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Design of Stabilizing Switching Laws for

Mixed Switched Affine Systems
Mohammad Hajiahmadi, Bart De Schutter, and Hans Hellendoorn

Abstract—This paper presents stability analysis and stabi-
lization for a general class of switched systems characterized
by nonlinear functions. The proposed approach is composed of
approximating the switched nonlinear system with a switched
affine system that has a mixture of controlled and autonomous
switching behavior. Utilizing a joint polyhedral partitioning
approach, a stabilizing switching law based on quadratic Lya-
punov functions and with considering the autonomous switching
between polyhedral regions is proposed. To ensure the decrease of
the overall Lyapunov function, two approaches are proposed, 1)
guarantee continuity of the Lyapunov function over boundaries of
polyhedral regions, 2) relax the continuity requirement by using
additional matrix inequalities. The second approach is less con-
servative but with more variables and matrix inequalities than in
the first method. With fixing one scalar variable, the stabilization
conditions will have the form of linear matrix inequalities (LMIs).
Further, the sufficient conditions for stabilizing the original
switched nonlinear system using the proposed switching schemes
are presented. Finally, through two examples, the performance
of the proposed stabilization methods is demonstrated.

Index Terms—Switched nonlinear system, piecewise affine
functions, switched affine system, stability

I. INTRODUCTION

S
WITCHED systems comprise several linear and/or non-

linear subsystems along with some switching rules that

orchestrate the switching between subsystems [1]. Stability

analysis and control synthesis for such systems have been

extensively studied in recent years [1]–[9]. However, stability

analysis of switched nonlinear systems has been investigated

only for particular cases [10]–[12] and there is concrete

procedure for the stabilization of general nonlinear systems.

Therefore, in this work we aim at tackling the stability

problem for switched nonlinear systems with smooth nonlinear

functions using a different and novel framework. The main

idea is to approximate each nonlinear subsystem with piece-

wise affine (PWA) functions. In this way, we obtain a switched

system composed of PWA subsystems and a controllable

switching signal that orchestrates the switching between PWA

subsystems. Note that there also exists an autonomous type of

switching between affine functions of each PWA subsystem.

This autonomous switching makes the stability analysis and

control of such system hard. As a starting point, we use a

joint polyhedral partitioning of the entire state which helps to

This work is supported by the European 7th Framework Network of
Excellence “Highly-complex and networked control systems (HYCON2)”
and by the European COST Action TU1102. M. Hajiahmadi, Bart De
Schutter, and Hans Hellendoorn are with the Delft Center for Systems and
Control, Delft University of Technology, Delft, The Netherlands (e-mail:
m.hajiahmadi@tudelft.nl).

merge and unify the partitions of all subsystems and to have

affine subsystems inside each polyhedral region.

This work has three main contributions. The first contribu-

tion is the design of a stabilizing switching law for the mixed

switched affine system. The design conditions are in the form

of linear matrix inequalities (LMIs) with fixing one scalar

variable. Compared to the existing approaches for stability

analysis of PWA systems and switched affine systems [13],

[14], our method is less conservative as it allows to have

affine subsystems in the regions containing the origin and

as it also uses more general multiple Lyapunov functions

compared to [6], [13]. Also, instead of limiting the matrices of

the Lyapunov functions to take a particular structure [15], we

use additional equality constraints to impose continuity over

boundaries. This choice will also help to extend our proposed

stabilization approach for robust state feedback control design

in the form of LMIs. The second contribution is to even relax

the continuity of the Lyapunov functions over the boundaries

of partitions (which is essential for the methods proposed

in [13], [14]) using additional LMIs. Finally, the last main

contribution is to present the sufficient conditions under which

the proposed switching control schemes would be able to

stabilize the original switched nonlinear system.

The rest of the paper is organized as follows. In Section II,

the switched nonlinear system and the way it is approximated

by a switched affine system is presented. Section III presents

two procedures for the design of stabilizing switching rules.

Stabilization of the original switched nonlinear system us-

ing the proposed methods is discussed in Section IV. Next,

through two examples in Section V, the performance of the

proposed stabilization methods are illustrated.

