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In this paper we analyze and compare five distributed model predictive con-
trol (DMPC) schemes using a hydro-power plant benchmark. Besides being
one of the most important sources of renewable power, hydro power plants
present very interesting control challenges. The operation of a hydro-power
valley involves the coordination of several subsystems over a large geographi-
cal area in order to produce the demanded energy while satisfying constraints
on water levels and flows. In particular, we test the different DMPC algo-
rithms using a 24 hour power tracking scenario in which the hydro-power
plant is simulated with an accurate non-linear model. In this way, it is pos-
sible to provide a qualitative and quantitative comparison between different
DMPC schemes implemented on a common benchmark, which is a type of
assessment rare in the literature.

1 Introduction

Hydro-power is an important mean of renewable power generation all over
the world, being the main source in countries such as Brazil [4]. Besides its
contribution in terms of sheer power generation, water power deals naturally
with a time-dependent demand and can be used to relieve the side effects of
other renewable power sources such as wind or solar energy, which progres-
sively stress the electrical power grid due to their uncontrollable production.

∗This research was supported by the European STREP project Hierarchical and dis-
tributed model predictive control (HD-MPC, contract number INFSO-ICT-223854), the
EU Network of Excellence Highly-complex and networked control systems (HYCON2,
FP7/2007-2013 under grant agreement no. 257462) and the FP7-ICT DYMASOS project
(under grant agreement No 611281).
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Due to the increasing cost of fossil fuels, it is likely that the importance of all
these renewable power sources continues to grow in the future to meet the de-
mand for electricity. In this sense, increasing hydro-power production by just
adding power plants is not sufficient, since the locations where hydro-power
plants can be placed economically and ecologically are limited and often al-
ready exhausted in developed countries. Therefore, more attention should be
paid to the management of water resources and hydro-power plants, so that
the performance and long-term profit of these plants can be maximized while
assuring additional requirements such as navigability or flood prevention. To
address this challenge, a Hydro-Power Valley (HPV) benchmark1 [30] – based
on a real case study – was created in the EU project “Hierarchical and Dis-
tributed Model Predictive Control” (HD-MPC). The main objective of this
benchmark is to allow quantification and comparison of distributed control
methods.
In the HPV benchmark, there are several power generators placed in a river-
lake system that constitute a large hydro-power plant with its corresponding
structures – namely, pumps, turbines, and gates – to control the water flows.
The challenge is to design efficient controllers for tracking a power production
reference, while respecting environmental, operational, and safety constraints
on water levels and flow rates. The nonlinear dynamics of the plant, the large
spectrum of time delays, and the constraints imposed on the system variables
constitute a difficult control problem that needs to be solved in real-time for
the operation of the plant. These issues are common in this type of systems
and have been reported several times in the literature. For example, in [4]
the size of the Brazilian hydropower system and its nonlinearities are stated
as major issues for system modelers.
The plants of the HPV benchmark use PID controllers in order to regulate
the power and water levels to their corresponding setpoints, which are deter-
mined by off-line optimization [13]. The optimization of this type of systems
has been studied during decades. For example, in [37], which is a survey
carried out in the 80’s, approaches based on linear, nonlinear and dynamic
programming are reported as proper tools for reservoir management. More
recently, [3] surveys the state of the art computational optimization meth-
ods for hydropower generation and also for other renewable and sustainable
energy sources. In general, the trend is to formulate a model based optimiza-
tion problem that maximizes the economical profit while taking into account
the system constraints and even the potential risks [17].
In the literature and more and more in practice, Model Predictive Control

1The HPV benchmark is made public at the project’s website: http://www.ict-hd-
mpc.eu/
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(MPC) [6] is proposed as the most appropriate control technique for this
kind of problems due to its capability to handle complex phenomena such
as multi-variable interactions, constraints, or delays in a systematic manner.
To this end, MPC uses a mathematical model of the system to optimize its
expected evolution over a given time horizon according to a cost function
while respecting operational constraints. Due to its versatility and high per-
formance, MPC has become very popular in industry [6, 18, 28]. This control
technique has also been applied in hydro-power generation. For example, an
adaptive MPC scheme is proposed in [29] to maximize the performance in
the presence of varying system parameters, while MPC is proposed for reg-
ulating the turbine discharge of river power plants in [34]. In addition, real
implementations of predictive controllers for hydro-power generation have
been reported in [1, 8].
The implementation of MPC controllers has to address some practical chal-
lenges. A common concern is the computational burden associated with the
optimization problem that has to be solved on-line for the operation of the
plant. For example, in [10] Benders decomposition and importance sampling
are used in order to ease the computation of a feasible solution for a hydro-
power control problem. Another interesting example is [35], where real-time
sequential convex programming is applied to the control of a hydro-power
plant. Likewise, the fact that the hydro-power systems spread over large ge-
ographical areas demands the use of local controllers for the local subsystems
that cooperate with each other, i.e., each power plant with its corresponding
water system should be controlled locally. These two practical problems can
be solved using a non-centralized MPC strategy. In this way, the overall
control problem can be partitioned into smaller pieces that are solved by the
local controllers. In case the local controllers use a communication network
to coordinate the decision making procedure we speak of distributed MPC
(DMPC); otherwise, i.e., when there is no communication between the con-
trollers, we speak of decentralized MPC. In this paper, we focus on DMPC
because higher control performance can be expected. In addition, DMPC
presents other advantages such as its inherent modularity, which provides
redundancy and simplifies the maintenance of the control system. The way
the centralized problem is distributed and the type and amount of informa-
tion that the local controllers (also called agents) exchange before attaining
a solution to the overall control problem depend on the particular DMPC
algorithm used (see [23, 25, 32] for surveys on this topic). Being a natural
approach to cope with the control of large-scale systems, DMPC schemes
have been proposed for the control of hydro-power networks as well as for
other systems with similar dynamics, e.g., irrigation canals [14, 26, 38]. For
example, in [9] DMPC with downstream communication is used to control

3



a cascade of river power plants, and the benefits of the communication are
shown via a comparison with the corresponding decentralized MPC scheme.
In [31], the structure of a hydro-power problem is exploited by means of dis-
tributed multiple shooting method. Other works that deal with hydro-power
plants – specifically with the HPV benchmark – can be found in [21, 35].
Finally, it is also common to provide the local controllers with an additional
centralized control layer for the sake of supervision and coordination. In this
case we speak of Hierarchical DMPC (HDMPC). For example, in [20] an
MPC controller that coordinates the actions of the controllers at the river
barrages is proposed to optimize the hydro-power utilization of a cascade
of river reservoirs. Another example is [39], where a coordinator provides
the local controllers with information about the predicted interactions be-
tween them. A very recent work is [14], where the coordinator changes the
communication topology that connect the local controllers to minimize the
communication burden.
In this work, the HD-MPC HPV benchmark will be used to assess the perfor-
mance of different DMPC schemes for hydro-power generation. The develop-
ment of this field during the last decade is remarkable and a large number of
schemes has been proposed, e.g.: [23] offers details regarding the implemen-
tation of 35 different approaches. Most of these schemes have been developed
ad hoc for specific situations and there is little information available regarding
their performance on different scenarios. Few works such as [2, 16] compare
different approaches in the same plant. The lack of results in this context,
which is pointed out in [25], hinders a proper comparison between the schemes
available in the literature. For this reason, we have chosen a set of schemes
that contains the most representative features that characterize the DMPC
schemes, namely design approach (top-down and bottom up), model type
(nonlinear and linear), architecture (distributed and hierarchical), and com-
putation type (iterative and non-iterative). The schemes compared in this
work are: distributed multiple shooting [31], fast gradient-based DMPC [11],
game theory based DMPC [12], sensitivity-driven DMPC [33], and DMPC
based on agent negotiation [22]. More specifically, we provide a thorough
comparison of the schemes in different aspects: the tracking performance in
terms of economic quantification, the requirements of communication, the
capability of satisfying the constraints, and the computational effectiveness.
The paper is organized as follows. In Section 2, we give an overview of the
HPV benchmark. The mathematical models of its components are provided
and the control problem is defined. Section 3 briefly presents the different
control methodologies that are tested in this paper. In Section 4, we assess
the performance of the aforementioned control strategies. Finally, Section 5
provides some concluding remarks.
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Finally, in order to simplify the comparison of the schemes the following
notation is used throughout the paper:

• N denotes the set of subsystems in which the overall system is parti-
tioned and the cardinality of this set, |N |, will be used to denote the
number of subsystems.

