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Optimal Affine Leader Functions in Reverse

Stackelberg Games: Existence Conditions and

Characterization

Noortje Groot∗, Bart De Schutter, Hans Hellendoorn

Delft Center for Systems and Control, Delft University of Technology, Delft, The Netherlands

Abstract

A generalizing analysis is made in order to ease the solvability of the generally complex single-leader-
single-follower reverse Stackelberg game. This game is of a hierarchical nature and can therefore be
implemented as a structure for multi-level decision-making problems, like in road pricing. In particular,
a leader function of the affine type is analyzed in order to procure a systematic approach to solving
the game to optimality. To this end, necessary and sufficient existence conditions for this optimal affine
leader function are developed. Compared to earlier results reported in the literature, differentiability
of the follower objective functional is relaxed, and locally strict convexity of the sublevel set at the
desired reverse Stackelberg equilibrium is replaced with the more general property of an exposed point.
Moreover, a full characterization of the set of optimal affine leader functions that is derived, which use
in the case of secondary optimization objectives as well as for a constrained decision space, is illustrated.

Keywords: Stackelberg games, Hierarchical decision making, Existence conditions

1 Introduction

Hierarchical optimization approaches have proven useful in settings, in which conflicting objectives appear
[1,2], or as a means of dealing with large-scale control problems [3]. Here, the hierarchical reverse Stackelberg
game [4] is considered, which is also known as a Stackelberg game with incentive strategies [5], or more
recently, as the inverse Stackelberg game [6, 7]. As compared to the original Stackelberg game [2], in the
reverse Stackelberg game, instead of an immediate decision variable, the leader proposes a mapping of the
follower’s decision space into her decision space. Compared to the original Stackelberg game, this structure
provides the leader with a stronger influence in case of a nonunique follower response to the single-leader
decision.

While diverse research directions have been considered w.r.t. the reverse Stackelberg game, e.g., partial
information [8], sensitivity [9], and applications like road tolling [1,10], by the best knowledge of the authors,
no structural approach to finding optimal leader functions has yet been provided. Instead, much research
is tailored to the specific case of a quadratic, (strictly) convex and differentiable cost functional and, in a
dynamic game framework, of a linear state update equation [8, 11–16], in which case affine solutions have
been shown to be optimal [8]. Our aim is to expand available solution methods by first considering problem
instances in which nonconvex sublevel sets for the follower objective function as well as nondifferentiable
objective functions apply.

In this article, a first step is made toward developing a systematic solution approach that on the one
hand eases the solution process of the generally complex single-leader-single-follower reverse Stackelberg
game, and that at the same time deals with a game setting in which assumptions that could restrict the
application to certain problem settings are relaxed as much as possible. In particular, leader functions of
the affine type are analyzed in order to procure a systematic approach for solving the game to optimality.

To this end, we formulate necessary and sufficient existence conditions for an optimal affine solution as
initially presented in [17] in their most general form. Compared to earlier results reported in the literature,
the differentiability requirement of the follower objective functional is relaxed, and locally strict convexity
of the follower’s sublevel set at the desired reverse Stackelberg equilibrium is replaced by the more general
property of an exposed point.

∗e-mail: n.b.groot@tudelft.nl
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Table 1: List of Important Symbols

JL, JF Objective functions of leader, follower player

ΩL, ΩF Decision spaces of leader, follower player(
ud
L,u

d
F

)
Leader’s desired equilibrium point, ud

L ∈ ΩL, u
d
F ∈ ΩF

Λd Sublevel set for JF(·) at JF

(
ud
L,u

d
F

)
Lc(f) Contour of function f(·) at the value c ∈ R
nL, nF Number of leader, follower decision components

γL Leader function, γL : ΩF → ΩL

ΓL Set of admissible leader functions

Γ∗
L Set of optimal affine leader functions for ΩL, ΩF unconstrained

Γ∗,con
L Set of optimal affine leader functions for ΩL, ΩF constrained

ΠX(x) Supporting hyperplane to X at x ∈ X

Πt
x Tangent nF-dimensional subspace to x ∈ X

AL Set of affine relations (sets) through
(
ud
L,u

d
F

)
AX

L Set of affine relations (sets) through
(
ud
L,u

d
F

)
that are subsets of X

RL, RF Matrices that characterize an affine leader function

RL Set of realizations RL that yield an optimal affine leader function

V(X(x)) Generalized normal to X at x ∈ X

Moreover, a full characterization of the set of optimal affine leader functions is derived. The parametrized
characterization of such a set facilitates further optimization, e.g., when considering the sensitivity to de-
viations from the optimal follower response as a secondary objective, as is illustrated in [18]. Furthermore,
the characterization can be used to verify the existence of an optimal affine leader function in a constrained
decision space, in which case the derivation of existence conditions is a challenging task. The computa-
tional complexity of the original game and of the proposed solution approach is considered, and illustrative
examples are provided.

The remainder of this paper is structured as follows. Section 2 includes a definition of the reverse
Stackelberg game along with a brief analysis of its computational complexity and with an outline of the
solution approach, followed by a clarification of notation and assumptions. In Sect. 3, necessary and sufficient
conditions are proven for the existence of an optimal affine leader function, considering separately the case
of a scalar leader input, and the cases in which the desired equilibrium is either an interior or a boundary
point of the sublevel set. The characterization of the set of optimal affine leader functions is provided in
Sect. 4 and illustrated by an example, after which the use of this set for the constrained case is illustrated
by an example in Sect. 5. Conclusions are presented in Sect. 6.

2 Preliminaries

2.1 Reverse Stackelberg Game

The basic single-leader-single-follower, static, deterministic reverse Stackelberg game without constraints can
be defined as follows.

Let the leader and follower decision variables be denoted by up ∈ Ωp ⊆ Rnp , np ∈ N, p ∈ {L,F}, while
Jp : ΩL × ΩF → R denotes, respectively, the leader’s and follower’s objective (cost) functional. We assume
the leader to have complete knowledge of the follower’s objective functional and decision space.

Given that the leader player acts first by announcing the leader function γL : ΩF → ΩL while taking into
account the follower’s response, we can write the problem as a set of composed functions similar as is done
in [6]:

γ∗
L(·) ∈ arg min

γL(·)
JL (γL (u

∗
F (γL(·))) ,u∗

F (γL(·))) ,

u∗
F = arg min

uF∈ΩF

JF (γ∗
L (uF) ,uF) ,

(1)

where we assume that γ∗
L is constructed such that the optimal-indicated by an superscribed asterisk-follower

response is unique. An overview of symbols that are frequently used in this article can be found in Table 1.
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2.1.1 Computational Complexity

Already the single-leader-single-follower static reverse Stackelberg problem is complex and, in general, diffi-
cult to solve analytically due to the composed functions appearing in the optimization problem formulated
in (1) as well as the possible existence of multiple optima (hence solutions) and a nonunique follower re-
sponse [6, 7, 19].