II. PROBLEM STATEMENT

Consider the following switched nonlinear system:

ẋ(t) = fσ(t)
(
x(t)

)
(1)

with x ∈ R
n the state and σ(·) the switching signal which

is assumed to be piecewise constant over time. The variable

σ(t) takes values from a pre-defined index set. In other words,

for each value that σ(t) assumes, the state space model (1)

is governed by different vector functions fi(x) from the set

fσ(t) ∈ {f1, . . . , fN}. A function φ : Ω → R
m is PWA

if there exists a polyhedral partition {Ωi}i∈I (∪i∈IΩi =
Ω, Ωi 6= ∅, int(Ωi) ∩ int(Ωj) = ∅, ∀i 6= j) of Ω ⊆ R

n

such that φ is affine on each polyhedron Ωi. By considering

a sufficiently large number of regions, one can smoothly

proximate nonlinear functions fi by PWA functions with
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arbitrary accuracy. The piecewise affine approximation of fi
will have the following form:

fi(x) ∼=
(
Ai,ℓ · x+ bi,ℓ

)
, if x ∈ Xi,ℓ, (2)

with Ai,ℓ(n× n) and bi,ℓ(n× 1) the PWA matrices, Xi,ℓ the

corresponding polyhedron, and ℓ ∈ Mi = {1, . . . ,Mi}, with

Mi the number of polyhedral partitions for function fi.
Now the switched system (1) can be approximated by the

following switched affine system:

ẋ(t) = Aσ(t),ℓx(t) + bσ(t),ℓ, if x ∈ Xσ(t),ℓ, (3)

where the controlled switching signal σ takes values from the

set N = {1, . . . , N}, with N the total number of subsystems.

Note that two types of switching are integrated in (3), one

associated with switching between affine functions describing

the dynamics of each subsystem i; this type of switching is

therefore uncontrolled, and the other one is the controlled

switching between subsystems driven by σ. In the following

sections, we focus on the stabilization of (3) and next, on

connecting the obtained results to the stability of the original

switched nonlinear system (1). Before proceeding, a useful

lemma from the literature is presented.

Lemma 1 (Finsler Lemma [16]): Let x ∈ R
n, Q ∈ R

n×n

and B ∈ R
m×n such that rank(B) < n. The following

statements are equivalent:

• xTQx < 0, ∀x 6= 0 such that Bx = 0.

• B⊥T

QB⊥ < 0.

• ∃λ ∈ R : Q− λBTB < 0.

• ∃ζ ∈ R
n×m : Q+ ζB +BTζT < 0.

where B⊥ is a basis for the null space of B. This lemma

is used to combine conditions on the values of the Lyapunov

functions at the boundaries of polyhedral regions in the proofs

of Theorems 1 and 2.

III. STABILIZATION USING STATE-BASED SWITCHING

The main aim is to drive the state of system (3), with u, ω ≡
0, to a desired state xr. Given the desired state xr and the

switched system (3), the error system is formulated as follows:

ė(t) = Aσ(t),ℓe(t) + qσ(t),ℓ, if e ∈ Eσ(t),ℓ (4)

e(t) = x(t)− xr, qσ(t),ℓ = bσ(t),ℓ +Aσ(t),ℓxr

Now the aim is redefined as to design a switching rule that

asymptotically steers the state of the error system to the origin.

Before proceeding with the main results, note that in the

process of approximating nonlinear subsystems by piecewise

affine subsystems, the number of affine functions for each

subsystem and also the polyhedral regions and their boundaries

may differ for different subsystems. Therefore, in order to help

with the design approach and obtain stability conditions that

can be easily evaluated, we redefine the polyhedral partitions

and their boundaries in such a way that in each region we

only have affine subsystems. Since we provide a common

partitioning for all subsystems, from now we use Eℓ instead

of Eσ(t),ℓ. Each polyhedral region Eℓ is characterized by:

[
Fℓ fℓ

]

︸ ︷︷ ︸

F̄ℓ

[
e
1

]

� 0, iff e ∈ Eℓ, (5)

where the inequality is element-wise. Furthermore, the bound-

ary hyperplane for each pair of neighboring regions Eℓ and Eℓ′
is represented by:

hT
ℓℓ′e+ gℓℓ′ = 0 ⇔

[
hT
ℓℓ′ gℓℓ′

]

︸ ︷︷ ︸

h̄T

ℓℓ′

[
e
1

]

