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Urban traffic control using a fuzzy multi-agent system

Anahita Jamshidnejad1, Bart De Schutter1, and Mohammad J. Mahjoob2

Abstract— This paper presents a fuzzy multi-agent system
for control of the traffic signals of an urban network, where
the aim is to reduce the total average delay time of the vehicles.
The large-scale traffic system is first divided into sub-areas and
an agent, using a fuzzy controller, is considered for each sub-
area. In order to develop the fuzzy rule bases for the agents, an
extensive set of data is collected and the corresponding origin-
destination (OD) matrices are calculated. The OD matrices are
then clustered using a new clustering algorithm proposed in this
paper. Finally, the resulting cluster centers, which are matrices
of the same dimension as the OD matrices, are mapped to a 2-
dimensional space and the corresponding triangular fuzzy sets
are extracted. An optimal cycle plan is found for each fuzzy set
and this way the fuzzy rule bases are constructed (the triangular
fuzzy sets form the IF-parts and the optimal cycle plans form
the THEN-parts). In a case study the proposed multi-agent
control system is applied to a microscopic urban traffic network
and the results are compared with a controller that applies
optimal signal plans calculated by PASSER V. The results show
that the proposed fuzzy multi-agent system outperforms the
non-fuzzy control system, where the average delay time of the
traveling vehicles is decreased by 19% using the multi-agent
control system.

I. INTRODUCTION

Mobility is increasing rapidly in different areas of the

world as a result of population growth and technology

developments. As a result, efficient methods are required

to manage the traffic such that its side-effects such as

traffic congestion, accidents and injuries, waste of resources,

noise/air pollution can be reduced. In order to reduce the

traffic problems, various strategies have been proposed, in-

cluding enhancement of road capacity through construction

of new roads, improvement of public transportation systems,

road pricing and congestion charging, and development of

modern Intelligent Transportation Systems (ITS).

The idea of intelligent transportation systems (ITS) was

initiated in the late 1980s to automatically control traffic [1].

ITS incorporate traffic management measures such as on-line

route guidance and real-time information exchanges among

the road users [2], [3], variable speed limits, dynamic signal

planning, and use of high occupancy vehicle lanes.

Multi-agent architectures have widely been considered

for traffic management and ITS, since they can deal with

the large-sized traffic systems. In [4] two different multi-

agent traffic control systems (TRYS and TRYSA2) were

introduced for motorways, where one of the architectures

uses a decentralized coordination approach among the agents
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and the other one uses a centralized approach. Another multi-

agent control system suggested for motorways is presented in

[5] where a hierarchical centralized coordination algorithm

for the agents is considered. An adaptive multi-agent control

system based on ant colony behavior is proposed in [6].

In a multi-agent architecture for urban traffic networks,

there are two options: the first is that the control instruments

(e.g., the traffic signals) are supposed to be intelligent agents,

while the system users (the vehicles) are not considered as

intelligent agents and do not directly exchange information

with other agents [7], [8]; the second option is that both

the controllers and the users of the system are considered as

agents that communicate with each other [9], [10].

Soft computing techniques, including fuzzy systems, have

been widely used and shown great performance in traffic

control applications [11], [12], [13].

This paper introduces a multi-agent fuzzy control system

for an urban traffic network, where the traffic network is

divided into sub-areas each composed of an intersection and

the corresponding traffic signals and sensors that count the

flows on the entrances and exits of the intersection. Each

intersection is controlled by an agent that uses a fuzzy

controller. The process of designing the agent-based control

system for each sub-area includes collecting and clustering

a huge number of data in an off-line stage. A fuzzy rule

base is then constructed and a fuzzy control system is

designed. The agents will finally exchange information with

their neighboring agents in order to make the best global

decision.

The main contributions of the paper include:

• introducing a new clustering algorithm to cluster the

OD matrices such that the resulting clusters have small

total within-group variance and are also well separated,

• proposing a mapping method for the OD matrices to

reduce their size and to consequently reduce the number

of fuzzy sets that are required for the rule bases,

• considering a MISO fuzzy inference engine that is based

on estimates of the entering flows to the intersection in

the near future.