Theorem 2.1. The reverse Stackelberg game (1) is at least strongly NP-hard.

Proof. The original Stackelberg game is a special case of (1), i.e., for γL : ΩF →
{
ud
L

}
, with ud

L ∈ ΩL a free
variable, (1) can be written as

(
ud
L,u

d
F

)
∈ arg min

uL∈ΩL,uF∈ΩF

{
JL (uL,uF) : uF ∈ arg min

uF∈ΩF

{JF (uL,uF)}
}
, (2)

from which a suitable, explicit value ud
L for γL (uF) follows.

Moreover, the Stackelberg game (2) is equivalent [20, 21] to the bilevel programming problem that can
be written as

min
x∈X

{
F (x, ỹ) : G(x, ỹ) ≤ 0, ỹ ∈ argmin

y∈Y
{f(x,y) : g(x,y) ≤ 0}

}
, (3)

for general cost functions F (·), f(·) and constraint functions G(·), g(·). The linear bilevel programming
problem is proven to be NP-hard [22] and later strongly NP-hard [23].

Hence, the reverse Stackelberg game can be reduced to the strongly NP-hard bilevel optimization problem,
and therefore belongs at least to this complexity class.

A common, simplifying approach to the reverse Stackelberg problem is for the leader player to first
determine a particular desired optimum

(
ud
L,u

d
F

)
that she seeks to achieve [4,5]. A natural choice would be

the leader’s global optimum
(
ud
L,u

d
F

)
∈ argminuL∈ΩL,uF∈ΩF

JL (uL,uF). Given such an equilibrium point,
the remaining problem can be written as follows:

To find: γL ∈ ΓL, (4)

s.t. arg min
uF∈ΩF

JF (γL (uF) ,uF) = ud
F, γL

(
ud
F

)
= ud

L, (5)

where ΓL denotes the class of leader functions γL : ΩF → ΩL that is allowed in a particular game setting.
In other words, the leader should construct her function γL such that it passes through the desired

optimum, but without intersection with other points in the sublevel set

Λd :=
{
(uL,uF) ∈ ΩL × ΩF : JF (uL,uF) ≤ JF

(
ud
L,u

d
F

)}
. (6)

Then, the optimal follower response coincides with the desired input ud
F.

2.1.2 Affine Incentive Compatibility

In order to further reduce the complexity of the general reverse Stackelberg game and to create a systematic
approach toward solving the general game, in this paper, we focus on the particular affine structure of the
leader function, i.e., we assume ΓL to include only functions of the form

uL := γL (uF) = ud
L +B

(
uF − ud

F

)
, (7)

where B denotes a linear operator mapping ΩF → ΩL, represented by an nL × nF matrix in the finite-
dimensional case we will consider according to Assumption A.3 in Sect. 2.3 below.

The property of a particular desired leader equilibrium to be feasible for an instance of the reverse
Stackelberg game is known as incentive compatibility in the literature [5]; it will therefore be analyzed under
what conditions an optimal affine leader function exists, meaning that the leader is able to induce the follower
to choose the desired input ud

F, and thus reach her desired equilibrium.
From now on, we denote by AL the set of affine relations through

(
ud
L,u

d
F

)
defined as sets of dimension

nF in ΩL × ΩF and such that, for αL ∈ AL, αL ∩ Λd =
{(

ud
L,u

d
F

)}
.

Note that the introduction of AL is necessary in order to be able to work with the function γL : ΩF → ΩL

as a set of points
{(uL,uF) : uF ∈ ΩF,uL = γL (uF)} . (8)
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Figure 1: The points a and d of this closed convex set X are exposed; points b and c are not.

Remark 2.1. Note that, in this paper, the leader function γL is defined as a mapping ΩF → ΩL that can also
be represented by the set of points (8) [24]. In the following, both the mapping and the set representation
of γL are adopted, depending on the context.

For αL ∈ AL, αL (ΩL) = ΩF, we can then characterize a candidate leader function by γL := (αL)
−1

.
To indicate that a function αL ∈ AL is not only affine, but also it is in addition a subset of X, we define
AX

L := {αL ∈ AL : αL ⊆ X}.

2.2 Notation

The analysis mostly relies on concepts from convex analysis and geometry, such as hyperplanes and strictly
convex functions and sets (see, e.g., [24,25]). We denote the convex hull of a set X by conv(X). In addition,
the following notation is adopted:

• By f(X̃), we denote the image of a function f : X → Y for a subset X̃ ⊆ X, where the domain is
denoted X := dom(f).

• ΠX(x) denotes a supporting hyperplane to the set X at the point x ∈ X.

• As in [24], a set X is an affine subspace iff ∀y, z ∈ X,∀α ∈ R : αy + (1− α)z ∈ X.

• An exposed point of a convex set X is defined as a point in its closure X̄ :=
⋂
{X + ϵB : ϵ > 0} with

B the Euclidean unit ball B := {x : |x|2 ≤ 1} that intersects with a strictly supporting hyperplane to
X [25] (see also Fig. 1). Similarly, a point x̃ in the closure of a nonconvex set X̃ is an exposed point
if there exists a neighborhood of x̃, N (x̃), such that x̃ intersects with a strictly supporting hyperplane
to N (x̃).

• The projection of the set P ⊆ Rn onto the space X = Rm, m ≤ n is denoted projX(P ).

• By {0}nL × ΩF, we denote the decision space in which the leader components are taken to be zero.

• A generalized gradient ∂f(x) of a locally Lipschitz continuous function f : Rn → R at x is defined as
follows:

∂f(x) := conv
({

lim
m→∞

∇f (xm) : xm → x, xm ∈ dom(f)\Ωf

})
,

with Ωf being the set of points where f is nondifferentiable [26]. By V(X(x)), we denote the generalized
normal to the set X at the point x ∈ X̄, defined as a basis of the generalized gradient at x ∈ X̄. Thus,
in case Λd is smooth at

(
ud
L,u

d
F

)
, V
(
Λd

(
ud
L,u

d
F

))
= ∇JF

(
ud
L,u

d
F

)
. The generalized normal can be

defined through a finite or an infinite number of linearly independent basis vectors as clarified in Fig. 5.

2.3 Assumptions

[A.1] Let ΩL,ΩF be convex sets.

[A.2] Let Λd be a connected set.

[A.3] Let nL, nF be finite.

[A.4] Let Λd ̸=
{(

ud
L,u

d
F

)}
.