• In the model description, x is used for states; u for inputs/actions; y
for outputs/measurements; d for disturbances.

• The discrete time index is k and t is used as continuous time index.

• Tp is the sampling time.

• Np and Nc stand respectively for the prediction and the control hori-
zons.

• Reference values are denoted by a bar over the corresponding variable,
e.g., x̄i stands for the reference of xi.

• Vectors representing variables over Np steps in the future are denoted
as follows: x(k + 1 : k +Np) represents [x

T(k + 1), . . . ,xT(k +Np)]
T.

• ∥z∥M is the weighted Euclidean norm, i.e.,
√
zTMz

Any variable or notation beyond this basic convention will be explicitly in-
dicated in the text.

2 System overview

The system we consider is a hydro-power plant composed by 8 subsystems
connected together. More specifically, in this paper we work with its com-
plete mathematical model [30], which is based on first principles equations.
Figure 1 gives an overview of the system, which is composed of 3 lakes (L1,
L2, and L3) and a river that is divided in 6 reaches (R1, R2, R3, R4, R5, and
R6) that terminate with dams equipped with turbines for power production
(D1, D2, D3, D4, D5, and D6). The lakes and the river reaches are con-
nected by a duct (U1), ducts equipped with a turbine (T1 and T2), and ducts
equipped with a pump and a turbine (C1 and C2). The river is fed by the
flows qin and qtributary, while the lakes are fed by q1, q2, and q3. The following
assumptions have been made in order to simplify the system modeling:
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Figure 1: Overview of the hydro-power plant.

• the ducts are connected at the bottom of the lakes (or to the bottom
of the river bed);

• the cross sections of the reaches and of the lakes are rectangular;

• the width of the reaches varies linearly along the reaches;

• the river bed slope is constant along every reach.

In the following subsections, we present the models that have been used for
the different system components and afterwards we briefly explain how the
model is used for control purposes.

2.1 Reach model

The model of the reaches is based on the one-dimensional Saint Venant par-
tial differential equations [7], which correspond to the mass and momentum
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balances:

∂q(t, z)

∂z
+

∂s(t, z)

∂t
= ql(z),

1

g

∂

∂t

(
q(t, z)

s(t, z)

)
+

1

2g

∂

∂z

(
q2(t, z)

s2(t, z)

)
+

∂h(t, z)

∂z
+ If(t, z)− I0(z) = 0

(1)

where z is the spatial variable, which increases along the direction of flow,
q(t, z) is the water flow (or discharge) at time t and space coordinate z, s(t, z)
is the wetted surface, h(t, z) is the water level w.r.t. the river bed, g is the
gravitational acceleration, If(t, z) is the friction slope, I0(z) is the river bed
slope, and ql(z) is the lateral inflow per space unit.
Assuming that the cross section of the river is rectangular, we have

s(t, z) = w(z)h(t, z) (2)

and

If(t, z) =
q(t, z)2 (w(z) + 2h(t, z))4/3

k2
str (w(z)h(t, z))

10/3
, (3)

where w(z) is the river width and kstr is the Gauckler-Manning-Strickler
coefficient2 [7].

2.2 Lake model

Since the cross section of the lake is assumed to be rectangular, the mass
balance for each lake can be transformed into an equation for the water level
h(t),

dh(t)

dt
=

qin(t)− qout(t)

S
, (4)

where S is the cross lake surface area, and qin(t) and qout(t) denote the water
inflow and outflow of the lake.

2.3 Duct model

The flow inside the duct U1 can be modeled using Bernoulli’s law [7]. As-
suming that the duct section is much smaller than the lake surface, the flow
from lake L1 to lake L2 can be expressed as

qU1(t) = SU1 sign(hL2(t)− hL1(t) + hU1)
√
2g|hL2(t)− hL1(t) + hU1|, (5)

2In general, the Gauckler-Manning-Strickler coefficient depends on the geometry of the
river bed surface. In the model used in this work, kstr is taken to be constant along the
river.
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where hL1 and hL2 are the water levels for lakes L1 and L2, hU1 is the height
difference of the duct, SU1 is the section of the duct, and g is the gravitational
acceleration.

2.4 Turbine model

For every turbine, we assume that we can control the turbine discharge di-
rectly. The power produced is given by

pt(t) = ktqt(t)∆ht(t), (6)

where kt is the turbine coefficient, qt(t) is the turbine discharge, and ∆ht(t)
is the turbine head.

2.5 Pump model

Pumps can be modeled similarly to turbines. The power absorbed by a pump
is given by

pp(t) = kpqp(t)∆hp(t), (7)

where kp is the pump coefficient, qp(t) is the pump discharge, and ∆hp(t) is
the pump head.

2.6 Modeling of ducts equipped with a turbine and a
pump

The ducts C1 and C2 are equipped both with a pump and a turbine and
therefore we can use equations (6) and (7) to express the amount of power
generated or absorbed. However, the turbines and the pumps cannot function
at the same time. If this fact would be modeled in a straight forward manner,
the resulting optimization problem would not be differentiable. In order
to overcome this issue, the so-called double flow technique is used, which
consists of defining two separate positive variables to express the flow, one
for the pump flow and another for the turbine flow. For example, the flow
in C1 could be modeled using these two auxiliary flows:

• qC1p(t): virtual flow such that C1 functions as a pump,

• qC1t(t): virtual flow such that C1 functions as a turbine.

Using these two flows, the power function associated with C1 is replaced
by two continuous functions that express the power produced (qC1t(t)) and
consumed (qC1p(t)). This approach allows the optimization method to deal

8



with smooth functions only. When a solution is obtained, we combine the
virtual flows to get the real flow through C1:

qC1(t) = qC1t(t)− qC1p(t). (8)

The duct C2 is modeled in a similar way.

2.7 Resulting model and optimal control problem

In order to obtain a suitable nonlinear plant-replacement model, the partial
differential equations are discretized in space and converted into ordinary
differential equations. This model is also used by the distributed multiple
shooting method, which is the only nonlinear DMPC method considered
in this paper. The rest of the schemes tested in the paper are linear and
consequently need a linearized version of the model. To this end, the ordinary
differential equations are linearized in the steady state and discretized in
time. In any case, the HPV dynamics are described with 249 states, which
correspond to water levels and flows, and 10 inputs, which correspond to the
flow at the pumps and turbines. In addition, two additional input variables
can be considered to simplify the modeling of the ducts equipped with both
a pump and a turbine. Finally, note that the state and input variables that
are assigned to each local controller correspond only to its local subsystem.
The control goal is to minimize the following cost function while following a
power reference trajectory p̄(t) during a period of 24 hours:

min
u(·),x(·)

J :=

∫ 24h

0

γ(t)

∣∣∣∣p̄(t)− P (x(t),u(t))

∣∣∣∣dt (9a)

s.t.

