl be the number of vehicles from the second set of A that are respectively
in the first set for Bu and Bl.
First we consider the conditions under which the right-hand inequality in (38) is satis-

fied for Bu. By determining where the maximum of the difference between the harmonic
mean for the first set of the vehicles in Bu and TSMS(A) is reached, and after some
elaborate calculus (see (Jamshidnejad and De Schutter 2014) for the detailed proof), it
can be verified that the upper bound calculated for the sampling window Bu, is also an
upper bound for TSMS(A) if:

Wu ≤ min

{

mA
MA − 2

MA − 1
, nA −

MA

2
+ 1

}

(40)

Likewise, based on (38) we can show that if

Wl ≤ mA −MA + 1 (41)

then the lower bound calculated for the sampling window B will also be a lower bound
for TSMS(A).
Finally, if we seek for a very tight upper bound for the TSMS, Wu found by the right-

hand side of (40) could be used in (39) to determine mBu
. Then we can compute hBu

from
(23), and correspondingly we can calculate MBu

from (24). Substituting mBu
and MBu

in (34), we obtain a new upper bound, vupper(Bu), which we already know is an upper
bound for TSMS(A) (see Jamshidnejad and De Schutter (2014)). We use the following
notation:

TSMSupper(A) := vupper(Bu) (42)

Similarly, a tight lower bound, vlower(Bl), can be found from (31). We use the following
representation:

TSMSlower(A) := vlower(Bl) (43)

5. Estimation of the TSMS from the upper and lower bounds

In this section, we introduce a formula for estimating the TSMS using a convex combi-
nation of the lower and upper bounds found in Sections 4.2 and 4.3:

TSMSest(A) =
TSMSlower(A) + γATSMSupper(A)

1 + γA
with γA ≥ 0 (44)

In the above expression, γA could be identified based on a large data set including
individual speeds of the vehicles for different traffic scenarios for the soar section under
consideration.
However, such an extensive data set might not always be available or there might

be a need for immediate application of the formula for a new area (without a priori
knowledge about the possible traffic scenarios or without any available data). For such
cases, a parametric expression for γA is more applicable. We propose a weighted average
for the estimated TSMS with the weight being a function of the speed range, since in the
given expression when the ratio of vA,max and vA,min increases, the share of the upper
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bound in the estimated TSMS should be higher compared with the share of the lower
bound. The proposed formula for the estimated TSMS is:

TSMSest(A) =

TSMSlower(A) +
vA,max

vA,min
· TSMSupper(A)

1 +
vA,max

vA,min

(45)

Now we explain how to estimate the TSMS from the convex combination given by (45)
using the bounds for the TSMS from Section 4.3. We should use the bounds Wu and
Wl (see (40) and (41)) for the same sampling window to apply (45). Therefore, for the
estimation of TSMS we should substitute W with the following:

W = min{Wu,Wl} (46)

and correspondingly, we determine mB and MB and substitute them in (31) and (34).
Finally, we substitute TSMSlower(B) and TSMSupper(B) in (45) to find an estimate for
TSMS(A).

6. Assessment and comparison

In this section we present the results for the formulas given by Wardrop (1952), i.e., (11),
by Rakha and Zhang (2005), i.e., (17), and the new formula given in this paper, i.e., (45),
for estimating the TSMS. We determine the relative errors of these formulas with respect
to the real TSMS found by (6). As a comparison, we also present the relative error of
the harmonic mean of the speeds with respect to the real TSMS, since the TSMS equals
the harmonic mean of the speeds if the two averages are computed for the detection zone
of a loop detector, i.e., a thin horizontal sampling window as shown in Figure 3(a) (see
Section 2.4). This way we can determine how it affects the results when the detection zone
of the loop detector is considered instead of the sampling window A (see Figure 4(b)).
We first use real-life data from the NGSIM data set on the I-880 highway in the San
Francisco Bay Area (http://ngsim-community.org/) and a Rotterdam-Delft data set
for the highway A13 (http://data.3tu.nl/repository/collection:traffic_flow_
obs) that has been extracted from movies captured by a helicopter. Figure 8 shows the
map of the A13 including the data set location.
Furthermore, to cover the possible scenarios that are not included in the real-life data

sets, we also include simulations in MATLAB at the end of this section.

