
Delft University of Technology
Delft Center for Systems and Control

Technical report 15-006

Reasoning under uncertainty for
knowledge-based fault diagnosis: A

comparative study∗

K. Verbert, B. De Schutter, and R. Babuška

If you want to cite this report, please use the following reference instead:
K. Verbert, B. De Schutter, and R. Babuška, “Reasoning under uncertainty for
knowledge-based fault diagnosis: A comparative study,” Proceedings of the 9th IFAC
Symposium on Fault Detection, Supervision and Safety of Technical Processes (Safe-
Process 2015), Paris, France, pp. 422–427, Sept. 2015. doi:10.1016/j.ifacol.2015.09.
563

Delft Center for Systems and Control
Delft University of Technology
Mekelweg 2, 2628 CD Delft
The Netherlands
phone: +31-15-278.24.73 (secretary)
URL: https://www.dcsc.tudelft.nl

∗ This report can also be downloaded via https://pub.bartdeschutter.org/abs/15_006.html

https://doi.org/10.1016/j.ifacol.2015.09.563
https://doi.org/10.1016/j.ifacol.2015.09.563
https://www.dcsc.tudelft.nl
https://pub.bartdeschutter.org/abs/15_006.html


Reasoning under Uncertainty for

Knowledge-Based Fault Diagnosis:

A Comparative Study
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Technology, Mekelweg 2, 2628 CD Delft, The Netherlands, (e-mail:
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Abstract: This paper addresses reasoning under uncertainty for knowledge-based fault diag-
nosis. We illustrate how the fault diagnosis task is influenced by uncertainty. Furthermore, we
compare how the diagnosis task is solved in the Bayesian and the Dempster-Shafer reasoning
framework, in terms of both diagnostic performance and additional objectives, like transparency,
adaptability, and computational efficiency. Since the diagnosis problem is influenced by different
kinds of uncertainty, it is not straightforward to determine the optimal reasoning method. First,
the different uncertain influences all have their own characteristics, asking for different reasoning
approaches. So, to solve the whole problem in one reasoning framework, approximations and
trade-offs need to be made. Second, which types of uncertainty are present and to what extent,
is highly application-specific. Therefore, the best framework can only be assigned after the
problem, the uncertainty characteristics, and the user requirements are known.

Keywords: Fault diagnosis, Bayesian inference, Dempster-Shafer inference.

1. INTRODUCTION

Condition-based maintenance aims to optimize mainte-
nance planning based on actual system data. A mainte-
nance scheme is optimal when it minimizes a function of
downtime and costs. Generally, this implies that we want
to perform adequate maintenance at a convenient time
“just” before a system failure occurs. To be successful, one
needs to estimate the time of occurrence and the type of
an upcoming failure from the condition monitoring data.
For the latter task, techniques from fault diagnosis are
generally considered. Especially for safety-critical systems,
like medical devices, nuclear reactors, and railway systems,
this task is challenging due to the presence of uncertainty.

The diagnosis task is influenced by uncertainty in vari-
ous ways. First, the available monitoring data may be
incomplete, incorrect, and imprecise, e.g. due to sensors
with a finite accuracy and suffering from drift and off-sets.
Second, the available knowledge relating monitoring data
to system health is usually uncertain, i.e. incomplete, sub-
jective, and partly incorrect. Finally, the relations between
monitoring data and system health are not deterministic,
i.e. the system health depends on factors we do not know.

We focus on reasoning under uncertainty for the purpose
of knowledge-based fault diagnosis. We investigate:

(1) How the diagnosis task is influenced by uncertainty;
(2) How the diagnosis task fits within the Bayesian and

Dempster-Shafer (D-S) reasoning frameworks;
(3) Which additional objectives (e.g. transparency) are

of relevance to assess a reasoning method.