ẋ(t) = f(x(t),u(t)) t ∈ [0, 24h] (9b)

xmin ≤ x(t) ≤ xmax t ∈ [0, 24h] (9c)

umin ≤ u(t) ≤ umax t ∈ [0, 24h] (9d)

where xi(t) is the state of subsystem i; x(t) = [xi(t)]i∈N is the aggregate vari-
able of all the states of the overall system; u(t) = [ui(t)]i∈N is the aggregate
variable of all the inputs; the vectors umin, umax, xmin and xmax represent the
operational constraints; P is a function that calculates the power produced;
Qi is a weighting matrix; γ(t) is the price of power, which is used to weight
the deviation from the power production reference; f() stands for the model
used in the prediction. Finally, it must be noticed that the price γ(t) and
the power reference p̄(t) are piecewise-constant functions with their values
changing every 30 minutes.
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3 DMPC schemes

In this section, we briefly introduce the basics and the rationale of the DMPC
schemes that are compared on the HPV benchmark. For more details about
these schemes, the reader is encouraged to consult the original references.
Some of the key features that allow to differentiate the DMPC schemes used
in this work are:

• Type of approach, or the perspective used to design the scheme: bottom-
up or top-down. In the first case, there is a group of autonomous agents
that cooperate in a common control problem while in the second case
a centralized control problem is partitioned into smaller problems.

• Architecture, or how the coordination between local controllers is struc-
tured. Some schemes are based one peer to peer communication while
others need a higher layer that works as a coordinator. In the last case
we can speak of a hierarchical DMPC.

• Type of model used to represent the plant dynamics.

• Computation type, or how the joint control actions are calculated, in
an iterative or non-iterative fashion.

• Theoretical properties such as stability or optimality.

In Table 1 we can see that there are differences in the schemes considered
with respect to these key features. Moreover, there are significant differences
as well in other key issues such as the assumptions made by each scheme
about the structure of the cost function. These differences derive from the
fact that most schemes in the literature have been proposed with a particular
problem set up in mind. For this reason, there is an unavoidable adaptation
step in order to apply a given scheme to a concrete problem such as the HPV
benchmark.

Scheme Approach Model Type Architecture Computation Optimality Stability

DMS Top-down Nonlinear Hierarchical Iterative Yes No
DMPC-BAN Bottom-up Linear Distributed Iterative No Yes
DAPG Top-down Linear Distributed Iterative Yes No
S-DMPC Top-down Linear Hierarchical Iterative Yes No
GT-DMPC Bottom-up Linear Distributed Non-iterative No Yes

Table 1: Summary of scheme basic features.
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Remark 1 Table 1 summarizes the main features of the different DMPC
schemes considered in a very simplified way. In particular, we say that a
scheme is optimal or stable if there are mathematical results available in this
regard. However, some restrictions may apply regarding stability because of
the assumptions made in the corresponding proofs. In addition, optimality for
these schemes is meant only in an open-loop sense. The reader is encouraged
to consult the original references to see the specific details.

3.1 Distributed Multiple Shooting (DMS)

This approach employs a combination of direct multiple shooting [5] and do-
main decomposition and is regarded as Distributed Multiple Shooting [31].
In order to simplify and parallelize the computations, this method decom-
poses the original nonlinear optimal control problem in both the space and
the time domains. The optimal control problem considered is

min
x,u,
z,y

|N |∑
i=1

∫ NpTp

0

ℓi(xi(t),ui(t), zi(t))dt (10a)

s.t.

ẋi(t) = fi(xi(t),ui(t), zi(t)) ∀i ∈ N (10b)

yi(t) = gi(xi(t),ui(t), zi(t)) ∀i ∈ N (10c)

xi(0) = x̄0
i ∀i ∈ N (10d)

zi(t) =

|N |∑
j=1

Aijyj(t) ∀i ∈ N (10e)

pi(xi(t),ui(t)) ≥ 0 t ∈ [0, NpTp], ∀i ∈ N , (10f)

where zi(t) is the coupling input signal, which is characterized by (10e) with
given coupling matrices Aij. Note that the rest of the optimization problem
is decoupled.
In order to obtain a finite nonlinear program, the states are discretized by an
integrator. The time domain [0, NpTp] is divided into N subintervals called
shooting intervals such that

0 = t0 < t1 < · · · < tN = NpTp. (11)

For the n-th shooting interval and the i-th subsystem we define the initial
state xi,n and control input ui,n and handle the integrator as a function Fi,n

that solves differential equations depending on these optimization variables
and some coupling input coefficients that we detail now.
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The variables that represent the coupling between subsystems, i.e., y(t) and
z(t) are discretized by using Legendre polynomials. For example, the p-th
element of yi(t), (yi(t))p, can be approximated by polynomial coefficients ypi
as

(yi(t))p = (Γm(t))
Typi , (12)

where Γm(t) is the m-th order Legendre basis. Due to the orthogonality
of Γm(t), the coefficient matrix Yi,n corresponding to the signal yi(t) with
t ∈ [tn, tn+1] can be obtained by calculating the quadrature

Yi,n =
2

tn+1 − tn

∫ tn+1

tn

Γm(t)
(
yi(t)

)T
dt. (13)

Note that on the right-hand side the integrand is a matrix and the quadrature
formula has to be evaluated element-wise. Now we have all the ingredients
to build the nonlinear programming problem (NLP)

min
ui,n,xi,n,
Zi,n,Yi,n,

N−1∑
n=0

 |N |∑
i=1

Li,n(xi,n,ui,n,Zi,n)

 (14a)

s.t.

xi,n+1 = Fi,n(xi,n,ui,n,Zi,n) n ∈ [0, N − 1],∀i ∈ N (14b)

Yi,n = Gi,n(xi,n,ui,n,Zi,n) n ∈ [0, N − 1],∀i ∈ N (14c)

xi,0 = x̄0
i ∀i ∈ N (14d)

Zi,n =

|N |∑
j=1

ĀijYj,n ∀i ∈ N (14e)

pi(xi,n,ui,n) ≥ 0 ∀i ∈ N . (14f)

One can solve this problem with a Sequential Quadratic Programming method
[27], which calculates the linearization of the original problem and employs
corrections sequentially to the original optimization variables. The essence
of distributed multiple shooting is that the evaluation of Fi,n(xi,n,ui,n,Zi,n)
along with ∇Fi,n(xi,n,ui,n,Zi,n) may be divided into |N | × N independent
tasks with own integration rules. This provides a massive parallelizability
compared to a serial classical method.
Finally, a description of the main steps needed to implement DMS is given
in Algorithm 3.1 [19].

Algorithm 3.1 Distributed Multiple Shooting method

Problem preparation
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1. Introduce time mesh 0 = t0 ≤ · · · ≤ tN = Np and optimization variables
xi,n and ui,n.

2. Choose the order of the Legendre basis function m and introduce opti-
mization variables Zi,n and Yi,n.

3. Reformulate local dynamic equations fi for each time interval [tn, tn+1):
plug Γm(t̂)

TZi,n into zi(t).

4. Extend local dynamic equations with quadratures that calculate local
output approximations and the objective function.