6.1 Real-life data (NGSIM, I-880 and Rotterdam-Delft, A13)

For multi-lane roads where lane-changing is also permitted (like the I-880 and the A13),
there are two possible ways of estimating the average speed: the first considers the aver-
age speed separately for each lane, and the other considers multiple lanes together and
estimates their overall average speed. Due to the lane changes, a measurement on one
lane might affect the speed on the other lane(s), which is why we consider this joined
case for the real-life data in this section.
Figure 9(a) shows the results of calculating the TSMS for the NGSIM data. We have

extracted four traffic data sets from the NGSIM I-880 data set, where the corresponding
values for LA, hA, TA, vA,min, and vA,max are given in Table 1. From the relative errors
shown in Figure 9(a) we see that the convex combination (45) yields the best performance.
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Figure 8. Map displaying the highway A13, Rotterdam-Delft for which the real-life traffic data is available

Table 1. The values of the parameters for the NGSIM I-880 data sets

Data set LA(m) hA(s) TA (min) vA,min (m
s
) vA,max (m

s
) nA(−)

DS 1 500 0.34 102.00 10.00 34.50 300
DS 2 500 0.34 102.56 18.25 33.09 300
DS 3 500 0.34 102.65 11.33 32.87 300
DS 4 500 0.34 102.36 17.96 30.85 300

Table 2. The values according to the Rotterdam-Delft A13 data sets

Data set LA(m) hA(s) TA (s) vA,min (m
s
) vA,max (m

s
) nA(−)

DS 5 300 0.81 183.00 6.82 38.94 227
DS 6 300 1.07 204.00 12.24 35.30 191
DS 7 300 1.01 220.00 13.33 34.24 217
DS 8 300 0.87 192.00 10.30 35.15 221
DS 9 300 0.92 213.00 12.42 39.55 231
DS 10 300 0.99 192.00 12.88 35.15 214
DS 11 300 0.93 387.00 6.81 38.94 418
DS 12 300 1.94 400.00 13.63 40.60 206
DS 13 300 1.05 27.00 8.50 27.50 24
DS 14 300 1.30 40.00 7.80 31.20 32
DS 15 300 1.50 41.00 6.90 31.03 30
DS 16 300 1.50 25.00 8.90 27.32 18

Next we consider 12 data sets that are extracted from the Rotterdam-Delft A13 real-
life data. The values for LA, hA, TA, vA,min, and vA,max are given in Table 2. Note that
we have illustrated the results for the first 8 data sets (DS 5 to DS 12) and the last 4
data sets (DS 13 to DS 16) in two separate figures (see Figures 9(b) and 9(c)), since the
ranges of the errors for these two cases were very different.
Figure 9(b) represents the relative errors of the formulas by Rakha and Zhang (2005),

by Wardrop (1952), the harmonic mean of the speeds, and the convex combination with
respect to the real TSMS (calculated by (6)) for the Rotterdam Delft A13 real-life data
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Table 3. Classification of speed ranges for flow scenarios

Traffic scenario Range of speeds (m
s
)

Over-saturated (Breakdown) < 15.5
Queue discharge 15.5− 25.0
Under-saturated (Free flow) ≥ 25.0

Table 4. The values for traffic parameters used in different scenarios simulated in MATLAB

Scenario LA(m) hA(s) TA (min) vA,min (m
s
) vA,max (m

s
) nA(−)