Although reasoning under uncertainty has already received
a lot of attention in the literature, most of the works

focus on advocating one particular reasoning method (e.g.
Bayesian or D-S inference) in general, i.e., without refer-
ring to a specific application (Cobb and Shenoy, 2003b;
Dubois et al., 1996; Dubois and Prade, 2001; Ferson and
Ginzburg, 1996; Lindley, 1987; Oukhellou et al., 2008,
2010; Smets, 1992) or apply one particular reasoning
method to a specific problem (Basir and Yuan, 2007;
Oukhellou et al., 2008, 2010; Sallak et al., 2013). In this
work, we specifically consider reasoning for the purpose
of fault diagnosis. By analyzing the different uncertainty
sources that affect the diagnosis task, we investigate to
what extent Bayesian and D-S reasoning suit the problem
under consideration. In addition, we take objectives, like
computational efficiency and transparency into account.

This paper is organized as follows: In Section 2, the di-
agnosis problem is introduced. Section 3 briefly reviews
the Bayesian and D-S reasoning frameworks. Next, in Sec-
tion 4, a diagnosis problem is solved in both the Bayesian
and the D-S framework. In Section 5, the two reasoning
methods are compared and additional performance criteria
and trade-offs are discussed.

2. THE DIAGNOSIS TASK

A knowledge-based approach is considered for fault diag-
nosis, which comprises the determination of the cause(s) of
any abnormal system behavior. As input for the diagnosis,
we have ℓ raw monitoring signals x1 till xℓ and as output
we aim to determine the system health H, i.e. whether or
not the system is healthy and if not what is the actual
cause of the unhealthy behavior. To arrive from the raw
monitoring signals x1 till xℓ at a prediction of the current
system health H, the following steps need to be taken:
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Fig. 1. Different steps in a knowledge-based diagnosis task.

(1) Feature generation, i.e. extracting features from the
monitoring signals that are useful for diagnosis.

(2) Conversion from the feature space to a finite set of
values, called the frame of discernment.

(3) Inference, i.e. deriving the current system health from
the values of the features.

These steps are illustrated in Figure 1. For the purpose
of diagnosis, n independent features v1 till vn are derived
from x1 till xℓ. For each feature vi, its actual “value” is
determined and represented by a distribution function over
the frame of discernment Θvi

. The type of distribution
function used, depends on the framework considered for
the diagnosis, e.g. when a Bayesian approach is considered,
the distribution function has the form of a probability
distribution and when a D-S approach is considered, it
has the form of a mass function. Based on the distribution
functions of all features, system health is inferred.

The diagnosis task outlined above, may be influenced by
uncertainty at the different stages of the diagnosis process:

(1) The monitoring signals x are not a perfect represen-
tation of the quantity we aim to measure.

(2) In general, it is not straightforward to derive a dis-
tribution function over the frame of the discernment
Θvi

based on the behavior of feature vi. This means
that approximations (e.g. based on subjective human
judgment) need to be made.

(3) The knowledge base, i.e. the relations assumed be-
tween features and system health, is not completely
complete and correct.

The exact nature of these different uncertain influences is
highly application-specific. For reasoning purposes, uncer-
tainty is often divided into:

(1) Statistical (i.e. aleatory) uncertainty
(2) Systematic (i.e. epistemic) uncertainty

Statistical uncertainty represents intrinsic variability,
whereas systematic uncertainty arises due to a lack of
knowledge. The two are often distinguished using the fact
that systematic uncertainty can be reduced by gather-
ing more data or knowledge, whereas statistical uncer-
tainty cannot be reduced (Ferson and Ginzburg, 1996;
Kiureghian and Ditlevsen, 2009). So, ideally we would like
to eliminate all systematic uncertainty by improving our
diagnosis setup (e.g. by placing additional sensors or by
improving our knowledge base), so that only statistical
uncertainty remains. In practice, this is not always pos-
sible e.g. because our knowledge is (still) not sufficient

or because placing additional sensors is not possible or
too expensive. Therefore, in the remainder we consider
reasoning in the presence of both statistical and systematic
uncertainty. We assume that systematic uncertainty is
present in the form of subjective and incomplete informa-
tion and we restrict ourselves to two well-known reasoning
frameworks, Bayesian and D-S inference. Bayesian theory
is a framework, especially designed to handle subjective
probabilities, but claimed to be good in handling all kinds
of uncertainty (Lindley, 1987). The D-S framework is es-
pecially suitable to handle incomplete information (Demp-
ster, 1967; Shafer, 1976, 1990; Smets, 1994).