Algorithm

1. Evaluate and linearize Li,n(·), Fi,n(·) and Gi,n(·) in the actual lineariza-
tion point using |N | ·N parallel processes.

2. Collect linearizations at the dedicated optimizer process.

3. Determine the next linearization point using an NLP solver.

4. Communicate the new linearization point to the |N | ·N processes.

5. If convergence is achieved then quit, otherwise go to Step 1.

3.2 DMPC based on agent negotiation (DMPC-BAN)

The DMPC scheme based on agent negotiation is proposed in [22] and its
goal is to minimize a global performance index defined as the sum of the lo-
cal cost functions. It assumes that each subsystem is controlled by an agent
that has access only to the local model and state information. Communi-
cation between agents is allowed such that they can negotiate within the
sampling period to take a cooperative decision. However, we must note that
the original version of the scheme proposed in [22] optimizes a cost function
whose structure is different from (9). For this reason it has been necessary to
make some adjustments in order to provide a suitable solution for the HPV
benchmark. In particular, the absolute value operation of (9) is replaced by
a square. In addition, the water levels are assumed to be constant during
the optimization problem. These changes allows us to define the local cost
function for each agent i,

Ji(xi(0),uNi
(0 : Np − 1)) =

Np−1∑
l=0

(
∥xi(l + 1)− x̄i∥2Qi

+
∑
j∈Ni

(
∥uj(l)∥2Rij

+RT
j uj(l)

))
,

(15)
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where Ni are the set of inputs that affect the dynamics of agent i, uNi
(0 :

Np − 1) is the future trajectory of inputs in Ni, and Qi > 0,Rij > 0, and
Rj are weighting matrices. Algorithm 3.2 details how this control strategy
works.

Algorithm 3.2 DMPC Based on Agent Negotiation

1. An initial joint decision vector at time step k is built, ud
Ni
(k : k+Np−

1). To this end, the final joint decision vector at time step k − 1 is
shifted such that the components corresponding to its first time step are
discarded and new components are aggregated by repeating the control
actions corresponding to the last step in the control horizon3. Likewise,
the state is transmitted to the neighbors such that they all can build the
matrices that characterize (15).

2. Randomly, agents make proposals to their neighbors. A proposal is
simply a possible update of the components related with Ni in ud

Ni
(k :

k +Np − 1), i.e.:

min
uNi

(k:k+Np−1)
Ji(xi,uNi

(k : k +Np − 1)) (16a)

s.t.

xi(l + 1) = Aixp(l) +
∑
j∈Ni

Bpjuj(l), l ∈ [k, k +Np − 1]

(16b)

xi(l) ∈ Xi, l ∈ [k + 1, k +Np] (16c)

uj(l) ∈ Uj, ∀j ∈ Ni, l ∈ [k, k +Np − 1] (16d)

ui
j(l) = ud

j (l), ∀j /∈ Ni, l ∈ [k, k +Np − 1] (16e)

3. Agent i asks all the agents affected by its proposal if they are free to
evaluate it (each agent can only evaluate one proposal at the time). If
all the neighbors acknowledge the petition, the algorithm continues. If
not, the agent waits a random time before trying again.

4. Each agent j affected by the proposal evaluates the difference between
the cost of the new proposal ui

Ni
(k : k + Np − 1) and the cost of the

current accepted proposal ud
Ni
(k : k +Np − 1) as

∆J i
j = Jj(xj(k),u

i
Ni
(k : k +Np − 1))− Jj(xj(l),u

d
Ni
(k : k +Np − 1))

(17)

3See [22] for a more sophisticated aggregation of components which in addition can be
used to guarantee the stability of the closed-loop system.
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This difference ∆J i
j is sent back to the proposer agent i. If the proposal

does not satisfy the constraints of the corresponding local optimization
problem, an infinite cost increment is assigned. This implies that un-
feasible proposals will never be chosen.

5. Agent i receives the local cost increments from all the agents affected
by its proposal, such that it can evaluate its impact ∆J i(k) as

∆J i =
∑

j ∆J i
j (18)

If ∆J i is negative, ud
Ni
(k : k + Np − 1) = ui

Ni
(k : k + Np − 1) and

agent i broadcasts the update in the joint decision vector. Otherwise,
the proposal is discarded.

6. Go to Step 1 until the maximum number of proposals have been made
or the time available for placing proposals is over.

7. Apply the first component of ud
Ni
(k : k+Np−1) and repeat the procedure

in the next time step.

3.3 DMPC based on distributed optimization using
accelerated proximal gradient method (DAPG)

The scheme presented here is a distributed optimization algorithm that has
fast convergence properties [11, 15]. It assumes that each subsystem is con-
trolled by an agent that can communicate with a group of neighboring agents,
and that the whole group of control agents cooperates to obtain a globally
optimal solution of the MPC at every sampling time.
The algorithm presented here is based on the accelerated gradient method [11,
15], which can deal with problems posed in a general form as

min
x̃dec

J :=
1

2
∥x̃dec∥2H + γ|Px̃dec − p| (19a)

s.t.

A1x̃dec = B1 (19b)

A2x̃dec ≤ B2 (19c)

where x̃dec contains all decision variables stacked up for the entire prediction
period. The matrices A1 ∈ Rq×n, A2 ∈ Rr×n and P ∈ Rm×n have sparse
structures, and the matrix H ∈ Rn×n is positive definite and block-diagonal
with block elements Hi ∈ Rni×ni .
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Problem (9) has to be adapted first to the form (19) to properly deal with
the absolute term representing the total power-reference tracking to make the
problem separable. To this end, the subsystems are provided with additional
flexibility in choosing the appropriate local power-reference to be tracked.
The main idea is that each subsystem “trades” an amount of power with
its neighbors. Thus, we define for each pair (i, j) a pair of power exchange
variables for each predicted sampling time:

δij(l) = δji(l), l = 0, . . . , Np − 1. (20)

Here, we assign either subsystem i or subsystem j to “lead” the exchange
between them. A simple way to do that is to let the subsystem with a
smaller index lead the exchange, i.e. agent i leads exchange for its neighbors
j ∈ ∆i = {j|j ∈ N , j > i}. Then it is possible to replace the absolute term
in (9) by:

8∑
i=1

∣∣∣∣p̄i(l) + ∑
j∈∆i

δij(l)−
∑

j∈N\∆i

δij(l)−Pix(l)

∣∣∣∣ (21)

with p̄i the nominal power reference for subsystem i, and subject to the
constraints (20) for all pairs of (i, j). In other words, the local power reference
for each subsystem i deviates from the nominal value by adding the exchange
amounts of the links that imanages and subtracting the exchange amounts of
the links that affect i but are decided upon by its neighbors. Notice that the
new cost function in (21) is decomposable, and the additional constraints (20)
can be dualized easily without expanding the neighbor set of each subsystem.
Hence, the optimization problem can be cast into (19), such that vector x̃dec

contains also the new decision variables δij. The constraints (19b) and (19c)
represent dynamical equations, physical bound constraints on water levels
and flows, and the additional constraints (20).
The dual problem of (19) is to minimize the convex function

f(z) =
1

2
∥z∥2

ÃH−1Ã
T + B̃

T
z (22)

with

Ã = [AT
1 AT

2 PT ]T B̃ = [BT
1 BT

2 pT ]T z = [λT µT νT ]T

where λ, µ, and ν are Lagrange multipliers for the constraints (19b), (19c),
and Px̃dec − p = 0, respectively.
We also denote each column of Ã by

Ã = [a1 · · · aq+r+m]
T (23)
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with al ∈ Rn, l = 1, . . . , q + r +m. Note that each al, l = 1, . . . , q + r +m is
composed of the components that correspond to the variables of subsystems,
i.e.,

al = [aT
l1, . . . , a

T
l8]

T , l = 1, . . . , q + r +m (24)

in which ali ∈ Rnx̃i , i = 1, . . . , 8, where nx̃i
is the size of the ith subsystem

variable x̃dec,i.
In order to implement the proposed distributed algorithm, we introduce the
sets Li, i = 1, . . . , 8, containing indices l ∈ {1, . . . , q + r +m} of constraints
that are assigned to subsystem i. Each constraint should be in only one set
Li. It is decided that l ∈ Li if ali ̸= 0.
With proper choice for the step size L (see below), the minimization of (22)
is solved by the following distributed algorithm.