The remainder of the paper is organized as follows:

Section II presents the off-line stage in detail, where the

process of constructing the agent-based fuzzy control system

for each intersection is discussed. Section III explains how

the designed fuzzy controllers are applied on-line via a

multi-agent architecture. Section IV illustrates the proposed

approach based on a network with 25 intersections and

presents the corresponding results. Finally, the conclusions

are given in Section V.
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Fig. 1. Steps of the off-line stage for creating the fuzzy rule bases

II. OFF-LINE STAGE

In this section we will explain the off-line stage, where

a fuzzy controller for each agent is constructed. This stage

consists of six steps that are demonstrated by Fig. 1. These

six steps of the off-line stage include:

1) collecting an extensive data set

2) calculating the origin-destination (OD) matrices from

collected data,

3) clustering the resulting OD matrices and finding the

cluster centers,

4) mapping the matrices into a 2-dimensional space,

5) extracting a type-1 fuzzy set for each cluster (the

fuzzy sets will be called the traffic patterns of the

intersection),

6) finding the optimized signal plan for each traffic pat-

tern.

The following sections will explain these six steps in more

detail.

A. Data collection

As the first step of constructing an agent-based fuzzy

controller, for each intersection we collect an extensive set of

traffic flow data. The data set should be collected carefully

and in an extended period of time such that it covers different

traffic scenarios (peak and off-peak, free and congested flow,

etc.).

B. Data Analysis: calculation of the local OD matrices

As the next step, we determine the origin-destination (OD)

matrices from the collected data. For each intersection and

for every sampling step, an OD matrix is calculated. This

yields a matrix of dimension Ne × No with Ne and Nrmo

being the number of entrances and exits of the intersection

respectively. The (i, j)th entry of the OD matrix at sampling

step l, denoted by gi,j(l), is the flow from entrance i through

exit j that enters the intersection during one sampling step.

To generate the OD matrices from the collected data, the

method described in [11] can be used.

Now, if we define bi,j(l) as the probability that a vehicle

observed at entrance i in period [l − p, l] will leave the

intersection through exit j, with

bi,j(l) ≥ 0,
No
∑

j=1

bi,j(l) = 1
for

i = 1, . . . , Ne

j = 1, . . . , No

(1)

then the following optimization helps us find gi,j(l):

min f = min





l
∑

s=l−p

No
∑

j=1

(

yj(s)−
Ne
∑

k=1

qk(s)bk,j(l)

)2


 (2)

where p is the number of previous sampling steps that is

selected for estimating the current traffic conditions, and

qk(s) and yj(s) show the entering and exiting flows from

entrance i and exit j during a time interval of length s.

Finally, gi,j(l) for i = 1, . . . , Ne and j = 1, . . . , No will

be obtained as:

gi,j(l) = bi,j(l) · qi(l) (3)

C. Clustering the OD matrices

The calculations of Section II-B will result in a huge

number of OD matrices, since an OD matrix is calculated for

each intersection and for each sampling step. Therefore, the

next step will be to cluster this huge number of matrices and

to find the OD matrices that correspond to the same general

traffic pattern. Another benefit of clustering the OD matrices

is that if new intersections are added to the network, the

corresponding traffic patterns might belong to the existing

clusters; otherwise, we can add new clusters with no need

to change the structure of the control system.

In [14] three clustering approaches are discussed: hierar-

chical, k-means, and two-stage clustering methods. Based on

the discussions, for very large data sets a two-stage clustering

algorithms is the most beneficial one. Therefore, we use a

two-stage clustering algorithm for the OD matrices, where

the first stage is inspired by [15], and the second stage uses

the hierarchical clustering algorithm based on fuzzy graph

connectedness proposed in [16].

The same two-stage clustering approach has been applied

to the traffic OD matrices in [11]. However, we have made

changes to the algorithm applied in the first stage to improve

the results of the clustering by producing clusters that contain

more similar matrices, while the clusters are well separated.



In the proposed algorithm all vertices are put in one cluster

initially and there is no need to consider any special ordering.

Like [15], we start by constructing a weighted linkage

graph (WLG) from the data set. Each vertex of the WLG

corresponds to an OD matrix and the edge connecting two

vertices represents the degree of similarity between the two

vertices/OD matrices. Similarity is defined as the inverse of

the Euclidean distance of the two OD matrices:

S(vv, vu) =





√

√

√

√

Ne
∑

i=1

No
∑

j=1

(vv(i, j)− vu(i, j))
2





−1

(4)

where vv and vu are two vertices/OD matrices of the WLG,

and S is the degree of similarity between these two vertices.