= 0 (6)

Moreover, for each polyhedral region Eℓ, ℓ ∈ M =
{1, . . . ,M}, with M the total number of polyhedral regions

(number of affine functions associated to each subsystem), the

following auxiliary functions are defined:

Vi,ℓ(e) =

[
e
1

]T [
Pi,ℓ ⋆
sTi,ℓ ri,ℓ

]

︸ ︷︷ ︸

P̄i,ℓ

[
e
1

]

︸︷︷︸

ē

, ∀i ∈ N , ∀ℓ ∈ M. (7)

with Pi,ℓ ∈ R
n×n symmetric, si,ℓ ∈ R

n, and ri,ℓ ∈ R. For

each Eℓ, a Lyapunov function is proposed as follows:

Vℓ(e) = min
i∈N

Vi,ℓ(e), (8)

The following theorem presents the design procedure for a

stabilizing switching rule that brings the state of the error

system (4) to the origin, provided that at least for one

subsystem qi,ℓ = 0 in the polyhedral regions containing the

origin. This means that the desired state xr is an (unstable or

stable) equilibrium of at least one of the subsystems of (3).

Theorem 1: Assume there exists at least one subsystem î
with qî,ℓ = 0 in regions containing the origin. Moreover,

suppose there exist symmetric matrices Pi,ℓ and Ti,j,ℓ, vectors

si,ℓ, ζℓℓ′ , scalars ri,ℓ, and symmetric matrices Uℓ, Zℓ with

nonnegative elements that satisfy (10)–(16) for a given positive

scalar µmin > 0. Then the switching rule1:

σ(t) = arg min
i∈N

Vi,ℓ(e(t)), if e(t) ∈ Eℓ, (9)

with Vi,ℓ defined as in (7), will asymptotically bring the state

of the error system (4), with u, ω ≡ 0, to the origin.

Proof: Suppose that at an arbitrary time instant t ≥ 0
and based on the polyhedral region ℓ in which the state of

the error system resides, the switching law is given by σ(t) =
r(e(t)) = i for some i ∈ Iℓ(e) = {i : Vℓ(e) = Vi,ℓ(e)}.

Hence, following the definition of the Dini derivative [3], [17],

for our error system (4), we have

D
+
(
Vℓ(e)

)
= min

j∈Iℓ(e(t))

[∂Vj,ℓ

∂e

(

Aj,ℓe+ qj,ℓ

)]

≤
∂Vi,ℓ

∂e

(

Ai,ℓe+ qi,ℓ

)

(17)

where i denotes the index of the active subsystem in region ℓ
determined from (9). Pre-multiplying (10) by [eT, 1] and post-

multiplying by its transpose, we obtain (18). Using the fact that

for the polyhedral region ℓ, (5) holds, and Uℓ has nonnegative

entries, and since for the active subsystem i, Vi,ℓ ≤ Vj,ℓ, ∀j 6=
i, j ∈ {1, . . . , N}, the last inequality in (18) is less than zero,

which means that the derivative of the Lyapunov function Vi,ℓ

along the trajectory of the subsystem i in the polyhedral region

ℓ is negative.

1Note that in (9), we take the minimum argument, in case of having multiple
minima Vi,ℓ.
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[
Pi,ℓAi,ℓ +AT

i,ℓPi,ℓ ⋆

sTi,ℓAi,ℓ + qTi,ℓPi,ℓ qTi,ℓsi,ℓ + sTi,ℓqi,ℓ

]

+ µmin

∑

j∈N

([
Pj,ℓ ⋆
sTj,ℓ rj,ℓ

]

−

[
Pi,ℓ ⋆
sTi,ℓ ri,ℓ

])

+ F̄T
ℓ UℓF̄ℓ < 0,

∀(i, ℓ) ∈
{
(i, ℓ) ∈ N ×M|i 6= î

}
∪
{
(̂i, ℓ) ∈ N ×M|0 /∈ Eℓ

}
, (10)

Pî,ℓAî,ℓ +AT
î,ℓ
Pî,ℓ −

∑

j∈N ,j 6=î

Tî,j,ℓ + FT
ℓ UℓFℓ < 0, ∀ℓ ∈ M : 0 ∈ Eℓ, (11)