The first assumption is taken from the literature on Stackelberg games, e.g., [8, 27]. Assumption A.2 is
a less restrictive case of taking JF, and therefore also Λd to be strictly convex, as was done in [8]. Note
that we do not require JF to be continuous. In case

(
ud
L,u

d
F

)
∈ bd(conv(Λd)), the assumption can even be

omitted altogether as the analysis below is focused on conv(Λd) rather than Λd. Assumption A.3 is accepted
in many control applications [28, 29]; moreover, it is necessary in order to use the concept of a supporting
hyperplane. Finally, the special case excluded by Assumption A.4 presents the trivial situation in which(
ud
L,u

d
F

)
is automatically optimal for the follower as well.
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Figure 2: (a): Example of a convex set Λd that is nonsmooth at
(
ud
L,u

d
F

)
, for which no optimal affine leader

function exists. (b): Example of an optimal affine leader function not lying on a supporting hyperplane
ΠΛd

(
ud
L,u

d
F

)
for nL > 1,

(
ud
L,u

d
F

)
∈ int (conv(Λd)).

3 Existence Conditions

In the current section, basic necessary and sufficient conditions for the existence of an optimal affine leader
function are proposed for the most general case, in which the sublevel set Λd is allowed to be nonconvex
and nonsmooth, in an unconstrained decision space. These conditions form the basis for a characterization
of the set of optimal solutions, as provided in Sect. 4. An explicit analysis of the subcases in which convex
sublevel sets apply that are smooth at

(
ud
L,u

d
F

)
can be found in [17]. Here, it should be noted that, when

relaxing the strict convexity of the follower objective functional from the original results in [8], the desired
leader equilibrium is not automatically a boundary point of the convex hull of the sublevel set. Exclusion
of this case prevents the current theory from being generally applicable, as is illustrated in Fig. 2b. There,
an example is shown of an optimal affine leader function for a desired equilibrium

(
ud
L,u

d
F

)
, that is, in the

interior of the convex hull of Λd.
We first need to consider the special case of nL = 1; no optimal affine leader function then exists if, in

addition,
(
ud
L,u

d
F

)
is not an exposed point of conv(Λd).

Proposition 3.1. Let ΩL = RnL , ΩF = RnF and assume that nL = 1. Then, the desired equilibrium(
ud
L,u

d
F

)
can be reached under an affine γL : ΩF → ΩL if and only if it holds both that

(
ud
L,u

d
F

)
is an exposed

point of conv(Λd) and that
projΩL

(
V
(
conv

(
Λd

(
ud
L,u

d
F

))))
̸= {0} .

Proof. First note that, since nL = 1, if and only if a strictly supporting hyperplane Πconv(Λd)

(
ud
L,u

d
F

)
exists,

it coincides with an affine αL ∈ AL, as is shown in Lemma 6.3. Note that a plane Πconv(Λd)

(
ud
L,u

d
F

)
is strictly

supporting if and only if
(
ud
L,u

d
F

)
is an exposed point of conv(Λd) (implying that

(
ud
L,u

d
F

)
/∈ int (conv(Λd))).

It remains to be shown that, in addition to
(
ud
L,u

d
F

)
being exposed, in order for α

ΠΛd

L (ΩL) = ΩF to hold,

it is necessary and sufficient that there exists a vector v ∈ V
(
Λd

(
ud
L,u

d
F

))
: projΩL

(v) ̸= {0}, from which it

follows that the projection projΩL

(
V
(
conv

(
Λd

(
ud
L,u

d
F

))))
should not include only the zero vector. In that

case, no explicit description of a leader function exists. This sufficiency and necessity is proven next.
(⇒) By contraposition: Suppose that projΩL

(
V
(
conv

(
Λd

(
ud
L,u

d
F

))))
= {0}. Then, there exists a tangent

plane Πconv(Λd)

(
ud
L,u

d
F

)
with a normal vector v for which it holds that projΩL

(v) = {0}. It follows that

this normal vector defining the hyperplane Πconv(Λd)

(
ud
L,u

d
F

)
is parallel to the decision space ΩF, i.e., the

hyperplane is orthogonal to {0}nL × ΩF. Therefore, projΩF

(
ΠΛd

(
ud
L,u

d
F

))
̸⊃ ΩF and ΠΛd

(
ud
L,u

d
F

)
will not

include any elements (uL,uF) ∈ ΩL ×
(
ΩF\

{
ud
F

})
, which implies that α

ΠΛd

L (ΩL) ⊊ ΩF.

(⇐) If projΩL

(
V
(
conv

(
Λd

(
ud
L,u

d
F

))))
̸= {0}, then there exists a normal vector v ∈ V

(
conv

(
Λd

(
ud
L,u

d
F

)))
defining a hyperplane Πconv(Λd)

(
ud
L,u

d
F

)
that is not orthogonal to the decision space ΩL.

It follows that the hyperplane is not orthogonal to {0}nL × ΩF: projΩL

(
V
(
conv

(
Λd

(
ud
L,u

d
F

))))
= ΩF.

Hence, for all uF ∈ ΩF, there exists uL ∈ ΩL : (uL,uF) ∈ Πconv(Λd)

(
ud
L,u

d
F

)
. Thus, there exists an affine

α
ΠΛd

L : α
ΠΛd

L (ΩL) = ΩF.
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Figure 3: Example of an affine γL lying on a supporting hyperplane ΠΛd

(
ud
L,u

d
F

)
that is not strictly sup-

porting.

Under the use of a leader function γL :=

(
α
Π

conv(Λd)(ud
L
,ud

F)
L

)−1

, by definition of the level set (6), the

minimum of JF(·) will be obtained at
(
ud
L,u

d
F

)
.

An example of a case in which Λd is nonsmooth and no affine γL exists is depicted in Fig. 2a: here,
projΩL

(
V
(
Λd

(
ud
L,u

d
F

)))
= {0}.

Propositions 3.2 and 3.3 consider, respectively, the case in which the desired leader equilibrium
(
ud
L,u

d
F

)
is an exposed point of conv(Λd), or is in the interior of conv(Λd) for nL ≥ 1 and nL > 1.

Proposition 3.2. Let nL ≥ 1 and assume that
(
ud
L,u

d
F

)
is an exposed point of conv(Λd). Allow Λd to be

nonsmooth at
(
ud
L,u

d
F

)
and assume that ΩL = RnL ,ΩF = RnF . Then, the desired equilibrium

(
ud
L,u

d
F

)
can

be reached under an affine γL : ΩF → ΩL if and only if projΩL

(
V
(
conv

(
Λd

(
ud
L,u

d
F

))))
̸= {0}.