Algorithm 3.3 Distributed Accelerated Proximal Gradient
Initialize z0 = z−1 and x̃−1

dec with the last values from the previous sampling
step. For the first sampling step, these variables are initialized as zeros.
In every node, i, the following computations are performed:
For p = 0, 1, 2, . . . ,

1. Compute

x̃p
dec,i = −H−1

i

∑
j∈Ni

(∑
l∈Lj

zpl ali

)
(25a)

vp
i =

2p+ 1

p+ 2
x̃p
dec,i −

p− 1

p+ 2
x̃p−1
dec,i (25b)

2. Send vp
i to each j ∈ Ni, receive vp

j from each j ∈ Ni

3. Compute with each l ∈ Li

cpl =
∑
j∈Ni

aT
ljv

p
j − bl (26a)

zp+1
l = zpl +

p− 1

p+ 2
(zpl − zp−1

l ) +
1

L
cpl , if l ≤ q (26b)

zp+1
l = max

{
0, zpl +

p− 1

p+ 2
(zpl − zp−1

l ) +
1

L
cpl

}
, if q < l ≤ q + r (26c)

zp+1
l = min

{
γ,max

[
− γ, zpl +

p− 1

p+ 2
(zpl − zp−1

l ) +
1

L
cpl

]}
, (26d)

if q + r < l ≤ q + r +m (26e)
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...
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Figure 2: Two layer control architecture with S-DMPC

4. Send {zp+1
l }l∈Li

to each j ∈ Ni,
receive {zp+1

l }l∈Lj
from each j ∈ Ni.

The appropriate choice of the step size L is discussed in [15]. Algorithm 3.3
has been shown to converge to the optimal solution of problem (19), and its
convergence rate is faster than standard gradient-based algorithms [15].

3.4 Two layer architecture with sensitivity-driven DMPC
(S-DMPC)

As the optimal control problem arising in the HPV benchmark involves
multiple time scales, i.e., a long time horizon for the prediction of the 24
hour load cycle and shorter time scales arising from high-frequency distur-
bances caused by plant-model mismatch (here between the nonlinear plant-
replacement model and the linear controller model), we propose a two-layer
control architecture as depicted in Fig. 2.
The upper layer controller Cupper is an standard MPC with a linear model and
a quadratic cost function, sampled every 30 minutes, with a prediction and
control horizon of 24 hours, i.e., Np = Nc = 48. However, the non-standard
power tracking objective (9) is reformulated as a quadratic cost function

Jupper =

k+Np−1∑
l=k

p̄(l)−
|N |∑
i=1

pi(l)

2

(27)

for the upper layer controller in order to make it solvable with standard QP
solvers. The purpose of this controller is to distribute the power-load among
the power plants to be tracked by the lower-layer distributed controller, i.e.,
to provide reference trajectories p̄i, i ∈ N .
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On the lower layer, the sensitivity-driven DMPC (S-DMPC) algorithm [33]
is implemented for higher-frequency disturbance rejection and is sampled
every 90 seconds4. For this purpose, the linear quadratic constrained control
problem is transcribed offline into a standard QP of the form

min
u(k)

1

2
∥u(k)∥2H + fT (x(k))u(k) (28a)

s.t.

Au(k) + b(x(k)) ≥ 0 , (28b)

where u(k) and x(k) indicate the deviations of the input and the initial state
at time index k from the nominal steady-state values.
For the online algorithm of S-DMPC, the QP (28) is decomposed into |N |
smaller problems resulting in |N | distributed controllers for the |N | subsys-
tems. Each distributed controller considers only part of the QP, namely the
control parameters related to the corresponding subsystem, as well as the
constraints related to that subsystem. Consequently the matrices and vec-
tors are partitioned as follows: H = (Hi,j)i,j∈N , A = (Ai,j)i,j∈N , f = (fi)i∈N ,
b = (bi)i∈N , and uk = (uk,i)i∈N . Then, each of the controllers iteratively
solves the following smaller QP, involving only local decision variables and
constraints:

min
ui(k)

Ji ≜
1

2
∥ui(k)∥2Hi,i

+ fTi (x(k))ui(k)

+

 ∑
j∈N\{i}

uT
j
p(k)Hj,i − λT

j
pAj,i

ui(k), (29a)

s.t.

Ai,i ui(k) +
∑

j∈N\{i}

Ai,j u
p
j(k) + bi(x(k)) ≥ 0. (29b)

Here the superscript p indicates the Lagrange multipliers λi and the optimal
control parameters ui(k) of the p-th iteration. The cost function in (29a)
is composed of two parts: on the one hand it includes the local objective
function, in addition it contains linear information on the other controllers.
The full algorithm of the lower layer S-DMPC controller is summarized in
the following, while for details of the S-DMPC algorithm we refer to [33]:

Algorithm 3.4 Sensitivity-driven DMPC [33]

4The distribution of the power-load with the objective function (27) cannot be solved
with the S-DMPC algorithm, as the Hessian matrix of that function is only positive-
semidefinite and thus the algorithm is not necessarily applicable [33].
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1. Set time k := 0 and fix the initial system state x(k).

2. Transcribe the optimal control problem to compute H, f , A, and b; H
and A do not depend on the initial state x(k) and need to be computed
only once.

3. Select inital parameters u0
i (k) and an estimate of the initial Lagrange

multipliers λ0
i (k) and set p := 0.

4. Send the control parameters up
i (k) and the Lagrange multipliers λp

i (k), ∀i ∈
N , to the distributed controllers.

5. Solve QP (29) ∀i ∈ N to obtain the minimizer up+1(k) and the La-
grange multiplier λp+1(k).

6. Increase iteration index p, i.e. p := p+ 1 and go back to 4.

7. Stop iteration, if up(k) satisfies some convergence criterion.

8. Apply the calculated optimal system inputs to the distributed plant.

9. Set time index k := k + 1, determine the new initial state x(k) and go
back to 2.

3.5 Bargaining Approach to Optimal Control (GT-DMPC)

This DMPC scheme [2, 12, 36] is based on the axiomatic theory developed
by J. Nash for bargaining games [24]. In particular, the scheme assumes that
the whole system model can be decomposed into |N | linear subsystems such
that

xi(k + 1) =

|N |∑
j=1

Aijxj(k) +Bijuj(k) (30)

where xi(k) and ui(k) are respectively the state and the input vector of each
subsystem. In this scheme the MPC optimization problem is written as

min
uN (k:k+Np−1)

|N |∑
i=1

Ji(uN (k);x(k)) (31a)

s.t.