Over-saturated (1st) 500 2.0 5 2.0 15.5 150
Over-saturated (2nd) 500 2.0 1 2.0 15.5 30
Queue discharge (1st) 500 1.0 5 15.5 25.0 300
Queue discharge (2nd) 500 1.0 1 15.5 25.0 60
Under-saturated (1st) 500 0.5 5 25.0 40.0 600
Under-saturated (2nd) 500 0.5 1 25.0 40.0 120
Under-saturated (3rd) 500 2.0 5 25.0 40.0 150
Under-saturated (4th) 500 2.0 1 25.0 40.0 30

sets DS 5 to DS 12 for which the sampling period, i.e., the time during which the
TSMS is calculated, is more than 3 min. From Figure 9(b) for most data sets the convex
combination yields the best performance. Among the data sets, only for DS 9 and DS 10
the harmonic mean and the formula by Rakha and Zhang (2005) respectively, produce
smaller errors.
Figure 9(c) shows the results produced for the Rotterdam-Delft real-life data sets DS 13

to DS 16 where the sampling period is less than 1 min. It is again observed in Figure 9(c)
that the convex combination has the best performance.
Comparing Figures 9(a), 9(b), and 9(c) when the minimum observed speed, vA,min,

decreases and the sampling period TA along which the TSMS is computed decreases, the
percentage of errors for all formulas increases. However, this percentage is still less than
1% for the convex combination, while for the other formulas the percentage of errors
grows dramatically. In Figure 9(c), for DS 13 for example, there is a difference of almost
7% between the least percentage of error (which corresponds to the convex combination)
and the percentage of error produced by the harmonic mean (which performs better than
the formulas by Rakha and Zhang (2005) and by Wardrop (1952)).

6.2 MATLAB simulations

In order to consider the scenarios that are not covered by the real-life data given in
Section 6.1, we now present simulations using MATLAB. In this setting we can repeat
the experiments for different ranges of hA, vA,min, and vA,max as many times as is desired,
and construct the boxplots of the errors produced by the different averaging formulas.
Such a boxplot shows the shape of the distribution of the errors, its central value, and
variability. The produced picture indicates the most extreme values in the data set, the
lower and upper quartiles, and the median.
We generate a set of individual speeds using a normal1 distribution with the mean

value equal to the average of vA,min and vA,max, which are chosen for different scenarios
using Table 3. In order to produce the individual speeds based on a normal distribution,
we also need the standard deviations for which we use the values given by Huey et al.
(2012) for different traffic scenarios. To find the real TSMS using (6), the trajectories
of the vehicles are assumed to be straight lines, an assumption that is confirmed by

1According to May (1990) one of the most commonly used mathematical distributions for representing the
measured speed values is the normal distribution.
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the trajectories obtained from the NGSIM and the Rotterdam-Delft data. Since we con-
sider loop detectors, we use LA = 500 m, which is the prevalent distance between two
consecutive loop detectors in most parts of Europe, and also in many areas of the US.
We will consider the scenarios given in Table 3. The speed ranges for different traffic

scenarios in Table 3 are based on the information given by HCM (2000). In Section 6.1 we
observed that by decreasing the sampling period, TA, the error produced by the formulas
by Rakha and Zhang (2005), by Wardrop (1952), and by the harmonic mean increases,
while the convex combination still yields great results. Therefore, here for each of the
over-saturated and queue discharge scenarios, MATLAB simulations are repeated two
times for TA = 5 min and TA = 1 min. For the mean time headway of the vehicles, hA,
we use the results provided by Zou et al. (2014) and Brackstone et al. (2009), where the
correlation between the speed and the time headway is studied. Based on the results of
these papers, we have selected hA for each scenario as shown in Table 4.
We should note that in (Zou et al. 2014) and (Brackstone et al. 2009), a range of values