Proof. The necessity and sufficiency of the expression

projΩL

(
V
(
conv

(
Λd

(
ud
L,u

d
F

))))
̸= {0}

is proven in the previous Proposition 3.1 for γL := Πconv(Λd)

(
ud
L,u

d
F

)
. In case nL > 1, it holds that

γL ⊂ Πconv(Λd)

(
ud
L,u

d
F

)
. Thus, there exists at least one leader function on the plane that satisfies the

condition that α
ΠΛd

L (ΩL) = ΩF.
Finally, for nL > 1, requiring αL ∈ AL to lie on a supporting hyperplane separating the full (nF + nL)-

dimensional decision space into subspaces is generally too restrictive for the existence of an optimal affine
leader function. This applies to, e.g., the general nonconvex case under a constrained decision space, and to
the case in which

(
ud
L,u

d
F

)
∈ int (conv(Λd)), as depicted in Fig. 2b. Hence, instead, the tangent hyperplane

concept is adopted in Proposition 3.3 below.

Proposition 3.3. Let nL > 1 and assume that
(
ud
L,u

d
F

)
∈ int (conv(Λd)). Allow Λd to be nonsmooth at(

ud
L,u

d
F

)
and assume that ΩL = RnL ,ΩF = RnF . Then, the desired equilibrium

(
ud
L,u

d
F

)
can be reached under

an affine γL : ΩF → ΩL if and only if there exists an nF-dimensional tangent, affine subspace Πt
d

(
ud
L,u

d
F

)
to

Λd at
(
ud
L,u

d
F

)
such that Πt

d

(
ud
L,u

d
F

)
∩ Λd =

{(
ud
L,u

d
F

)}
, and such that projΩL

(
V
(
Λd

(
ud
L,u

d
F

)))
̸= {0}.

Proof. Since αL ∈ AL is of the same dimension as a tangent, affine subspace Πt
d

(
ud
L,u

d
F

)
, there exists

αL ∈ AL : αL ∩ Λd =
{(

ud
L,u

d
F

)}
if and only if

∃Πt
d

(
ud
L,u

d
F

)
: Πt

d

(
ud
L,u

d
F

)
∩ Λd =

{(
ud
L,u

d
F

)}
In order for αL ∈ AΠt

d(u
d
L,u

d
F)

L to be a mapping ΩL → ΩF, it is necessary and sufficient that
projΩL

(
V
(
Λd

(
ud
L,u

d
F

)))
̸= {0}, as was proven before in Proposition 3.1.
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Remark 3.1. Consider the case with
(
ud
L,u

d
F

)
∈ bd(conv(Λd)), but where

(
ud
L,u

d
F

)
is not an exposed

point, i.e., no supporting hyperplane Πconv(Λd)

(
ud
L,u

d
F

)
exists that intersects with conv(Λd), thus also with

Λd solely in the point
(
ud
L,u

d
F

)
. However, by definition of the convex hull, there does exist a supporting

hyperplane Π̃conv(Λd)

(
ud
L,u

d
F

)
for which thus holds that Π̃conv(Λd)

(
ud
L,u

d
F

)
∩ Λd\

{(
ud
L,u

d
F

)}
̸= ∅. For this

case not captured in Proposition 3.2, with nL = 1, an optimal affine γL may still exist, as depicted in Fig. 3.

Remark 3.2. In the special case with
(
ud
L,u

d
F

)
exposed and with scalar decision variables (nF = 1, nL = 1),

an affine γL : ΩF → ΩL leading to
(
ud
L,u

d
F

)
automatically exists.

Since Λd is nonsmooth at
(
ud
L,u

d
F

)
, a supporting hyperplane to Λd will not be a unique (tangent) hy-

perplane. By both the convexity of Λd and by
(
ud
L,u

d
F

)
being an exposed point, we know that ∄uL ∈

ΩL\
{
ud
L

}
:
{(

uL,u
d
F

)}
∈ Λd. Therefore, there must exist an alternative normal vector defining the hyper-

plane ΠΛd

(
ud
L,u

d
F

)
that is not orthogonal to {0}nL × ΩF. For such a vector, ΠΛd

(
ud
L,u

d
F

)
, and therefore

α
ΠΛd(u

d
L,u

d
F)

L , will cover ΩF : dom (γL) = ΩF.

4 Characterization of an Optimal Affine Leader Function

In this section, the full set of affine leader functions will be derived under which the leader is able to induce
the follower to choose the input ud

F and thereby to reach the desired solution point. In Sect. 4.1, first the
case considered in the literature is summarized, after which we deal with the more general case in Sect. 4.2.

4.1 Under Differentiability Assumptions

A characterization of an optimal affine leader function (7), which reduces to the computation of an nL × nF

matrix B, was first derived in [8] in case JF(·) is differentiable in
(
ud
L,u

d
F

)
.

In order to make sure that B exists as defined next, it is assumed in [8] that ΩL, ΩF are Hilbert spaces
and that JF(·) is Fréchet differentiable on ΩL ×ΩF. Additionally, JF(·) is assumed to be strictly convex on
ΩL × ΩF. Then, for nL, nF finite — a similar analysis is applicable for the infinite case — B should satisfy[

∇uLJF

(
ud
L,u

d
F

)]T
B =

[
∇uFJF

(
ud
L,u

d
F

)]T
(9)

which holds under the assumption that ∇uLJF

(
ud
L,u

d
F

)
̸= 0 (as follows from the conditions for the existence

of an optimal affine leader function) and which can be verified by taking the inner product of the expression

uL = 0 according to (7) and
[
∇uLJF

(
ud
L,u

d
F

)]T
. This product

0 =
[
∇uL

JF

(
ud
L,u

d
F

)]T [(
ud
L − uL

)
+B

(
ud
F − uF

)]
(10)

=
[
∇uLJF

(
ud
L,u

d
F

)]T (
ud
L − uL

)
+
[
∇uLJF

(
ud
L,u

d
F

)]T
B
(
ud
F − uF

)
(11)

=
[
∇uL

JF

(
ud
L,u

d
F

)]T (
ud
L − uL

)
+
[
∇uF

JF

(
ud
L,u

d
F

)]T (
ud
F − uF

)
(12)

corresponds exactly to the expression of a tangent hyperplane Πt
Λd

(
ud
L,u

d
F

)
to Λd at

(
ud
L,u

d
F

)
, from which

it is concluded that if (9) holds, the affine function γL indeed lies on the hyperplane Πt
Λd

(
ud
L,u

d
F

)
.

Under the condition ∇uL
JF

(
ud
L,u

d
F

)
̸= 0, the following expression is given in [8]:

B = ∇uLJF

(
ud
L,u

d
F

)
∇T

uF
JF

(
ud
L,u

d
F

)
/
∥∥∇T

uL
JF

(
ud
L,u

d
F

)∥∥2 . (13)

Note that this is only one of many possible expressions for nL > 1. Moreover, in some constrained cases,
this expression does not yield an optimal leader function, while an alternative, optimal affine solution, does
exist as will be illustrated by Example 4.1 below. A generalized characterization of the optimal affine leader
function will therefore be presented in Sect. 4.2 below.