ui(k) ∈ Ωi, ∀ i ∈ N (31b)

where Ωi is a set of the feasible control actions determined by the physical
and operational limits of subsystem i and
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Ji(uN (k);x(k)) = ∥uT
N (k)∥2Quui + 2xT (k)QxuiuN (k) + ∥xT (k)∥2Qxxi

being Quui ≥ 0,∀i ∈ N .5

From a game-theoretical point of view, it is possible to describe the interac-
tive decision making problem as the following strategic form game:

GDMPC = (N , {Ωi}i∈N , {Ji(uN (k))}i∈N ). (32)

N is the set of players, Ωi is the set of actions of player i, and Ji(uN (k)) :
Ω1×. . .×ΩM → R determines the cost assigned to each player as the outcome
of the game. In addition, let us define the disagreement point ηi(k) as the
maximum cost player i is willing to accept in order to collaborate with the
rest. This value is updated at each time step according to

ηi(k + 1) :=


ηi(k)− α(ηi(k)− Ji(uN (k))) if ηi(k) ≥ Ji(uN (k))

Ji(ũ(k)) if ηi(k) < Ji(uN (k))

for some α ∈ R, 0 < α < 1. According to this rule, whenever the local con-
troller i decides to cooperate, i.e., when its disagreement cost ηi(k) is greater
than Ji(uN (k)), its disagreement point is reduced by a certain amount. Oth-
erwise Ji(uN (k)) is directly assigned as the new value of the disagreement
point. Notice that the latter case implies an increment of the player’s dis-
agreement cost ηi(k) and hence there is an incentive for cooperation. Given
that each player is willing to maximize the difference between its current
costs and its disagreement point, the solution of this bargaining game can be
computed from

min
uN (k)

|N |∑
i=1

ωi log(ηi(k)− Ji(uN (k))) (33a)

s.t.

ηi(k) > Ji(uN (k)) (33b)

ui(k) ∈ Ωi (33c)

where ωi > 0,
∑|N |

i=1 ωi = 1. In order to solve (33) in a distributed fashion it
is required that subsystems communicate to each other the current values of
their states, control actions and disagreement points. Once the subsystems
have this information, the optimization problem of (33) is locally solved by

5For simplicity we will just write Ji(uN (k)) instead of Ji(uN (k);x(k))) in the remainder
of this subsection.
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considering fixed values of the inputs and states of the remaining subsystems.
The particular negotiation model employed by this scheme is non-iterative
and it is based on that presented in [24] for two-person games. Regarding the
closed-loop stability of the overall system, in [36] conditions are derived. The
steps to solve the DMPC game are summarized in Algorithm 3.5 [2, 12, 36].

Algorithm 3.5 Bargaining approach

1. At time step k, each subsystem broadcasts the values of the state xi(k).

2. With the information received, each subsystem solves the local optimiza-
tion problem (33).

3. Let u∗
i (k) denote optimal control actions for subsystem i. If (33) is

feasible, subsystem i selects the first control action of u∗
i (k) as a con-

trol action. Otherwise, subsystem i continues with the previous agreed
trajectory. To this end, u∗

i (k − 1) is shifted so that its first component
is discarded and zeros are inserted in the last one.

4. Each subsystem updates its disagreement point.

5. Each subsystem broadcasts its updated control action u∗
i (k) and dis-

agreement point ηi(k).

6. Go to Step 1.

4 Results

In this section, we show the results from the tests that we have performed
with the schemes described in Section 3. In order to measure their perfor-
mance, we use the following indicators:

• Integral of absolute tracking error (IATE): the absolute value of the
tracking error with respect to the power reference integrated during
the whole simulation, i.e.,∫ 24h

0

∣∣∣∣p̄(l)− P (x(t),u(t))

∣∣∣∣dt. (34)

• Economic tracking error (ETE): the absolute value of the tracking er-
ror with respect to the power reference weighted by the corresponding
electricity price integrated during the whole simulation, i.e.,∫ 24h

0

γ(t)

∣∣∣∣p̄(l)− P (x(t),u(t))

∣∣∣∣dt. (35)

22



Note that this indicator corresponds with the objective function to be
minimized (9).

• Economic tracking error 2 (ETE2): a variation of ETE in which the
power overproduction gets half the penalty of underproduction, i.e.,∫ 24h

0
γ(t)

(
max

(
p̄(l)− P (x(t),u(t)), 0

)
+1

2
max

(
P (x(t)− p̄(l),u(t)), 0

))
dt.

(36)

The rationale of this second economic indicator is to reward the power
overproduction with respect to the underproduction, which is worse
from the point of view of demand satisfaction.

• Communication costs: the raw communication burden of the scheme
measured as the number of floats transmitted at each time step.

• Constraint violation: the integral of the constraints violation. As it can
be seen in Figures 4-8, the water levels of the lakes and the reaches,
which are depicted in blue, do not always satisfy their corresponding
constraints, depicted in red. This parameter sums the area between the
blue and the red lines whenever there is a violation. Hence, it provides
a numerical indicator regarding the level of constraint satisfaction of
each controller. Finally, note that input constraints are always satisfied
because inputs are decision variables.

• Sum of absolute input distance with respect to setpoint (SAIDS): it is
the sum for all the inputs of a given scheme of the absolute difference
between the input value and its corresponding steady state value during
the simulated period. The rationale of this indicator is to provide
information regarding which schemes implement control actions closer
to the steady state values.

10∑
i=1

47∑
k=1

∣∣∣∣ui(k + 1)− ūi

∣∣∣∣. (37)

• Sum of absolute input increments (SAII): this indicator sums for each
control scheme the absolute difference between consecutive samples of
its inputs during the simulated period. The rationale of the indicator
is to provide information regarding which schemes cause the most and
the least abrupt changes in the input signals.

10∑
i=1

47∑
k=1

∣∣∣∣ui(k + 1)− ui(k)

∣∣∣∣. (38)
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It is worth noting that the computation time has not been used for compar-
ison in this work because the controllers were not designed to optimize the
computation time. In addition, the type of implementation has not been uni-
form for all the controllers (for example, one used C++ and others Matlab).
For this reason, we have focused instead on the number of decision variables
and the communication burden of each controller to provide the reader with
indicators regarding the complexity of each scheme and its corresponding
implementation. In any case, the computation times of all the schemes were
much lower than the sampling time of the plant.
In the following, we will present the results for each of the schemes considered,
which are summarized in Table 2. In Figure 3, the planned power production
and the reference power within 1 day are shown. Note that some of the
power curves are barely noticeable because they follow the reference with
great precision. In addition, the difference between the power generated by
each scheme and the reference is shown in Figure 4. Likewise, Figures 5
to 8 show the evolution of the inputs and outputs of the system (blue lines)
together with their corresponding constraints (red lines).

4.1 DMS

This scheme obtains the best results in the benchmark. The IATE obtained
by DMS was 0.06, and the ETE and ETE2 indices were respectively 4 and
3. This result is not surprising since the DMS scheme solves the central-
ized nonlinear control problem in a distributed fashion without any model
mismatch and without unknown disturbances. More specifically, the solu-
tion found is optimal (though not highly accurate) because it converges to
that of the equivalent centralized optimization problem, with KKT tolerance
0.258831, primal infeasability 1.08 × 10−12, and dual infeasability 1.67. For
this reason, we can use its results as a bound on the performance that can
be achieved by other schemes based on a linear model.
The evolution of the water levels and the inputs of this scheme can be seen
in Figure 5. These outstanding results are obtained after solving a nonlin-
ear problem which has altogether 20661 variables, 2154 inequalities, 20025
equalities (besides the 249 states and 12 manipulated variables of the model,
162 auxiliary variables are used by this method) whose corresponding com-
putations are distributed in a total of 8 × 48 processes. Finally, regarding
the communication burden of this scheme, the centralized controller sends
6 × 8 × 48 = 2034 vectors, and receives 5 × 8 × 48 = 1920 vectors and
5 × 8 × 48 matrices in each iteration via a message passing interface that
uses double precision. In terms of the floating numbers transmitted, the
centralized controller sends 16368 floats and receives 6010800.
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Finally, the SAIDS and SAII indicators for this scheme were respectively
12637.91 and 10489.28.