3. BAYESIAN AND DEMPSTER-SHAFER
REASONING

This section contains background information about the
two reasoning frameworks considered. Section 3.1 on
Bayesian reasoning is based on (Darwiche, 2009; Pearl,
1988; Pearl and Russel, 2001; Wiegerinck et al., 2010)
and Section 3.2 on D-S reasoning is based on (Cobb and
Shenoy, 2003a; Smets, 1978, 1990, 1994; Yager, 1987).

3.1 Bayesian framework

The Bayesian framework is based on probabilities. At
each reasoning step, a probability between zero and one
inclusive is assigned to each individual element a in the
frame of discernment ΘY of variable Y such that

∑

a∈ΘY

Pr(a) = 1 (1)

When a new evidence b ∈ ΘX regarding a variable X that
is related to variable Y becomes available, the probability
distribution of Y is updated using Bayes’ rule:

Pr(a|b) =
Pr(b|a) Pr(a)

∑

a′∈ΘY
Pr(b|a′) Pr(a′)

(2)

with Pr(a) the prior probability of a, Pr(a|b) the posterior
probability of a, i.e. the probability of a after observing b,
and Pr(b|a) the likelihood function, i.e. the probability of
observing b given a.

Because in practice the available information is not always
exactly in the desired format, i.e. represented by probabil-
ity distributions, rules have been defined to approximate
probability functions from non-probabilistic information.
One important rule is the principle of insufficient reason-
ing, which states that in the absence of knowledge, all
possible outcomes should be assigned equal probabilities.
Another commonly used rule is the additivity axiom, which
directly follows from (1) and states that:

Pr(a) + Pr(∼ a) = 1 (3)

3.2 Dempster-Shafer (D-S) framework

The theory of belief functions was developed to handle
incomplete information. This is realized by allowing the
assignment of belief to sets of elements of ΘY instead of
assigning belief only to individual elements, like in the
Bayesian framework. A belief function mΘY : 2ΘY → [0, 1]
is a function that assigns a “mass of belief” to each subset
A of ΘY such that:

∑

A⊆ΘY

mΘY (A) = 1 (4)



When a new evidence about Y , in the form of a mass
function mΘY

e , becomes available, the mass function mΘY

is updated using Dempster’s combination rule:

m
ΘY
u (A) =











0 if A = ∅,

K
∑

A′∩A′′
=A

A′,A′′⊆ΘY

mΘY (A′)m
ΘY
e (A′′) otherwise (5)

with mΘY , mΘY

e , and mΘY

u mass functions on the same
space ΘY , K a normalization constant, and mΘY

u the
updated mass function.

As the available information is not always in the desired
format e.g. we may have conditional information or pieces
of information on different spaces, operations have been
defined to convert this information to the required format.
The most common ones are:

(1) Ballooning extension (Smets, 1978) to convert con-
ditional information to a mass function on the joint
space;

(2) Cylindrical extension (Cobb and Shenoy, 2003a) to
convert a mass function to a mass function on a larger
space;

(3) Marginalization (Cobb and Shenoy, 2003a) to convert
a mass function to a mass function on a smaller space.

4. UNCERTAINTY REASONING FOR DIAGNOSIS

To illustrate the different reasoning steps and the differ-
ences between Bayesian and D-S reasoning, in this section,
we work out an uncertain diagnosis problem in both frame-
works. Before analyzing the diagnosis problem in the two
frameworks, we specify the diagnosis task considered.

4.1 Problem specification

We consider a simple reasoning task with the aim to
determine system health H based on condition monitoring
data. As we focus on reasoning, we assume that the
monitoring signals are already transformed to the feature
space and that information regarding the features v1 till
vn becomes available. So, based on evidence regarding the
feature values, we aim to determine system health H. This
way, the diagnosis task comprises the following subtasks:

T1 : Transforming the uncertain knowledge base to the de-
sired format, i.e. conditional probabilities for Bayesian
reasoning and mass functions for D-S reasoning;

T2 : Transforming the uncertain information regarding the
features to the desired format, i.e. a specific value for
Bayesian reasoning and a mass distribution function
for D-S reasoning;

T3 : Inferring system health.