∑

j∈N ,j 6=î

[
Tî,j,ℓ 0

0 0

]

< µmin

∑

j∈N

([
Pî,ℓ 0

0 rî,ℓ

]

−

[
Pj,ℓ ⋆
sTj,ℓ rj,ℓ

])

, ∀ℓ ∈ M : 0 ∈ Eℓ, (12)

[
Pi,ℓ ⋆
sTi,ℓ ri,ℓ

]

− F̄T
ℓ ZℓF̄ℓ > 0, ∀i ∈ N , ℓ ∈ M, (13)

sî,ℓ = 0, ∀ℓ ∈ M : 0 ∈ Eℓ, (14)

rî,ℓ < rj,ℓ, ∀j ∈ N , j 6= î, ∀ℓ ∈ M : 0 ∈ Eℓ, (15)
[
Pi,ℓ ⋆
sTi,ℓ ri,ℓ

]

=

[
Pi,ℓ′ ⋆
sTi,ℓ′ ri,ℓ′

]

+ h̄ℓℓ′ζ
T
ℓℓ′ + ζℓℓ′ h̄

T
ℓℓ′ , ∀ℓ, ℓ′ ∈ M : Eℓ ∩ Eℓ′ 6= ∅, ∀i ∈ N , (16)

[
e
1

]T [
Pi,ℓAi,ℓ +AT

i,ℓPi,ℓ ⋆

sTi,ℓAi,ℓ + qTi,ℓPi,ℓ qTi,ℓsi,ℓ + sTi,ℓqi,ℓ

] [
e
1

]

︸ ︷︷ ︸

∂Vi,ℓ
∂e

(

Ai,ℓe+qi,ℓ

)

< −

[
e
1

]T

F̄T
ℓ UℓF̄ℓ

[
e
1

]

+ µmin

∑

j∈N

[
e
1

]T

(P̄i,ℓ − P̄j,ℓ)

[
e
1

]

(18)

The same procedure is applied to (11). Note that (11)

provides the same condition as in (10) but with illuminating

the rows and columns with zero elements. This condition

along with (12) guarantee that the derivative of the Lyapunov

function Vî,ℓ would be zero only when the state e is zero and

when the value of the Lyapunov function is less than the other

Lyapunov functions. Note that using the conditions (14) and

(15) we ensure that the minimum of the overall Lyapunov

function occurs at the origin and the derivative of the active

Lyapunov function at the origin is zero.

Moreover, the Lyapunov functions (7) are not required to

be positive definite in the entire space but only in the active

polyhedral region. This is ensured using constraint (13) and it

can be easily proved using (5).

In order to have global asymptotic stability, the decrease

of the Lyapunov function inside the polyhedral regions is not

enough. One way to tackle this problem is to equalize the

values of the Lyapunov functions Vi,ℓ and Vi,ℓ′ for the bound-

ary hyperplane of neighboring regions Eℓ and E ′
ℓ. Note that

at the boundary between polyhedral regions an uncontrolled

switching between affine functions of the same subsystem i
occurs. Therefore, we only need to connect the Lyapunov

functions associated with each subsystem i at the boundary

between neighboring regions ℓ and ℓ′. Hence, we need

ēTP̄i,ℓē = ēTP̄i,ℓ′ ē, ∀e : h̄T
ℓℓ′ ē = 0 (19)

In order to recast (19) as an LMI, we define auxiliary vectors

ζℓℓ′ and combine the two equalities in (19) as follows (using

the Finsler Lemma):

ēTP̄i,ℓē = ēTP̄i,ℓ′ ē+ ēTh̄ℓℓ′ζ
T
ℓℓ′ ē+ ēTζℓℓ′ h̄

T
ℓℓ′ ē, (20)

Since (20) should hold for all e, we can instead check the

feasibility of the equality (16).

Remark 1: Note that in case there are multiple subsystems

of (4) that have an equilibrium at the origin, we assign the

index î to one of them arbitrarily and check the feasibility

of the conditions in Theorem 1. In case the conditions are

found to be infeasible, we can assign the index î to another

subsystem and repeat the procedure.

Remark 2: By fixing µmin, the conditions (10)–(16) be-

come linear. Therefore, the overall feasibility problem can

be solved using combined line search on µmin and an LMI

feasibility checking algorithm.