Both the algorithm given in [15] and the algorithm pro-

posed here will result in two clusters at each step. Therefore,

the algorithms will be applied iteratively to create a prede-

fined number of clusters. Considering two separate clusters

C1 and C2 that together contain all the vertices, the clustering

algorithm will make the vertices move between the clusters

based on their “gain” values, where the gain for a vertex

vv ∈ C1 is defined as:

gain(vv) =
∑

vu∈C2

S(vv, vu)−
∑

vw∈C1

S(vv, vw) (5)

For initial partitioning in [15], the criterion for putting two

vertices in the same cluster is whether or not their degree of

similarity given by (4) is greater than or equal to a predefined

similarity threshold. Moreover, the criterion based on which

the algorithm decides whether to move a vertex from its

current cluster to the other cluster, is the gain value of the

vertex defined by (5).

Instead, for the initial partitioning we first put all vertices

in a single cluster and then let them one by one move to the

other clusters based on their gain value as is given by the

following algorithm:

1) Suppose V is the set of all vertices and construct two

separate clusters C1 = V and C2 = ∅
2) Move vertices from C1 to C2 one by one based on the

maximum gain values calculated by (5)

3) For the ith point moved store the gain:

gi = gain
(

ith point moved
)

and store the corresponding clusters:

C1,i ← C1

C2,i ← C2

Continue step 3 until C1 = ∅ and C2 = V

4) Choose the clusters C1,i⋆ , C2,i⋆ , where

i⋆ = min

(

argmin
i=2,...,|V |

(gi − gi−1)

)

5) Keep C1,i⋆ and go to step 1 with V = C2,i⋆

After the clusters are found, we calculate the cluster cen-

ters. We first normalize the OD matrices with respect to the

maximum and minimum flow matrices. The cluster centers

are then found by averaging the corresponding normalized

entries of all matrices in each cluster. From now, we use the

center of a cluster as a representative of that cluster.

D. Extraction of type-1 fuzzy sets

In this step, we present each of the resulting clusters by

type-1 fuzzy sets, called traffic patterns. We first check what

is the least number of fuzzy sets required to represent each

cluster. In the literature such as [17] and [18] only one fuzzy

set has been considered for each matrix and all the entities

of the matrix have been averaged. This way the matrix was

mapped to a one-dimensional space. However, if we map

the OD matrices to a one-dimensional space many of the

different matrices will be mapped to the same point.

Instead, we just average the entries of the OD matrix that

represent the flow values that are controlled by the same

traffic signal. Finally, we reduce the number of fuzzy sets

to Nf , where Nf ≤ No. Then, Nf triangular fuzzy sets will

be constructed using the common methods in the literature

such as in [17], where the centers of these sets are the Nf

resulting cumulative flows.

Suppose that Nf is 2, and the matrices are mapped into a

two-dimensional space (this happens for an intersection with

two-lane streets and a traffic light located at each entering

lane), then the two averaged entries/flows are denoted by

X⋆
i (l) and Y ⋆

i (l) for the ith cluster/OD matrix.

E. Finding the optimized signal timing plan

A fuzzy rule base is composed of fuzzy rules of the form:

IF x1 is A1 & . . .& xn is An THEN y is B

where x = (x1, . . . , xn) and y are linguistic variables (the

input and the output respectively), and Ai, i = 1, . . . , n and

B are linguistic values determined using fuzzy sets. In our

application, the traffic patterns found for each intersection

form the IF-parts of the fuzzy rules. The THEN-parts include

the optimal cycle plans, which could be found using available

traffic software (e.g., Passer V [19]). To find the optimal

cycles, traffic flows on the lanes are needed which are

given for each cluster by its center. A cost function , e.g.,

the total travel time of the vehicles, is minimized and the

corresponding cycle plan forms the THEN-part.

III. ON-LINE STAGE

In the previous section we explained how the fuzzy

controllers are constructed for each intersection in an off-line

stage. In this section, we consider the problem of controlling

the traffic in an urban area that consists of a number of

intersections, where we should apply the controllers on-line

via a multi-agent architecture. The on-line stage consists of

four main steps illustrated by Fig. 2. These steps include:

1) real-time data collection and information exchange for

each intersection and for every sampling step,

2) making an estimate of the traffic flow in the near future,

i.e., Ts time units from now, based on the collected and

exchanged data and calculating the OD matrix,
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Fig. 2. On-line control of traffic signals using the fuzzy rule bases

3) mapping the OD matrix corresponding to each inter-

section into a 2-dimensional space,

4) finding the optimal cycle plan using a fuzzy inference

engine that matches the resulting values in the 2-

dimensional space with the fuzzy rule base of that

intersection.