4.2 DMPC-BAN

The IATE, ETE, and ETE2 obtained by this scheme were, respectively, 89.09,
5808 and 3388. These results can be explained because of the strict assump-
tions made by the scheme: all the agents use a linear model and have strict
local information. Hence, the cooperating capabilities are limited. Never-
theless, notice that these values are in the same order of magnitude of other
more sophisticated schemes. The evolution in time of the water levels and
the inputs is depicted in Figure 6.
Regarding the communication burden of the scheme, the total number of
proposals at each sample period was set to 50. Given that the control horizon
Nc was set to 10, each proposal was composed of a maximum of 30 floating
point reals. In addition, at the beginning of each time step, the value of water
levels is transmitted so that the power generation matrix can be calculated,
i.e., 8 additional floats are transmitted. Regarding the computational burden,
each local controller only has to solve its optimization problem once. A total
number of 100 optimization variables is calculated. Finally, we must point
out that there were two small violations during the simulations, one in the
water level of lake L2 (0.035m) and another one in the water level at reach
R1 are violated (-0.05m). In total, the constraint violation integral is 0.13.
Finally, the SAIDS and SAII indicators for this scheme were respectively
8152.11 and 2915.82.

4.3 DAPG

The IATE, ETE and ETE2 obtained by this scheme were, respectively, 3.86,
250, and 229. As it can be seen in Figure 3, this distributed controller follows
the reference accurately, which is not surprising since again this controller
solves a centralized control problem in a distributed fashion. The evolution
of the water levels and the inputs are shown in Figure 7.
A bound on the communication burden of this scheme is not easy to calculate
since it depends on the total number of iterations needed until convergence
is obtained. In the simulation performed an average of 580 iterations was
needed for convergence at each time step. Taking into account that a total
of 2100 floats were trasmitted each iteration, there are approximately 1.2
millions floats transmitted in a sample. Regarding the constraint violations,
we must point out that while there is no violation for input constraints, there
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Figure 5: a) Water levels in different reaches and lakes together with the
constraints along 24 hours corresponding to the DMS scheme. b) Control
plan of reaches and lakes together with constraints for 24 hours corresponding
to the DMS scheme
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Figure 6: a) Water levels in different reaches and lakes together with the
constraints along 24 hours corresponding to the DMPC-BAN scheme. b)
Control plan of reaches and lakes together with constraints for 24 hours
corresponding to the DMPC-BAN scheme.
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Figure 7: a) Water levels in different reaches and lakes together with the
constraints along 24 hours corresponding to the DAPG scheme. b) Control
plan of reaches and lakes together with constraints for 24 hours corresponding
to the DAPG scheme.
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is a small violation in the output constraints of the water levels of the reaches
R5 and R6. The integral of these violations is 0.62.
Finally, the SAIDS and SAII indicators for this scheme were respectively
7434.22 and 1034.83.

4.4 S-DMPC

The IATE, ETE and ETE2 indices obtained by this scheme were, respec-
tively, 36.72, 2419 and 1788. As it can be seen in Figure 3, the performance
of the distributed controller is good, in fact similar to that of DAPG. The
additional centralized layer plays an important role because it improves the
coordination of the local controllers and the overall performance. The evolu-
tion of the water levels and of the inputs are shown in Figure 8. Regarding
the communication burden, the following holds:

• The initial state has to be transmitted once per sampling period (249
floats).

• For each iteration (2 in the simulation), each of the 480 optimization
variables floats has to be broadcasted, i.e., 960 floats are transmitted
at each time step.

• For each iteration, each of the 864 Lagrange multipliers that correspond
to the evolution constrained output variables have to be transmitted,
i.e., 1728 floats are transmitted at each time step.

In total, 2937 floats are transmitted through the network at each time step.
This communication burden corresponds to the following set up: 2 iterations
per time step, Nc = 48, and Np = 48.
Finally, the SAIDS and SAII indicators for this scheme were respectively
8951.34 and 2731.54.

4.5 GT-DMPC

The IATE, ETE and ETE2 obtained by this scheme were, respectively,
116.39, 7998 and 5184. The evolution of the water levels and the inputs
is shown in Figure 9.
Regarding the communication burden of this scheme, the subsystems have
to transmit their disagreement points, states, and inputs. In total, 500 floats
are transmitted at each time step due to the fact that:

• Subsystems 1 and 2 have a 64 decision variables corresponding to the
inputs. In addition, the state of subsystems 1 and 2 has respectively 2
and 1 components.
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Figure 8: a) Water levels in different reaches and lakes together with the
constraints along 24 hours corresponding to the S-DMPC scheme. b) Control
plan of reaches and lakes together with constraints for 24 hours corresponding
to the S-DMPC scheme.
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Figure 9: a) Water levels in different reaches and lakes together with the con-
straints along 24 hours corresponding to the GT-DMPC scheme. b) Control
plan of reaches and lakes together with constraints for 24 hours corresponding
to the GT-DMPC scheme.
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• Subsystems 3 to 8 have 40 state variables and a decision vector with
32 components.

• The disagreement point only has 1 component for each subsystem.

Finally, we must point out that there were several constraints violated in the
simulations. The most important violations occur with the water levels in
lake L1 and L2, which are violated during several hours. The integral of the
constraint violation is 60.48.
Finally, the SAIDS and SAII indicators for this scheme were respectively
11267.17 and 5517.10.

Scheme IATE ETE ETE2 Comm. Cost. Violations SAIDS SAII
[MW·h] [e] [e] [#floats/sample] [m·h] [m3/s] [m3/s]

DMS 0.06 4 3 6027168 0.02 12637.91 10489.28
DMPC-BAN 89.09 5808 3388 1500 0.13 8152.11 2915.82
DAPG 3.86 250 229 1218000 0.62 7434.22 1034.83
S-DMPC 36.72 2419 1788 2937 2.10 8951.34 2731.54
GT-DMPC 116.39 7998 5184 500 60.48 11267.17 5517.10