For this particular example, there are only two relevant
features, v1 and v2, and the frames of discernment of
system health H and features v1 and v2 are defined as:

ΘH = {f1, f2}

Θv1
= {a,b,c,d}

Θv2
= {y,z}

The following knowledge base is available for inference:

s1 : If H = f1 then Pr(v1 = b) = 0.85
s2 : If H = f2 then Pr(v1 = c) = 0.95∧Pr(v1 = d) = 0.05

s3 : If H = f1 then Pr(v2 = y) = 1
s4 : If H = f2 then Pr(v2 = z) = 0.7

Furthermore, we assume that no prior knowledge regard-
ing the relative probabilities of the two health states in
ΘH is available. The evidences regarding v1 and v2 are
available in the form of incomplete distribution functions
over the feature values:

e1 : Pr(v1 = d) = 0.3, Pr(v1 6= d) = 0.7
e2 : Pr(v1 = c ∨ v1 = d) = 1
e3 : Pr(v2 = z) = 0.8

Note that these distribution functions are not yet in
the format required by the Bayesian and D-S reasoning
framework. That is why step T2 is required.

4.2 Bayesian reasoning

In the Bayesian framework, the diagnosis task is graphi-
cally represented by the Bayesian network as is shown in
Figure 2. Here, the variables of interest are system health
H and the features v1 and v2. The links in the network
indicate that system health H affects both v1 and v2, but
features v1 and v2 do not influence each other.

v1

H v2

Θv1
= {a,b,c,d}

ΘH = {f1, f2} Θv2
= {y,z}

Fig. 2. Bayesian network of the diagnosis problem.

In our example, we have no information regarding the
prior probability function of H and we have only partial
knowledge regarding the conditional probability tables of
v1 and v2. Therefore, we use the principle of insufficient
reasoning to obtain a probability function on H:

Pr(f1) = Pr(f2) = 0.5 (6)

Furthermore, given knowledge rules s1 till s4 and consider-
ing the principle of insufficient reasoning and the additivity
axiom (3), the conditional probability tables of v1 and v2,
as given in Table 1 are obtained.

Table 1. Conditional probability table of v1
and v2.

v1 v2

H a b c d y x

f1 0.05 0.85 0.05 0.05 1 0
f2 0 0 0.95 0.05 0.3 0.7

Now that the network is defined, we can update the
network based on evidences e1, e2, e3. First, a decision
regarding the value of v1 and v2 needs to be made. To
determine the value of v1, we combine the information
in e1 and e2. First, we approximate e1 by a probability
distribution function (principle of insufficient reasoning):

Pr(d) = 0.3

Pr(a) = Pr(b) = Pr(c) = 0.2333 (7)



Next, this information is conditioned based on e2 using
(2), resulting in the following probability distribution:

Pr(d|c ∨ d) =
1 · 0.3

0.3 + 0.7

3

= 0.5625

Pr(c|c ∨ d) =
1 · 0.7

3

0.3 + 0.7

3

= 0.4375

Pr(a|c ∨ d) = 0

Pr(b|c ∨ d) = 0 (8)

As Bayes’ rule requires a hard decision regarding the value
of v1, we decide that:

v1 = d (9)

Similarly from e3 we derive:

Pr(z) = 0.8

Pr(y) = 0.2 (10)

from which we decide that:

v2 = z (11)

Now we can update the network using Bayes’ rule (2).
First, conditioning on v1 results in:

Pr(f1|d) =
Pr(d|f1) Pr(f1)

Pr(d|f1) Pr(f1) + Pr(d|f2) Pr(f2)
= 0.5

Pr(f2|d) =
Pr(d|f2) Pr(f2)

Pr(d|f2) Pr(f2) + Pr(d|f2) Pr(f2)
= 0.5

(12)

From this probability distribution, it follows that the
evidences regarding v1 do not provide much information
regarding H.