A. Real-time data collection and information exchange

At this step, every agent makes use of the data collected

by its local sensors, and the data it receives from the agents

that are corresponding to the neighboring intersections (since

the flow on the neighboring intersections will affect the flow

of the agent’s intersection in the near future).

B. Flow estimation in near future & finding the OD matrices

Based on the collected information, the agent makes three

estimates about its local traffic situation in the near future,

i.e., Ts time units from now. For the first estimate, the

traffic flow on all entrances and exits of the intersection

in the near future is assumed to be the same as the last

reported data at these locations. The second estimate is based

on the information the agent receives from the neighboring

agents, where the entering flow through a specific lane in

the near future is assumed the same as the exiting flow

of its neighboring intersection through the same lane. The

third estimate is the average of the first and the second

estimates. These three estimates are not necessarily close in

value unless the traffic is distributed uniformly through the

lane. The difference between these three estimates becomes

more significant when there is a disturbance such as a car

crash in the corresponding lane.

local flow data

neighbors’ flow data
Fuzzy inference engine

and neighbors’ data
average of local

cycle plan

Fig. 3. MISO fuzzy engine used by each agent

Finally, three different OD matrices are calculated for the

three estimated flow scenarios (see Section II-B).

C. Mapping the OD matrices

Next, the three OD matrices are normalized with respect

to the maximum and minimum flows found in the off-line

stage. Then the normalized matrices are mapped to the two-

dimensional space (explained in Section II-D), and the two

resulting values are denoted by X∗
j and Y ∗

j , for j = 1, 2, 3.

D. Using the MISO fuzzy inference engine

The resulting values X⋆ and Y ⋆ are sent to the fuzzy

inference engine as inputs (see Fig. 3). The fuzzy inference

engine then uses the constructed fuzzy rule bases in the

off-line stage to determine the membership degree of these

values for each of the triangular fuzzy sets.

Finally, the fuzzy inference engine produces the optimal

cycle plan for the three pairs of mapped OD matrices. At the

end, the fuzzy inference engine selects the final timing plan

as the maximum value of the cycle plans.

IV. SIMULATION AND RESULTS

In this section, we will present the simulation results for

the proposed fuzzy multi-agent control system. First, we

apply the off-line stage explained in Section II to construct

the fuzzy rule bases for each intersection. Then for the on-

line stage explained in Section III, the agents will exchange

their information and choose the best signal plans for their

intersections.

A. Simulations for the off-line stage

1) Set-up: An urban traffic network consisting of 25 sub-

areas is considered, where each sub-area contains:

• an intersection consisting of two-lane roads with four

entrance and four exit lanes, and a sensor located at each

entrance and each exit of the intersection (see Fig. 4)

• four traffic lights at the entrances

• an agent that controls the traffic lights of the sub-area

using a fuzzy controller

Note that vehicles can make any turns except U-turns at the

intersection. Every two oppositely located traffic lights have

the same timing plan.

2) Data collection: To simulate the multi-agent fuzzy

control system and to provide an environment for model-

ing the traffic, for collecting data, and for evaluating the

control system, a microscopic traffic simulator has been

developed within NetLogo, an agent-based environment in

Java. Different times of day and weekdays were modeled

changing the flow on the lanes. Traffic flow at the location



1

3

2

4

Fig. 4. Each intersection containing four entrances and exits

of the sensors was collected in a 14-hour simulation, where

data was recorded every 5 minute. The option of changing

the demands during the simulation and the possibility of

modeling car crashes make the scenario more realistic.

3) Calculating and clustering the OD matrices: The OD

matrices for each intersection were calculated for each sam-

pling step using the procedure explained in Section II-B. The

resulting OD matrices were clustered using the two-stage

clustering algorithm discussed in Section II-C. In order to

evaluate the performance of the algorithm proposed in this

paper and the one proposed in [15] for the traffic data set,

two indicators called the “total within group variance” [20],

I1, and the “separation of clusters”, I2, were considered:

I1 =
1

NC

NC
∑

u=1

ND
∑

v=1

µuv||vv − cu||
2 (6)

I2 = min
u=1,...,NC,

v=1,...,ND, u6=v

||cv − cu|| (7)

where NC and ND are the number of clusters and data points

respectively, vv denotes the vth data point, and cu is the

center of the uth cluster, and µuv is the membership degree

of the vth data to the uth cluster.

A smaller total variance is desirable, since it shows that the

data in the same cluster are close in values and therefore are

similar. In addition, a satisfactory clustering should result in

relatively bigger separation values, which indicates that the

resulting clusters are well separated.