Table 2: Comparative results

4.6 Comparative assessment

In tables 1 and 2, the main properties of the schemes considered in this work
and performance indicators regarding their application in the HPV have been
shown. The first, and more meaningful property that has to be discussed,
is the way in which each scheme copes with the HPV control problem. In
particular, the amount of centralized information that each scheme exploits
is directly related with the performance it obtains. For example, as it can
be seen in Table 1, DMS, DAPG and S-DMPC follow a top-down approach,
i.e., the overall control problem is considered and partitioned into smaller
control problems that are solved by local controllers. The concrete way in
which the problem is partitioned depends on the particular scheme. A clear
advantage of this approach is that it allows to provide guarantees regarding
the optimality of the solution attained. More specifically, all these methods
provide the same solution of the corresponding centralized control problem
if they are allowed to iterate until they converge. Not surprisingly, Table 2
shows that these three schemes obtain the best results regarding the tracking
performance indicators considered. However, it must be noted that DMS
obtains a clear victory due to its non-linear nature and the massive amount
of communication it uses.
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The control schemes with the lowest performance in the HPV benchmark are
DMPC-BAN and GT-DMPC. Nevertheless, given that these schemes follow
a bottom-up approach, they have to be analyzed separatedly. In this case,
the approach followed starts with a set of local controllers whose control tasks
are coupled. Hence, the goal of this type of schemes is to promote coopera-
tion between the controllers so that the overall performance is increased, but
each local controller is still a separate entity and restrictions in the cooper-
ation may apply for this reason. For example, in DMPC-BAN each agent
proposes solutions based only on local information that may or may not be
accepted by the neighbors. Likewise, GT-DMPC is based on a bargaining
procedure used in game theory where each agent has a disagreement point,
i.e., a maximum acceptable cost to collaborate with other agents. Why to
consider then this approach in a benchmark like HPV? Despite that the
HPV benchmark may seem closer to a monolithical control problem that can
be partitioned into smaller control problems – and hence more suitable for
a top-down approach –, the bottom-up approach is the way to go whenever
there are several separated entities involved that are willing to cooperate only
partially. In particular, constraints in the amount or the type of information
shared, or the fact that an agent is not willing to sacrifice its local objective
in order to increase the overall performance, are realistic restrictions that
may arise in practice.
An additional topic related with DMPC-BAN and GT-DMPC is that these
are the only schemes considered that have a formal proof regarding stability
(see Table 1). The fact that stability has not been formally addressed for a
scheme does not make it unstable. In fact, there are many schemes in the
literature that do not count with this type of formal demonstration (see [23]
for a classification of schemes regarding this issue). In our experiments, all
schemes showed stable closed-loop behaviors.
Another interesting issue is the amount of communication burden used by
each scheme. In Table 2, a certain correlation can be seen between the
performance of each scheme and the amount of communication used. In
general, communication is the mean to attain the necessary coordination in
the control tasks of each local controller. For example, iterative schemes
normally improve their performance as the local controllers iterate. More-
over, note that the worst results in the HPV benchmark are obtained by
the only non-iterative scheme considered, which highlights the importance of
communication.
The type of control actions generated by the different schemes deserves also
attention. In certain applications, it is not admissible to have abrupt changes
in the inputs due to several reasons: it may compromise the lifetime of the
actuators, there may be physical constraints, etc. For these reasons, the indi-
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cators SAIDS and SAII have been proposed. However, we must remark that
none of the controllers was designed to optimize these performance indica-
tors. Hence, they are introduced to have an initial assessment of the type
of input signals generated by each scheme. As it can be seen in Table 2,
DMS is the most demanding scheme regarding SAIDS and SAII. In the case
of SAIDS, only GT-DMPC obtains a relatively similar result. The rest of
schemes are at certain distance, being DAPG the scheme that works closer
to the steady state point. Regarding SAII, DMS is by far the scheme with
the most abrupt changes in the control signals. Despite of its 50% lower
SAII, GT-DMPC obtains again the second worst result. DMPC-BAN and
S-DMPC show a similar performance, with an additional reduction 40% with
respect to GT-DMPC. The best result is obtained by DAPG, whose SAII is
a 10% of that of DMS and which clearly outperforms the rest of controllers
from this point of view.
Finally, once the performance indicators have been discussed in the context of
DMPC, it is necessary to discuss the particular advantages and disadvantages
of the various approaches in relation to their implementation in hydro-power
plants. As it is stated in [13], the control of the real HPV is based on PID
controllers whose setpoints are calculated by off-line optimization. In gen-
eral, it is reasonable to expect an improvement on the performance of the
overall system if the optimization is performed on-line using the most recent
information and in a coordinated fashion, i.e., there is an incentive to use
this type of schemes in this context. To this end, it is necessary to provide
the local controllers with a communication infrastructure that allows the ex-
change of information. The scheme with the highest communication demand
(DMS) requires each controller to exchange several megabytes during each
time step, which is feasible even in case that wireless radio communication
is used for this purpose. The choice of the scheme is closely related to the
type of approach that is needed: if the goal is to maximize the performance,
a top-down scheme that computes a centralized optimization problem in a
distributed fashion is recommended; however, if each agent must preserve a
certain independence, then a bottom-up scheme may be preferred. Likewise,
the performance of the controller with respect to indicators such as the vio-
lations, SAIDS, and SAII is also important in this choice,although it must be
noticed that a proper tuning or a modification of the optimization problem
may help to improve the results presented in Table 2 with respect to these
indicators.
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5 Conclusions

We have studied the performance of different DMPC schemes on a hydro-
power benchmark, a type of system that can benefit from the application of
this control approach. The comparison, however, was not straight forward.
In the first place, it has been necessary to adapt the different MPC algo-
rithms to the particularities of the HPV benchmark. As it has been shown,
the changes needed to adapt the schemes were important in some cases,
which highlights the fact that implementation problems arise no matter how
general a formulation seems. For this reason it is important that control
engineers choose carefully when looking for a DMPC algorithm: there are
many schemes available but most of them have been designed with a cer-
tain framework in mind. In this sense, it is noteworthy that we have tested
five schemes with important differences between them. In particular, the
schemes considered range from linear to nonlinear, iterative to non-iterative,
or hierarchical to fully-distributed, which provides an idea about the relation-
ship between the control performance and the nature of the controllers. Not
surprisingly, the best results were obtained by the schemes that are closer
to a mere distribution of the computations needed to solve the equivalent
centralized control problem. On the other hand, the least optimal results
correspond to controllers tailored to cope with distributed problems in which
the agents have limited information about the rest of the subsystems and the
optimization is based on local objectives. However, our results also show that
performance comes at the cost of a higher communication burden, which may
be a problem in applications where the transmission of several megabytes per
sampling time is not possible.
In any case, the current state of the art of DMPC schemes offers a wide
range of techniques able to provide a reasonable overall performance even
when there are constraints in the information exchange between the con-
trollers. Future work should focus on the benchmarking of distributed control
schemes on larger systems with a possibly dynamic composition, i.e. systems
composed of a variable number of subsystems, as this is the nature of many
other real distributed control problems such as that of controlling a smart
grid.
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Gil, Alfredo Alcayde, and Julio Gómez. Optimization methods applied
to renewable and sustainable energy: A review. Renewable and Sustain-
able Energy Reviews, 15(4):1753–1766, 2011.

[4] Mario TL Barros, Frank TC Tsai, Shu-li Yang, Joao EG Lopes, and
William WG Yeh. Optimization of large-scale hydropower system
operations. Journal of Water Resources Planning and Management,
129(3):178–188, 2003.

[5] H. G. Bock and K. J. Plitt. A multiple shooting algorithm for direct
solution of optimal control problems. In Proceedings of the 9th IFAC
World Congress, pages 243–247, Budapest, 1984. Pergamon Press.

[6] E. F. Camacho and C. Bordons. Model Predictive Control in the Process
Industry. Second Edition. Springer-Verlag, London, England, 2004.

[7] V. T. Chow. Open-Channel Hydraulics. McGraw-Hill Book Co. Inc,
1959.

[8] J. M. Compas, P. Decarreau, G. Lanquetin, J. L. Estival, N. Fulget,
R. Martin, and J. Richalet. Industrial applications of predictive func-
tional control to rolling mill, fast robot, river dam. In Proceedings of the
Third IEEE Conference on Control Applications, volume 3, pages 1643
–1655, Aug 1994.
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