Example 4.1. Expression (13) Subject to Constraints
We now provide a situation in which the specific expression of B proposed in [8] for JF(·) differentiable at(
ud
L,u

d
F

)
does not yield a feasible leader function in the constrained case, but in which an optimal leader

function does exist.
Let

JF (uL,uF) = (uF − 6)
2
+ (uL,1 − 1)

2
+ (uL,2 − 5)

2
,

7



Figure 4: Situation with a supporting hyperplane ΠΛd

(
ud
L,u

d
F

)
that is unique due to the differentiability of

JF(·) at
(
ud
L,u

d
F

)
. The bounds of the decision space are indicated by a box.

and let
(
ud
L,1,u

d
L,2,u

d
F

)
= (0.5, 6, 4).

Then, ∇uF
JF

(
ud
L,u

d
F

)
= 2uF − 12, ∇uL

JF

(
ud
L,u

d
F

)
=

[
2uL,1 − 2

2uL,2 − 10

]
, leading to

B :=
∇uL

JF

(
ud
L,u

d
F

)
∇T

uF
JF

(
ud
L,u

d
F

)∥∥∇T
uL

JF

(
ud
L,u

d
F

)∥∥2
=

([
−1

2

]
· (−4)

)
/

([
1 2

] [ 1

2

])
=

[
4/5

−8/5

]
. (14)

As can be seen in Fig. 4, a mapping γL as defined through (7) with B as defined in (14) does not return
values for all uF ∈ ΩF for the constraints

uL,1 ∈ [0, 16],uL,2 ∈ [0, 5],uF ∈ [2, 8].

Thus, a parametrization B as defined by (13) does not belong to the characterization of an optimal leader
function in this constrained case.

However, there do exist optimal affine mappings ΩF → ΩL through
(
ud
L,u

d
F

)
that lie on ΠΛd

(
ud
L,u

d
F

)
.

As also plotted in Fig. 4, a suitable leader function that also lies on the tangent hyperplane defined by the
relation

−uL,1 + 1/2 · uL,2 + 2 · uF − 9/4 = 0

would be

uL = γ̃L (uF) =

[
6

1/2

]
+

[
(−9/4− 6)/4

−1/8

]
(4− uF) .

4.2 The General Case

As the previously presented result only captures the case in which JF(·) is differentiable and moreover as
only one particular solution is specified, we now provide a characterization of the full set of possible leader
functions with an affine structure that are optimal in an unconstrained decision space for the cases in which
JF(·) is not required to be differentiable. Based on such a set, one can apply further, secondary selection
criteria like the minimization of sensitivity of deviations from the optimal response [18], as well as deal with
constraints on the decision space, as will be shown in Sect. 5 below.

In the following, we characterize γL as a linear combination of matricesR =
[
RT

L RT
F

]T
,R ∈ R(nL+nF)×nF ,

RL ∈ RnL×nF , RF ∈ RnF×nF , i.e.,

γL :

[
uL

uF

]
=

[
ud
L

ud
F

]
+

[
RL

RF

]
· s, (15)

8



where s ∈ RnF represents the free parameters of the affine function. Now, for RF invertible — which
automatically follows from the necessary conditions, as will be proven in Lemma 4.1 below — it follows that

uF = ud
F +RF · s ⇒ s = R−1

F

(
uF − ud

F

)
,

uL = ud
L +RLR

−1
F︸ ︷︷ ︸

B

(
uF − ud

F

)
, (16)

i.e., one arrives at the explicit form of leader function (7). The problem left in order to arrive at a full
characterization of an optimal affine γL is to determine the set of possible basis vectors.

Lemma 4.1. In order for a leader function γL characterized by (15) to be optimal, for R =
[
RT

L RT
F

]
, the

following should hold:

1. ∃v ∈ V
(
X
(
ud
L,u

d
F

))
: vTR = 0T, with V

(
X
(
ud
L,u

d
F

))
the generalized normal to X at

(
ud
L,u

d
F

)
, where

X = conv
(
Λd

(
ud
L,u

d
F

))
in case

(
ud
L,u

d
F

)
is exposed with respect to conv (Λd) (Proposition 3.2 applies),

or X = Λd

(
ud
L,u

d
F

)
in case Proposition 3.3 applies, i.e.,

(
ud
L,u

d
F

)
∈ int(conv)

(
Λd

(
ud
L,u

d
F

))
.

2. The columns of RF should be a basis for ΩF, i.e., RF should be of full rank nF and thus invertible.

Proof. 1. By definition of a tangent hyperplane Πd

(
ud
L,u

d
F

)
to a setX at

(
ud
L,u

d
F

)
, it holds that Πd

(
ud
L,u

d
F

)
⊥

v for some v ∈ V
(
X
(
ud
L,u

d
F

))
. Since we require each optimal γL characterized by (15) to lie on Πd

(
ud
L,u

d
F

)
,

it follows that it is needed that also each column of R is orthogonal to v, i.e., vTR = 0T.
Note that, in case JF(·) is differentiable, i.e.,

V
(
X
(
ud
L,u

d
F

))
=
{
v =

[
vT
L vT

F

]T
: vL = ∇uL

JF

(
ud
L,u

d
F

)
,vF = ∇uF

JF

(
ud
L,u

d
F

)}
,

this condition is equivalent to the expression of a tangent hyperplane Πt
Λd

(
ud
L,u

d
F

)
:
[
∇uLJF

(
ud
L,u

d
F

)]T (
ud
L − uL

)
+[

∇uF
JF

(
ud
L,u

d
F

)]T (
ud
F − uF

)
= 0.

2. For an optimal affine leader function γL(·) characterized by (15) to satisfy dom (γF) = ΩF, it is required
that the nF columns of RF are independent basis vectors spanning ΩF. Thus, RF is of full rank, and hence
invertible.

In fact, we can select w.l.o.g. RF := InF
= [e1 . . . enF

], as shown in Lemma 4.2.

Lemma 4.2. If there exists an optimal affine γL(·) characterized by (15), one can select w.l.o.g. RF = InF
.

Proof. Consider

S :=

{
γL :

[
uL

uF

]
=

[
ud
L

ud
F

]
+

[
RL

InF

]
· s, s ∈ RnF , with RL,RF = InF

satisfying conditions (1) and (2) of Lemma 4.1

}
,

S̃ :=

{
γL :

[
uL

uF

]
=

[
ud
L

ud
F

]
+

[
R̃L

R̃F

]
· s̃, s̃ ∈ RnF , with R̃L, R̃F

satisfying conditions (1) and (2) of Lemma 4.1 with R substituted by R̃

}
.