Next, the obtained posterior probability distribution of H
is used to condition the evidence regarding v2 on:

Pr(f1|d ∧ z) =
Pr(z|f1) Pr(f1|d)

Pr(z|f1) Pr(f1|d) + Pr(z|f2) Pr(f2|d)
= 0

Pr(f2|d ∧ z) =
Pr(z|f2) Pr(f2|d)

Pr(z|f2) Pr(f2|d) + Pr(z|f2) Pr(f2|d)
= 1

(13)

So, given v1 and v2, we conclude that H = f2.

4.3 Dempster-Shafer belief networks

In the D-S framework, the diagnosis problem is graphically
represented by the valuation network as is shown in
Figure 3. The rounded rectangles represent the variables of
interest, i.e. system health and features v1 and v2, and the
hexagons are valuations, representing the knowledge about
the relationships between the connected variables (Shenoy,
1992). To define a D-S valuation network, each valuation
must be represented by a mass function, e.g. for the
relation between v1 and H a mass function mΘv1

×H on the
space Θv1

×ΘH is required. As the available information is
conditional, the ballooning extension is used to derive the
mass functions on the joint spaces of the related variables.
First, the ballooning extension is used to transform rule
s1 to a mass function on Θv1

×ΘH :

mΘv1 (·|f1)
⇑Θv1

×ΘH ({(b, f1), (·, f2)}) = 0.85

mΘv1 (·|f1)
⇑Θv1

×ΘH (Θv1
×ΘH) = 0.15 (14)

Similarly, rule s2 is transformed to a mass function on
Θv1

×ΘH :

v1

H

v2Θv1 = {a,b,c,d}

ΘH = {f1, f2}

Θv2 = {y,z}

mΘv1
×ΘH mΘv2

×ΘH

Fig. 3. D-S representation of the diagnosis problem.

mΘv1 (·|f2)
⇑Θv1

×ΘH ({(c, f2), (·, f1)}) = 0.95

mΘv1 (·|f2)
⇑Θv1

×ΘH ({(d, f2), (·, f1)}) = 0.05 (15)

withmΘv1 (·|f1)
⇑Θv1

×ΘH (·) andmΘv1 (·|f2)
⇑Θv1

×ΘH (·) mass
functions on the space Θv1

×ΘH that result from applying
the ballooning extension on the conditional information
about Θv1

. Combining (14) and (15) using (5) results in:

mΘv1
×ΘH ({(b, f1), (c, f2)}) = 0.85 · 0.95

mΘv1
×ΘH ({(b, f1), (d, f2)}) = 0.85 · 0.05

mΘv1
×ΘH ({(c, f2), (·, f1)}) = 0.15 · 0.95

mΘv1
×ΘH ({(d, f2), (·, f1)}) = 0.15 · 0.05 (16)

Next, the ballooning extension is used to extend rules s3
and s4 to a mass function on the space Θv2

×ΘH .

mΘv2 (·|f1)
⇑Θv2

×ΘH ({(y, f1), (·, f2)}) = 1 (17)

and applying the ballooning extension on s4 gives:

mΘv2 (·|f2)
⇑Θv2

×ΘH ({(z, f2), (·, f1)}) = 0.7

mΘv2 (·|f2)
⇑Θv2

×ΘH (Θv2
×ΘH) = 0.3 (18)

Combining (17) and (18) using (5) yields:

mΘv2
×ΘH ({(z, f2), (y, f1)}) = 0.7

mΘv2
×ΘH ({(y, f1), (·, f2)}) = 0.3 (19)

Now that the network is defined, we can update the
network based on evidences regarding the features v1
and v2. We first convert the evidences e1, e2, e3 to the
appropriate format. To obtain a mass function regarding
v1, we combine the information in e1 and e2. To this
aim, both evidence e1 and e2 are represented by a mass
function, after which the two functions are combined.