Constraint (16) could be conservative in the sense that

subsystem i in region ℓ might not become active right before

the uncontrolled switching at the boundary between regions ℓ
and ℓ′. Therefore, the following theorem is proposed in which

constraint (16) is removed and instead, we impose constraints

on the Lyapunov functions of the active subsystems at the

boundary between polyhedral regions.

Theorem 2: Assume there exist symmetric matrices Pi,ℓ,
Ti,j,ℓ, Ri,j,ℓ, vectors si,ℓ, ζℓℓ′ , scalars ri,ℓ, βmin > 0, µmin >
0, and symmetric matrices Uℓ, Zℓ with nonnegative elements

that satisfy (10)–(15) and the following matrix inequalities:

P̄i,ℓ′ − P̄j,ℓ −Ri,j,ℓ + h̄ℓℓ′ζ
T
ℓℓ′ + ζℓℓ′ h̄

T
ℓℓ′ ≤ 0, (21)

Ri,j,ℓ < βmin(P̄i,ℓ − P̄j,ℓ), (22)

∀i, j ∈ N , i 6= j, ∀ℓ, ℓ′ ∈ M : Eℓ ∩ Eℓ′ 6= ∅,

then the switching rule (9) with Vi,ℓ defined as in (7), will

asymptotically bring the state of system (4) to the origin.

Proof: We consider a transition from region Eℓ to region

Eℓ′ . Pre- and post-multiplying (21) and (22) by ēT and by its



4

transpose respectively, will result in:

Vi,ℓ′ − Vj,ℓ + ēTh̄ℓℓ′ζ
T
ℓℓ′ ē+ ēTζℓℓ′ h̄

T
ℓℓ′ ē

︸ ︷︷ ︸

=0, if e∈Eℓ∩Eℓ′

≤ ēTRi,j,ℓē

< βmin(Vi,ℓ − Vj,ℓ), ∀ℓ, ℓ′ ∈ M : Eℓ ∩ Eℓ′ 6= ∅ (23)

Now if at the boundary between regions Eℓ and Eℓ′ , subsystem

i is active, which means:

βmin(Vi,ℓ − Vj,ℓ) ≤ 0, ∀j ∈ N , (24)

then, due to (23), Vi,ℓ′ ≤ Vj,ℓ, ∀j ∈ N . Hence, the value

of the Lyapunov function Vi,ℓ′ for the subsequent polyhedral

region Eℓ′ would be:

Vi,ℓ′ ≤ min
j∈N ,j 6=i

Vj,ℓ (25)

The same reasoning holds for moving from region Eℓ′ to

Eℓ. In contrast to condition (16), conditions (21)–(22) impose

constraints only on the values of the Lyapunov functions of the

active subsystems at the boundaries and moreover, these values

no longer need to coincide with the ones of the respective

subsystems in the previous regions.

In the end, based on (25) we can conclude that the overall

Lyapunov function for the error system (4) will be decreasing

and therefore, the error state would asymptotically approaches

zero using the switching strategy (9).

Remark 3: With fixed scalar variables µmin and βmin, con-

ditions (10)–(15) and (21)–(22) will become LMIs. Therefore,

the overall feasibility problem can be solved using LMI solvers

along with line search on µmin and βmin.

Remark 4 (sliding mode): The previous results are devel-

oped without taking into account the possible sliding modes

inside polyhedral regions and/or on the boundaries. For inside

the polyhedral regions we prove that even if a sliding mode

occurs (as a result of switching between subsystems) it will

be always stable. It can be shown that the time-derivative of

the minimum Lyapunov function is strictly negative along the

Filippov solution of the system (similar to the approach in

Remark 2 of [4]), as follows (0 ≤ θi,ℓ,
∑

i∈N θi,ℓ = 1):

∂Vj,ℓ

∂e

∑

i∈N

θi,ℓ

(

Ai,ℓe+ qi,ℓ

)

≤
∑

i∈N

θi,ℓ
∂Vi,ℓ

∂e

(

Ai,ℓe+ qi,ℓ

)

< 0, for e ∈ Eℓ (26)

where the last inequality is justified using the same reasoning

as in (17) and (18), and the first inequality holds from the

fact that under sliding mode a switching from subsystem j to

subsystem i is allowed only if:

∂Vj,ℓ

∂e
(Ai,ℓe+ qi,ℓ) ≤

∂Vi,ℓ

∂e
(Ai,ℓe+ qi,ℓ). (27)

However, if there exist attractive sliding modes on the bound-

aries of polyhedral regions, they should be taken into account

on the stability analysis as it is also studied by [15] for PWA

systems. Similar to the approach in [15], if there exists a

sliding set S of the following general form:

S = {e| Φē ≥ 0 ∧Ψē = 0}, (28)

with Φ and Ψ the matrices characterizing the sliding set, then

for neighboring polyhedral regions Eℓ and Eℓ′ with Eℓ∩S 6= 0,

Eℓ′ ∩ S 6= 0, we need to have:

∂Vi,ℓ

∂e

(
Ai,ℓ′e+ qi,ℓ′

)
< 0, ∀e ∈ S, ∀i ∈ N , (29)

in order to ensure the stability of the Filippov solutions. Since

the uncontrolled switching at the boundaries occurs only for

the affine functions of the same subsystem, therefore in (29)

we require the negativeness of Vi,ℓ only on the trajectories of

the same subsystem i in the neighboring region ℓ′. Using the

S-procedure and the Finsler Lemma, the following LMIs can

be established:

P̄i,ℓĀi,ℓ′ + ĀT
i,ℓ′ P̄i,ℓ +ΦTΛi,ℓ,ℓ′Φ+ ηi,ℓ,ℓ′Ψ

TΨ < 0,

∀i ∈ N , ∀ℓ, ℓ′ ∈ M, (30)

with Λi,ℓ,ℓ′ symmetric matrices with nonnegative elements,

and ηi,ℓ,ℓ′ scalar multipliers.

IV. STABILIZATION OF THE ORIGINAL SWITCHED

NONLINEAR SYSTEM

In this section, we discuss the stability of the switched

nonlinear system (1) using the switching law designed based

on the approximated switched affine system (3). For simplicity

and without loss of generality we assume that xr = 0. The

approximation error can be defined as follows:

ǫi(x) = fi(x)−
(
Ai,ℓx+ bi,ℓ

)
∀i ∈ N, for x ∈ Xℓ. (31)

Suppose that the original switched nonlinear system (1) is

controlled by the switching law (9). Therefore when σ(t) = i,
the dynamics of (1) is governed by fi. Hence, the derivative

of the Lyapunov function (8) along the trajectories of (1) is:

V̇ℓ =

[
fi(x)
0

]T [
Pi,ℓ ⋆
sTi,ℓ ri,ℓ

] [
x
1

]

+

[
x
1

]T [
Pi,ℓ ⋆
sTi,ℓ ri,ℓ

] [
fi(x)
0

]

(32)

for x ∈ Xℓ (note that since the continuity of Vℓ on the bound-

aries of the polyhedral regions is preserved under conditions

of Theorem 1, we therefore only consider the behavior of

Vℓ and V̇ℓ inside the polyhedral regions). Replacing fi(x) by

ǫi(x) +Ai,ℓx+ bi,ℓ yields:

V̇ℓ =

[
x
1

]T [
AT

i,ℓPi,ℓ + Pi,ℓAi,ℓ ⋆

bi,ℓPi,ℓ + sTi,ℓAi,ℓ 2bTi,ℓsi,ℓ

] [
x
1

]

+ 2

[
x
1

]T [
Pi,ℓ ⋆
sTi,ℓ ri,ℓ

] [
ǫi(x)
0

]

. (33)

Now since the inequalities in (10) of Theorem 1 are strict, it

implies that if (10) holds, there should exist a positive scalar

variable denoted by α such that:
[
Pi,ℓAi,ℓ +AT

i,ℓPi,ℓ ⋆

bTi,ℓPi,ℓ + sTi,ℓAi,ℓ 2bTi,ℓsi,ℓ

]

− µmin

∑

j∈N

(P̄j,ℓ − P̄i,ℓ)

+ F̄T
ℓ UℓF̄ℓ < −αI, ∀i ∈ N , ∀ℓ ∈ M (34)