To prove that S ≡ S̃, we will show that, for each possible 3-tuple (s, InF ,RL) according to (15) with

vT
[
RT

L InF

]T
= 0T that yields some uL, uF, one can find an equivalent tuple (s̃, R̃F, R̃L), s̃ ∈ RnF for

which additionally it holds that vT
[
R̃T

L R̃F

]T
= 0T, yielding the same values uL, uF.

It can be easily seen that the expression uF = ud
F+InF

·s is equivalent to uF = ud
F+R̃F · s̃ with s = R̃F · s̃:

as shown in Lemma 4.1, it follows from the existence of an optimal affine γL(·) that RF is invertible. Then,
for a given s, there exists a unique s̃ and vice versa. From B = R̃LR̃

−1
F , according to (16) and from the

substitution to B = RLInF
, for equivalence, it should hold that RL = R̃LR̃

−1
F . Finally, we have

vT
LRL + vT

F = 0 ⇔ vT
L R̃LR̃

−1
F + vT

F = 0 ⇔ vT
L R̃L + vT

F R̃F = 0.

Hence, S = S̃.
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Now, given RF := InF
, we still need to identify the set of matrices RL that satisfy vTR = 0T for some

normal vector v, which reduces to
[
vT
L vT

F

] [ RL

InF

]
= 0T or, equivalently, vT

LRL = −vT
F .

Due to the necessary condition projΩL

(
V
(
conv

(
Λd

(
ud
L,u

d
F

))))
̸= {0} (Proposition 3.2 applies) or

projΩL

(
V
(
Λd

(
ud
L,u

d
F

)))
̸= {0} (Proposition 3.3 applies), vT

L must contain at least one nonzero entry.
Hence, the expressions vT

LRL,j = −vF,j , j = 1, . . . , nF, can be solved for. Proposition 4.1 below provides a
parametrized characterization of this problem that will be needed for further optimization.

From the previous derivations, the following theorem automatically follows.

Theorem 4.1. Let ΩL = RnL , ΩF = RnF . Assume that the conditions in Proposition 3.2 or Proposition 3.3
are satisfied, and that therefore an optimal affine leader function of the form (7) exists. Then, the set

Γ∗
L := {γL : ΩF → ΩL : γL according to (7) satisfying (5), (15) }

contains optimal affine solutions that can be characterized by B := RLInF
, with vT

LRL = −vT
F , for some

v ∈ V
(
conv

(
Λd

(
ud
L,u

d
F

)))
in case

(
ud
L,u

d
F

)
is exposed with respect to conv(Λd) ( Proposition 3.2 applies), or

for some v ∈ V
(
Λd

(
ud
L,u

d
F

))
in case

(
ud
L,u

d
F

)
∈ int

(
conv

(
Λd

(
ud
L,u

d
F

)))
(Proposition 3.3 applies).

For the sake of conciseness, in the remainder of this section, we will assume
(
ud
L,u

d
F

)
to be an exposed

point of conv(Λd). As a result, we consider the case in which Proposition 3.2 is satisfied rather than Proposi-
tion 3.3, i.e., we consider the generalized normal V

(
conv

(
Λd

(
ud
L,u

d
F

)))
. For the case in which Proposition 3.3

holds, the generalized normal should be substituted by V
(
Λd

(
ud
L,u

d
F

))
in the following.

In order to be able to optimize over the set of possible leader functions and to select a function that is
optimal with respect to some criteria, Proposition 4.1 now provides a parametrized characterization of the
optimal affine leader function.

Proposition 4.1. Let Γ∗
L := {γL : ΩF → ΩL : γL satisfies (5), (15) }.

1. For JF(·) nondifferentiable at
(
ud
L,u

d
F

)
, the possible realizations of RL ∈ RnL×nF can be written as

RL ∈ RL :=

{
[RL,1 . . . RL,nF

] : Rj :=

[
RL,j

ej

]
∈ Rj , j = 1, . . . , nF

}
with the set of possible columns of R ∈ R(nL+nF)×nF characterized by

Rj :=

Q ·W · p+j

∣∣∣∣∣∣∣∣∣∣
p+j :=

N f
+,j∑

i=1

α+
i,jβ

f
i,+,j +

Ne
+,j∑

i=1

µ+
i,jβ

e
i,+,j

∑
i

α+
i,j = 1, α+

i,j ∈ R+, µ
+
i,j ∈ R+


∪

Q · (−W) · p−j

∣∣∣∣∣∣∣∣∣∣
p−j :=

N f
−,j∑

i=1

α−
i,jβ

f
i,−,j +

Ne
−,j∑

i=1

µ−
i,jβ

e
i,−,j

∑
i

α−
i,j = 1, α−

i,j ∈ R+, µ
−
i,j ∈ R+

 , (17)

for j = 1, . . . , nF, with Q := [InL 0nL×nF ] and with W = [w1 . . . wm], where {wi}mi=1, m ∈ {N,∞}
with wi ∈ RnL+nF is the set of generators of V

(
conv

(
Λd

(
ud
L,u

d
F

)))
such that

V
(
conv

(
Λd

(
ud
L,u

d
F

)))
:=

{
m∑
i=1

βi : wiβi ∈ R+

}
∪

{
m∑
i=1

βi (−wi) : βi ∈ R+

}
.

Here,
{
βf
i,s,j

}N f
s,j

i=1
and

{
βe
i,s,j

}Ne
s,j

i=1
, s ∈ {+,−} are the sets of finite vertices and extreme rays, respec-

tively, of the polyhedra P+
j = {β : PWβ = ej ,β ∈ (R+)

m} and P−
j = {β : P(−W)β = ej ,β ∈ (R+)

m}.

2. For JF(·) differentiable at
(
ud
L,u

d
F

)
, RL belongs to the affine space of the form

RL :=
{
RL : RL = R0

L + BN ·T,T ∈ Rdim(N)×nF

}
(18)

with R0
L a particular solution of ∇T

uL
JF

(
ud
L,u

d
F

)
RL = ∇uFJF

(
ud
L,u

d
F

)
and with BN a basis of N :=

null
(
∇T

uL
JF

(
ud
L,u

d
F

))
.
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Figure 5: The (a) finitely and (b) infinitely generated normal cone V
(
Λd

(
ud
L,u

d
F

))
and the associated cone

V
(
Λd

(
ud
L,u

d
F

))
=
(
RnL+nF\

(
V0 ∪ V∗)) ∪ V⊥.

Proof. 1. For Λd nonsmooth at
(
ud
L,u

d
F

)
, the associated generalized normal is by definition a convex and

pointed cone, i.e., for any a1, a2 ∈ R+ and a1v1+a2v2 ∈ V
(
conv

(
Λd

(
ud
L,u

d
F

)))
, v1,v2 ∈ V

(
conv

(
Λd

(
ud
L,u

d
F

)))
.