Evidence e1 is represented by mass function m
Θv1

1
:

m
Θv1

1
({d}) = 0.3

m
Θv1

1
({a, b, c}) = 0.7 (20)

Evidence e2 is represented by mass function m
Θv1

2
:

m
Θv1

2
({c, d}) = 1 (21)

Combining m
Θv1

1
and m

Θv1

2
: using (5), yields:

mΘv1 ({d}) = 0.3

mΘv1 ({c}) = 0.7 (22)

A mass function regarding v2 follows from evidence e3:

mΘv2 ({z}) = 0.8

mΘv2 (Θv2
) = 0.2 (23)

First, we update the network based on the evidences re-
garding v1. Therefore, we combine mΘv1 with the corre-
sponding valuation function mΘv1

×ΘH . As the two mass
functions are defined on different space, we first vacuously



extend mΘv1 to the space Θv1
×ΘH using the cylindrical

extension, so that we end up with two mass functions on
the same space:

mΘv1
↑Θv1

×ΘH

(

{(d, f1), (d, f2)}
)

= 0.3;

mΘv1
↑Θv1

×ΘH

(

{(c, f1), (c, f2)}
)

= 0.7. (24)

with mΘv1
↑Θv1

×ΘH (·) the cylindrical extension of a mass
function on Θv1

on the space Θv1
× ΘH . Combining this

mass function with the valuation function mΘv1
×ΘH (16)

according to (5) results in:

mΘv1
×ΘH ({(d, f2)}) = 0.3 · 0.85 · 0.05

mΘv1
×ΘH ({(c, f2)}) = 0.7 · 0.85 · 0.95

mΘv1
×ΘH ({(d, f1)}) = 0.3 · 0.15 · 0.95

mΘv1
×ΘH ({(c, f1), (c, f2)}) = 0.7 · 0.15 · 0.95

mΘv1
×ΘH ({(d, f1), (d, f2)}) = 0.3 · 0.15 · 0.05

mΘv1
×ΘH ({(c, f1)}) = 0.7 · 0.15 · 0.05 (25)

Marginalization of mΘv1
×ΘH on ΘH gives:

mΘv1
×ΘF ↓ΘH ({f1}) =

0.3 · 0.15 · 0.95 + 0.7 · 0.15 · 0.05

0.728
= 0.07

mΘv1
×ΘF ↓ΘH ({f2}) =

0.3 · 0.85 · 0.05 + 0.7 · 0.85 · 0.95

0.728
= 0.79

mΘv1
×ΘF ↓ΘH ({f1, f2}) =

0.7 · 0.15 · 0.95 + 0.3 · 0.15 · 0.05

0.728
= 0.14

(26)

with mΘv1
×ΘF ↓ΘH (·) the marginalization of a mass func-

tion on the space Θv1
× ΘH on the space ΘH . So, based

on only the evidences regarding v1, we conclude that most
probably H = f2.

Next, we update the network based on the evidence
regarding v2. Extending mΘv2 to the space Θv2

×ΘH using
the cylindrical extension yields:

mΘv2
↑Θv2

×ΘH

(

{(z, f1), (z, f2)}
)

= 0.8

mΘv2
↑Θv2

×ΘH

(

Θv2
×ΘH

)

= 0.2 (27)

Combining (27) with the valuation function mΘv2
×ΘF (19)

according to (5) gives:

mΘv2
×ΘH ({(z, f2)}) = 0.7 · 0.8 + 0.3 · 0.8

mΘv2
×ΘH ({(z, f2), (y, f1)}) = 0.7 · 0.2

mΘv2
×ΘH ({(y, f1), (·, f2)) = 0.3 · 0.2 (28)

Marginalization of mΘv2
×ΘH on ΘH gives:

mΘv2
×ΘH↓ΘH ({f2}) = 0.7 · 0.8 + 0.3 · 0.8

mΘv2
×ΘH↓ΘH ({f1, f2}) = 0.7 · 0.2 + 0.3 · 0.2 (29)

Combining (26) and (29) accordingly (5) results in the
final mass distribution:

mΘH ({f1}) = 0.01

mΘH ({f2}) = 0.96

mΘH ({f1, f2}) = 0.03 (30)

from which we conclude that probably H = f2.