Now if (34) holds, we obtain:
[
x
1

]T [
Pi,ℓAi,ℓ +AT

i,ℓPi,ℓ ⋆

bTi,ℓPi,ℓ + sTi,ℓAi,ℓ 2bTi,ℓsi,ℓ

] [
x
1

]

< −α‖x̄‖22, (35)
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for the active subsystem i in (3). Therefore, for (33) we have:

V̇ℓ < −α‖x̄‖22 + 2

[
x
1

]T [
Pi,ℓ ⋆
sTi,ℓ ri,ℓ

] [
ǫi(x)
0

]

, (36)

for x ∈ Xℓ. Therefore, in order to have V̇ℓ < 0 for the switched

nonlinear system, we need to have:

2

[
x
1

]T [
Pi,ℓ ⋆
sTi,ℓ ri,ℓ

] [
ǫi(x)
0

]

< α‖x̄‖22 (37)

The following proposition provides the sufficient condition

for stabilization of the switched nonlinear system (1) using

switching law (9).

Proposition 1: Assume there exist matrices Pi,ℓ and Ti,j,ℓ,
vectors si,ℓ, ζℓℓ′ , scalars ri,ℓ, α > 0 and symmetric matrices

Uℓ, Zℓ with nonnegative elements that satisfy (12)–(16) and

(34) for a given positive scalar µmin > 0. Then the switching

rule (9) asymptotically stabilizes (1) provided that the norm

of the PWA approximation error is bounded by:

‖ǫi(x)‖2 <
α‖x̄‖2

2amax(P̄i,ℓ)
, ∀i ∈ N, for x ∈ Xℓ, (38)

where amax(P̄i,ℓ) denotes the largest singular value of P̄i,ℓ.

Proof: First, it is can be easily proved that:

x̄TP̄i,ℓ

[
ǫi(x)
0

]

≤ ‖x̄‖2amax(P̄i,ℓ)‖ǫi(x)‖2 (39)

Therefore, using (38) we obtain:

2x̄TP̄i,ℓ

[
ǫi(x)
0

]

≤ 2‖x̄‖2amax(P̄i,ℓ)‖ǫi(x)‖2 ≤ α‖x̄‖22 (40)

which yields V̇ℓ < 0 as in (36) and hence, asymptotic stability

of the switched nonlinear system (1) is ensured.

Remark 5: As can be inferred from (38), the upper bound

on the approximation error ǫi(x) depends on the maximum

singular values of the P̄i,ℓ matrices. Therefore, the upper

bound on the approximation error can be further relaxed if we

formulate an optimization problem to minimize the maximum

singular values of P̄i,ℓ matrices that satisfy (13)–(16) and (34).

V. ILLUSTRATIVE EXAMPLES

In this section, two examples are presented to evaluate

and compare the performance of the stabilizing approaches

proposed in Section III.

Example 1: In this example, we use the conditions pre-

sented in Theorem 1 to design a stabilizing switching law. We

directly use the error model (4) with the following matrices:

F1 = −F3 =

[
−1 1
1 1

]

, F2 = −F4 =

[
1 −1
1 1

]

,

h̄12 = h̄34 =
[
1 −1

]T
, h̄23 = h̄41 =

[
1 1

]T
,

A1,1 =

[
3 1
−5 −8

]

, A2,1 =

[
−2 6
2 9

]

, A3,1 =

[
4 4
−2 3

]

,

A1,2 =

[
2 5
−1 −3

]

, A2,2 =

[
−4 1
−2 6

]

, A3,2 =

[
2.5 7
2 −9

]

,

A1,3 =

[
5 3
−2 −4

]

, A2,3 =

[
3 −1
4 2

]

, A3,3 =

[
2 −3
−1 −4

]

,

A1,4 =

[
6 −2
−4 5

]

, A2,4 =

[
−5 1
−2 3

]

, A3,4 =

[
−1 −3
2 8

]

.
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Fig. 1. Example 1: Plot of the overall Lyapunov function, its continuity is
preserved over boundaries of the regions.

Note that none of the subsystems is stable. Using line search

and the Yalmip toolbox (with SeDuMi solver), the feasibility

problem (10)–(16) is solved. The obtained matrices for the

Lyapunov functions are reported in [18]. Fig. 1 illustrates the

overall Lyapunov function (obtained by taking the minimum

of the Lyapunov functions in each region). As depicted in

Fig. 2, the designed switching control strategy is able to steer

the error state to the origin for different initial conditions.