In fact, V
(
conv

(
Λd

(
ud
L,u

d
F

)))
is the normal cone [25], defined by the set of normal vectors to Λd at

(
ud
L,u

d
F

)
,

which is generated by n ∈ {N,∞} generators:

V
(
conv

(
Λd

(
ud
L,u

d
F

)))
:=

{
n∑

i=1

αivi : αi ∈ R+,vi ∈ RnL+nF a generator of V
(
conv

(
Λd

(
ud
L,u

d
F

)))}
. (19)

The polar and dual cone of V
(
conv

(
Λd

(
ud
L,u

d
F

)))
and its orthogonal complement are denoted, respectively,

by1

V0 :=
{
r ∈ RnL+nF : rT · v ≤ 0 ∀v ∈ V

(
conv

(
Λd

(
ud
L,u

d
F

)))}
,

V∗ :=
{
r ∈ RnL+nF : rT · v ≥ 0 ∀v ∈ V

(
conv

(
Λd

(
ud
L,u

d
F

)))}
,

V⊥ :=
{
r ∈ RnL+nF : rT · v = 0 ∀v ∈ V

(
conv

(
Λd

(
ud
L,u

d
F

)))}
.

It now follows from condition (1) of Lemma 4.1 that the set of possible columns Rj , j = 1, . . . , nF of R can
be represented by

V
(
conv

(
Λd

(
ud
L,u

d
F

)))
:=
{
r ∈ RnL+nF : ∃v ∈ V

(
conv

(
Λd

(
ud
L,u

d
F

)))
s.t. rT · v = 0

}
=
(
RnL+nF\

(
V0 ∪ V∗)) ∪ V⊥. (20)

This last expression is illustrated in Fig. 5 where V
(
conv

(
Λd

(
ud
L,u

d
F

)))
corresponds to the area between vo

1,
vo
2 and the vectors v′

1, v
′
2 perpendicular to v1, v2. The expression (20) follows from the fact that the (closure

of the) complement of a cone is again a cone [30]; hence, the complement of the double cone V0 ∪ V∗ [31],
which consists of the union of two apex-to-apex placed pointed cones, i.e., RnL+nF\

(
V0 ∪ V∗), embodies a

cone. Finally, the null vector is recovered in order to yield a pointed cone. The set V
(
conv

(
Λd

(
ud
L,u

d
F

)))
can therefore be written as a linear combination of generators wi from the set {±wi}mi=1 as in (19), now also
considering the negatives −wi:

V
(
conv

(
Λd

(
ud
L,u

d
F

)))
:=

{
m∑
i=1

βiwi : βi ∈ R+,wi ∈ RnL+nF

}

∪

{
m∑
i=1

βi (−wi) : βi ∈ R+,wi ∈ RnL+nF

}
. (21)

1The argument conv
(
Λd

(
ud
L,u

d
F

))
is omitted for the sake of conciseness.
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Finally, since R =
[
RT

L InF

]T
by Lemmas 4.1 and 4.2, we need to select from V

(
conv

(
Λd

(
ud
L,u

d
F

)))
those

vectors r such that, for j = 1, . . . , nF,

Rj :=
{
r ∈ V

(
conv

(
Λd

(
ud
L,u

d
F

)))
: projΩF

(r) = ej
}
,

i.e., approved as a j-th column of R are those vectors

r = W · β ∈ V
(
conv

(
Λd

(
ud
L,u

d
F

)))
and r = −W · β ∈ V

(
conv

(
Λd

(
ud
L,u

d
F

)))
,

with W =
[
w1 . . . wm

]
,β =

[
β1 . . . βm

]T
, such that, for P :=

[
0nF×nL

InF

]
, we have

P ·W · β = ej , respectively, P · (−W) · β = ej .

The solutions to these two equations, where it should be noted that β+ ∈ Rm
+ , β− ∈ Rm

+ , can be parametrized
using, e.g., the double description method [32] for the polyhedra

P+
j =

{
β+ : PWβ+ = ej ,β

+ ≥ 0
}

and P−
j =

{
β− : P(−W)β− = ej ,β

− ≥ 0
}
,

i.e.,

βs
j =

N f
s,j∑

i=1

αs
i,jβ

f
i,s,j +

Ne
s,j∑

i=1

µs
i,jβ

e
i,s,j , s ∈ {+,−},

with
∑

i α
s
i,j = 1, αs

i,j ∈ R+, µ
k
i,j ∈ R+, and with

{
βf
i,s,j : i = 1, . . . , N f

s,j

}
the set of finite vertices of Ps

j ,

and with
{
βe
i,s,j : i = 1, . . . , N e

k,s

}
the set of extreme rays of Ps

j [33], for s ∈ {+,−}.

2. For JF(·) differentiable at
(
ud
L,u

d
F

)
, V
(
conv

(
Λd

(
ud
L,u

d
F

)))
is uniquely defined by v = ∇JF

(
ud
L,u

d
F

)
with

∇uL
JF

(
ud
L,u

d
F

)
̸= 0 (by Proposition 3.2 and 3.3), and therefore vT

LRL,j = −vF,j , j = 1, . . . ,vF can be
solved as a simple system of equalities. Here, for each zero element vL,i, the corresponding entry RL,0,j of
RL is free. Therefore, the possible solutions can be written as

∇T
uL

JF

(
ud
L,u

d
F

)
RL,j = ∇uF,jJF

(
ud
L,u

d
F

)
⇒ RL,j = R0

L,j + B
(
null

(
∇T

uL
JF

(
ud
L,u

d
F

)))︸ ︷︷ ︸
BN

·t, t ∈ Rdim(N), (22)

where R0
L,j denotes a particular solution to (22) and BN · t, t ∈ Rdim(N) is a homogeneous solution to (22).

Note that the basis of the null space of ∇T
uL

JF

(
ud
L,u

d
F

)
, B
(
null

(
∇T

uL
JF

(
ud
L,u

d
F

)))
, as well as a particular

solution R0
L,j , can be computed with a singular value decomposition (SVD) or QR decomposition (see,

e.g., [34]).

Remark 4.1. So far a static, single-stage reverse Stackelberg game has been considered. Whereas this
basic case serves for developing the conditions summarized in Sect. 3 and the characterization of the present
section, real-life control settings will often have a dynamic, multi-stage nature [7]. As it is also done in e.g., [8],
the currently presented results can be simply applied to the dynamic case with open-loop information when
considering the game as a series of static optimization problems. In other words, at each (discrete) time
step k ∈ K = {1, 2, . . . ,K}, K ∈ N of the game the desired values

(
ud
L(k),u

d
F(k)

)
are computed, where the

mappings γL (uF(k), k) can be computed as done in the static case. However, for more involved dynamic
settings with incomplete information and deviations of players from the optimal values, further research is
needed.