is given for the time headway for each traffic scenario. In the fundamental diagram, the
under-saturated scenario covers small to large flows. Therefore, it depends on the number
of the vehicles traveling on the road that which time headway is observed. If there is a
large number of vehicles moving freely on the road, then hA decreases. However, if the
number of the vehicles reduces, then hA increases. Therefore, for the under-saturated
scenario, MATLAB simulations are repeated four times where in the first and second
simulations hA = 0.5 s is considered and in the third and fourth simulations hA = 2.0 s
is used (see Table 4 for the parameter values and Figures 10(e), 10(f), 10(g), and 10(h)
for the results of the simulations).
The results for MATLAB simulations are given in Figure 10. From this figure we see

that in general the errors by all formulas decrease when the flow scenario changes from
the over-saturated to the under-saturated case, where it becomes negligible for example
in Figure 10(e). In all cases the convex combination gives the best performance. The
differences in performance are more highlighted for the over-saturated case, where the
best formula is clearly the convex combination. Here for TA = 5 min (see Figure 10(a))
an improvement of almost 4% is obtained by the proposed convex combination. For a
shorter sampling period, i.e., TA = 1 min (see Figure 10(b)) the improvement resulted by
the convex combination increases to 14%. Comparing the results in the first and second
columns of Figure 10, the same result as in Section 6.1 is obtained, i.e., in general by
decreasing the value of TA, the error values produced by the formulas by Rakha and
Zhang (2005), by Wardrop (1952), and by the harmonic mean increase dramatically,
while the convex combination produces considerably smaller errors compared with the
other formulas.

7. Conclusions and future work

We have first developed tight upper and lower bounds for the time-space-mean speed
(TSMS), which is an equivalent for the generalized speed introduced by Edie (1963). In
our proposed method, we have used microscopic traffic point measurements. Afterwards,
we have introduced a convex combination of the upper and lower bounds such that an
appropriate estimate of the TSMS is obtained.
In order to assess and to compare the performance of the different formulas, we have

applied them to two real-life traffic data sets corresponding to the NGSIM data for
the I-880 highway in the San Francisco Bay Area, and the A13 data near Rotterdam-
Delft. Moreover, we have also included a number of MATLAB simulations to consider
some of the traffic scenarios that are not covered by the real-life data sets. In this way
different traffic scenarios including the under-saturated, the queue discharge, and the
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(b) Boxplots for relative errors for 500 tests for
the 2nd over-saturated scenario

0

0.5

1

1.5

2

2.5

R
el
at
iv
e
er
ro
r
(%

)

Wardrop
(1952)

Rakha &
Zhang (2005)

Convex
combination

Harmonic
mean

(c) Boxplots for relative errors for 500 tests for
the 1st queue discharge scenario
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(d) Boxplots for relative errors for 500 tests for
the 2nd queue discharge scenario
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(e) Boxplots for relative errors for 500 tests for
the 1st under-saturated scenario
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(f) Boxplots for relative errors for 500 tests for
the 2nd under-saturated scenario
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(g) Boxplots for relative errors for 500 tests for

the 3rd under-saturated scenario
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Figure 10. The percentage of errors for the formulas by Wardrop (1952), and by Rakha and Zhang (2005), the
harmonic mean of the individual speeds, and the convex combination developed in this paper for MATLAB
simulations
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over-saturated flow have been covered.
The results from both the real-life data and from the MATLAB simulations show that

the values produced by the new formula give better estimates of the TSMS compared
with the formulas by Wardrop (1952), and by Rakha and Zhang (2005), and the pure
harmonic mean of the individual speeds. An improvement of 7% has been obtained
using the convex combination proposed in this paper for the real-life data sets. The
improvement resulted by the convex combination for the MATLAB simulations has been
even higher, i.e., an improvement of 14% has been obtained.
For future work, we will consider an important subject that is missing in the literature

considering estimation of the average speed, and that is how to handle the vehicles that
remain on a given road section for more than one sampling cycle. These vehicles are
detected by the downstream loop detector once they enter the road section. However, in
future cycles the data of these vehicles will not be considered by the loop detector.
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