Example 2: In this example, we aim at stabilizing a

switched nonlinear system formulated as [19]:

ẋ1(t) = −G1,σ(x1(t)) + ω1(t), (41)

ẋ2(t) = −G2,σ(x2(t)) +G1,σ(x1(t)) + ω2(t), (42)

with Gj,i(xj) = Cj,i ·xj · exp(−1/2 · (xj/xj,cr)
2), j ∈ {1, 2}.

These exponential functions can be approximated by piecewise

affine functions. The result is a switched affine system with

mixed switching and with the following system matrices:

F1 =

[
1 0
0 1

]

, F2 =







1 0 −x1,cr

0 −1 x2,cr

0 1 0
−1 0 x1,max






,

F3 =







−1 0 x1,cr

0 1 −x2,cr

1 0 0
0 −1 x2,max






, F4 =







1 0 −x1,cr

0 1 −x2,cr

−1 0 x1,max

0 −1 x2,max






,

h̄12 = h̄34 =
[
1 0 −x1,cr

]T
, h̄13 = h̄24 =

[
0 1 −x2,cr

]T
,

Ai,1 =
1

3600
·

[
−ui · 10.28 0
ui · 10.28 −8.4

]

, bi,1 =

[
0
0

]

,

Ai,2 =
1

3600
·

[
ui · 6.4 0
−ui · 6.4 −8.4

]

, bi,2 =

[
−ui · 16.22
ui · 16.22

]

,

Ai,3 =
1

3600
·

[
−ui · 10.28 0
ui · 10.28 4.5

]

, bi,3 =

[
0

−10.75

]

,

Ai,4 =
1

3600
·

[
ui · 6.4 0
−ui · 6.4 4.5

]

, bi,4 =

[
−ui · 16.22

ui · 16.22− 10.75

]

with x1,cr = 3500, x2,cr = 3000, x1,max = 10000, x2,max =
9000 and ui ∈ {0.1, 0.35, 0.65, 0.9}.

Further, the system is exposed to the bounded disturbances

illustrated in Fig. 3(a). In order to stabilize the switched non-

linear system and to minimize the effect of the disturbances,

Theorem 2 (conditions of Theorem 1 were found infeasible

for this example) is extended for L2-gain minimization. Since

there is no state feedback controller u, the extension is quite
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Fig. 2. Simulation of the closed-loop system for different initial states. The dashed blue and red lines represent the boundaries.
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Fig. 3. Example 2: (a) disturbance signals, (b) result of using switching
control, (c) uncontrolled case.

straightforward and the presentation is skipped in this paper.

Note that we use the LMI solver SeDuMi and the Yalmip

toolbox along with search on µmin and βmin (from 0 to 200

for each, with steps of 1). The obtained values for µmin and

βmin corresponding to the minimum upper bound for the L2-

gain are 159 and 10, respectively. The Lyapunov matrices are

presented in [18]. The switching control scheme is connected

to the original switched nonlinear system. The results are

depicted in Fig. 3. As inferred from Fig. 3(b), the switching

control stabilizes the system and also significantly reduces the

effects of the disturbances, while in the no control case, the

states grow unbounded, as shown in Fig. 3(c). Furthermore,

setting the initial accumulations to zero, the actual L2-gain

is 0.0881 · 3600 which is lower than the theoretical value

0.1332 · 3600 obtained by solving the optimization problem.

VI. CONCLUSION

Design of stabilizing controllers for switched affine systems

with mixed switching types have been presented. The switched

system has both autonomous and controlled switching patterns.

To obtain less conservative control design approaches, first we

have used a joint polyhedral partitioning of the entire state

space and next, we have relaxed the continuity requirement

for the Lyapunov functions over boundaries of polyhedral

regions. Finally, we have presented sufficient conditions for

stabilizing switched nonlinear systems using the proposed

control schemes. Possible extensions of the current work are,

1) further reducing the conservatism using a joint time- and

state-based switching strategy and the concept of average

dwell-time [7], [20], 2) extending the approach for robust H∞

control as also partially done in [18].
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