Tables I and II show the results of applying the algorithm

in [15] and the clustering algorithm proposed in Section II-C

for five intersections that are representative for the other 20

intersections in the network, since the results calculated for

the rest of the intersections was almost the same as the results

obtained for these five intersections. The total within-group

variances were estimated and compared with each other, and

based on a predefined separation threshold, it was decided

whether or not (some of the) resulting clusters need to be

merged again.

From Table I, for the algorithm in [15] for all cases

merging was necessary, while for the algorithm proposed in

TABLE I

RESULTS FOR THE GRAPH-BASED CLUSTERING ALGORITHM IN [15]

Intersection # Total within group Merging needed? # clusters

1 36.4 Y 27

2 25.8 Y 16

3 32.3 Y 12

4 61.2 Y 13

5 71 Y 42

TABLE II

RESULTS FOR THE PROPOSED GRAPH-BASED CLUSTERING ALGORITHM

IN SECTION II-C

Intersection # Total within group Merging needed? # clusters

1 33.4 Y 17

2 21.2 N 20

3 30.5 N 25

4 46.6 N 18

5 39 N 20

this paper, only in one case some of the clusters needed to

be merged. The total within-group variance is smaller for the

proposed algorithm (see Table II) compared to the algorithm

in [15].

After the clusters were found, the centers were calculated

by averaging the corresponding normalized entries of the ma-

trices with respect to the maximum and minimum observed

flows. Each resulting cluster represents a traffic pattern of the

corresponding intersection, where these traffic patterns were

given by type-1 fuzzy sets and the center of these fuzzy sets

were found following the same trend explained in Section II-

D.

Since traffic lights 1 and 3 and also traffic lights 2 and 4

have the same cycle plans, the flows entering the intersection

through 1 and 3, and also through 2 and 4 (see Fig. 4) should

be summed.

Finally, PASSER V which needs the geometrical informa-

tion of each intersection and uses an optimization algorithm

(we have used GA) was used to produce the optimum cycle

plans, where the objective was defined as the minimum travel

time for the vehicles in the intersection.

B. Simulations for the on-line stage

The proposed multi-agent control system was evaluated for

the urban traffic network described in Section IV-A.1. Since

every agent needs to receive the flow information from those

intersections that affect the flow of the intersection under the

control of that agent, we put each intersection together with

its northern, southern, eastern, and western neighbors in a

group that should exchange information with each other. The

entering, delay, and travel times of all vehicles were recorded

by the simulator during the online stage. This data was used

to calculate the average delay time of the vehicles in order

to assess the control system. The entering and exiting flows

were recorded by the sensors every 5 seconds.

Fig. 5 shows the average delay time vs. time for two

control strategies. The blue curve corresponds to a non-fuzzy
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control system that applies the optimal cycle plans obtained

from PASSER V, and the black curve corresponds to the

multi-agent control system proposed in this paper where the

agents exchange information with their neighboring agents

and use the resulting estimates explained in Section III.

The fuzzy multi-agent control system reduces the total

average delay time of the vehicles by 19% compared with

the non-fuzzy control system. It is clearly seen from Fig. 5

that the average delay is almost always smaller than the one

for the off-line method.

V. CONCLUSIONS AND FUTURE WORK

This paper has presented a fuzzy multi-agent control

system for an urban traffic network. The agents control the

traffic lights of the intersections using fuzzy rule bases that

are constructed in an off-line stage. Each agent has access

to the flow data of its own sub-area/intersection, and it can

exchange information with its neighboring agents. Based on

the estimated future flow, the agent matches this value with

the IF-parts of its fuzzy rule base and decides which cycle

plan should be applied using a fuzzy inference engine.

To reduce the number of OD matrices, we have proposed

a clustering algorithm that results in clusters with small total

within group variance, and are also well separated as is

demonstrated in the case study.

We have compared the performance of the designed fuzzy

multi-agent control system with a non-fuzzy controller that

was designed using PASSER V for optimization of the

cycle plans. Simulation results show that the fuzzy multi-

agent control system reduces the total average delay time of

vehicles by 19% compared with the non-fuzzy system.

We propose for future work to consider changes to the

fuzzy inference engine and the type of the fuzzy sets, e.g.,

using a linear combination of the outputs as proposed in the

Takagi-Sugeno framework, or a mixture of different types

of fuzzy sets rather than triangular types. Another option

for further research is to consider real-life traffic data for

extraction of the fuzzy rules in the off-line stage.
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