5. PERFORMANCE REQUIREMENTS AND
CONSIDERATIONS

In the previous section, we have seen how a diagnosis
problem can be solved in both the Bayesian and the
D-S framework. In this section, we compare the results
where we take, next to diagnostic performance, additional

performance criteria, like computational efficiency and
transparency, into account.

As fault diagnosis comprises the determination of the
cause(s) of the abnormal behavior of the monitoring sig-
nal(s), which is a causal reasoning task, Bayesian rea-
soning seems particularly suited for this task. However,
in practice, the available knowledge and data are not in
Bayesian format (i.e. are not represented by a probability
distribution) and approximations need to be made. The D-
S framework is perfectly suited to handle knowledge that
is not purely probabilistic, but is less suited for causal
reasoning. This means that when choosing a method it
needs to be considered to what extent the actual data and
knowledge are probabilistic and what the consequences
are of approximating the non-probabilistic information by
probability distributions. Unfortunately, a good insight
into the characteristics of all uncertain influences is often
not available and approximations have to be used.

Other objectives that need to be taken into account when
selecting an appropriate reasoning approach are e.g., com-
putational efficiency, clarity of inference, adaptability, and
flexibility of reasoning. Computational efficiency may be
of importance for on-line diagnosis tasks. Computation-
ally, D-S networks are more expensive to evaluate than
Bayesian networks (Cobb and Shenoy, 2003a; Haenni and
Lehmann, 2003). So, even when, for a particular applica-
tion, D-S networks may regarded as theoretically superior
to Bayesian networks, the Bayesian solution may outper-
form the D-S solution in practice because the diagnosis
can be carried out with a smaller delay.

Clarity of inference is an objective that is relevant in
many practical applications as the implementation of a
decision support system within a company is much easier
when the system is intuitive and understandable. Consid-
ering “clarity of inference” for the user, Bayesian networks
outperform D-S networks. In contrast, for the experiment
designer, the output of a D-S framework is often considered
clearer, as the D-S framework makes a distinction between
probabilistic information and ignorance. Whereas in the
D-S framework two distinct outcomes are obtained in the
situation that no information regarding system health is
available, i.e. m(ΘH) = 1, and the situation in which we
have the information that all faults are equally likely, i.e.
m(f1) = m(f2) = ... = m(fn) = 1/n, in the Bayesian
framework, both situations result in the same probability
function, Pr(f1) = Pr(f2) = ... = Pr(fn) = 1/n. The
additional information provided by the D-S outcome can
be used to reconsider the diagnosis setup (e.g. an incom-
plete outcome gives rise to extend the knowledge base) or
to assist decision making, e.g. by choosing a conservative
decision approach when the diagnosis outcome is ignorant.

Finally, the relevance of the objectives adaptability and
flexibility of reasoning is rather application-specific. Do we
expect that our data and knowledge will change over time?
So, do we really need an easily adaptable system? Or,
do we really need complex types of reasoning? Bayesian
reasoning is promoted for its ability to easily handle
complex types of reasoning, like explaining away and
bi-directional (both predictive and diagnostic) reasoning
(Pearl, 1988). When we consider the diagnosis problem as
introduced in Section 2, there is no need for complex types



of reasoning as only evidence of the consequence variables
is expected and there are no variables that are influenced
by more than one variable. However, the situation changes
when we take besides system data, external influences,
e.g. weather, into account as inputs for the diagnosis. In
this situation, deviations in the monitoring data m can
be explained by system health and/or by the external
influences, in which case there is a need for bi-directional
inference and explaining away.

6. CONCLUSIONS

We have discussed how a knowledge-based diagnosis ap-
proach is influenced by uncertainty and how the uncertain
problem can be solved in the Bayesian and Dempster-
Shafer framework. We conclude that the final choice for a
reasoning method is highly application-specific, both be-
cause each problem has different uncertain influences, re-
quiring other reasoning strategies and because each prob-
lem has another weighting of additional objectives, like
computational efficiency. Therefore, the optimal reasoning
strategy can only be assigned after the problem (including
uncertainty characteristics) and the user requirements are
known.
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