4.2.1 Computation and Complexity

While the characterization of this section is aimed to provide a structured method to solve the reverse
Stackelberg game with an affine leader function, the computational efficiency of testing the several conditions
should be kept into account:

• Determining a global optimum to represent the desired leader equilibrium
(
ud
L,u

d
F

)
is, in general, a con-

strained nonlinear programming problem; this subproblem has to be solved in any solution approach.
Alternatively, a desired equilibrium that is not directly derived from a leader objective functional, or
a series of such points, may be provided a priori.

12



Figure 6: The Rosenbrock function and several level curves.

• Determining the convex hull of Λd is only required in case JF(·) is both nonconvex and nondifferentiable
at
(
ud
L,u

d
F

)
. The vertices of Λd can then be determined if JF(·) is of the particular type of a piecewise-

affine function. For a polyhedron [33] with n vertices as input points, computing the convex hull in
case dim = nL+nF can be done with a worst-case complexity of O(n log p) for dim ≤ 3 and O(n · fp/p)
for dim ≥ 4, where p points are actually on the hull and fp denotes the maximum number of facets for
p vertices [35].

• Verifying whether the projection of the generalized normal onto the leader’s decision space is nonzero
relies on simple vector products.

• Computing particular and homogeneous solutions to (22) with an SVD leads to a numerically reliable
solution due to its ability to deal with rank-deficient matrices; however, no finite termination can be
guaranteed for the computation of the SVD. The iterative SVD approach can however be terminated
when a sufficiently precise solution is obtained, which leads to a practical overall complexity of O

(
n3
)

floating-point operations, for an m × n matrix in case m ≈ n [34]. The alternative of using the QR
decomposition technique does not have such reliability properties, but it does have finite termination;
the complexity of the algorithms discussed in [34] is also of the order O

(
n3
)
in case n ≈ m.

Example 4.2 (Rosenbrock Function). The nonconvex Rosenbrock function [36] is often used to show the
performance of optimization algorithms and is written as

f(x1, x2) = (1− x1)
2
+ 100

(
x2 − x2

1

)2
(23)

as depicted in Fig. 6 together with several level curves. If we adopt this function structure for JF, it can be
inferred from these contour lines that several desired leader equilibria cannot be obtained under an affine
leader function, i.e., those in the valleys of the upper part of the level curves that are associated with
increasing objective function values when considering increasing values of uL.

In order to illustrate the approach in higher dimensions, we however adopt the extended Rosenbrock
function [37], written in general for n dimensions as

fe(x1, . . . , xn) =

n−1∑
i=1

[
(1− xi)

2
+ 100

(
xi+1 − x2

i

)2]
. (24)

We now take ΩL = R, while ΩF = R2. The sublevel set Λd for JF := fe(uL,uF) and with the desired

13



Figure 7: Sublevel set Λd and a part of the strictly supporting hyperplane ΠΛd

(
ud
L,u

d
F

)
for the extended

Rosenbrock function.

equilibrium
(
ud
L,1,u

d
L,2,u

d
F

)
= (−0.2,−0.27, 0.15) is plotted in Fig. 7. Since

∇uLJF

(
ud
L,u

d
F

)
= ∇uL

[(
1− ud

F

)2
+
(
1− ud

L,1

)2
+ . . .

100
(
ud
L,1 − ud2

F

)2
+ 100

(
ud
L,2 − ud

L,1
2
)2]

=

[ (
−2 + 2uL,1 + 200uL,1 − 200u2

F − 400uL,2uL,1 + 400u3
L,1

)(
200uL,2 − 200u2

L,1

) ]

=
[
−56.21 15.42

]T
̸=
[
0 0

]T
,

∇uF
JF

(
ud
L,u

d
F

)
= −2 + 2ud

F − 400ud
L,1u

d
F + 400ud3

F = −27.20,

the unique supporting hyperplane at
(
ud
L,u

d
F

)
, also plotted in Fig. 7, can be written as

ΠΛd

(
ud
L,u

d
F

)
=
[
−56.21 15.42

]([ −0.27

0.15

]
−

[
uL,1

uL,2

])
− 27.20 (−0.2− uF) = 0.

Now, γL(·) characterized by (15) with RF = 1 has associated matrices RL according to (18), where
R0

L = [(15.42/−27.20) (−56.21/−27.20)]T is a particular solution of

∇T
uL

JF

(
ud
L,u

d
F

)
RL = ∇uF

JF

(
ud
L,u

d
F

)
,

and with the basis Bnull

(
∇T

uL
JF

(
ud
L,u

d
F

))
=
[
0.2645 0.9644

]T
, leading to the set of optimal affine solutions

characterized by

RL :=

{
RL : RL =

[
(15.42/−27.20)

(−56.21/−27.20)

]
+

[
0.2645

0.9644

]
.T, T ∈ R

}
.
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Figure 8: Example of a set Γ∗
L that is reduced under the consideration of constraints on ΩL, ΩF. Here, α

indicates the range of possible values of RL. Note that the dashed functions γ1
L, γ

2
L have an infinitesimal

gap with bd(Λd) for values of uL below or above uF, respectively.

5 Constrained Decision Spaces

So far, the situation without constraints has been considered, and conditions have been provided under
which an optimal affine leader function exists that leads to the desired reverse Stackelberg equilibrium point.
These conditions form necessary but not sufficient conditions for the existence of an optimal affine leader
function in the constrained game in which ΩL ⊊ RnL or ΩF ⊊ RnF . In the constrained case, the complexity
arises that additionally the locally defined supporting hyperplane ΠΛd

(
ud
L,u

d
F

)
— or the tangent hyperspace

Πt
Λd

(
ud
L,u

d
F

)
for the case with nL > 1 and

(
ud
L,u

d
F

)
∈ int (conv(Λd)) — should be within the constrained

decision space ΩL×ΩF, with ΩL ⊊ RnL or ΩF ⊊ RnF . This implies that the supporting or tangent hyperplane
should contain an nF-dimensional affine subspace γL satisfying (i) γL should cover ΩF, i.e., dom (γL) = ΩF

while (ii) γL (ΩF) ⊆ ΩL. However, since the hyperplanes are derived locally, it thus still has to be verified
whether an optimal leader function γL exists in the bounded decision space such that the global conditions
(i) and (ii) hold.

Hence, given the set of feasible solutions characterized in Sect. 4 that is essentially developed for the
unconstrained decision space, constraints can be incorporated to verify which elements of Γ∗

L are still valid
under the constrained conditions. Here it should be noted that any constraints on the decision spaces can
obviously affect the desired equilibrium point

(
ud
L,u

d
F

)
as well as the set Λd, the elements of which are both

assumed to be given in the conditions and the initial characterization of Sects. 3 and 4. In order to use
these results, applicable constraints on the decision spaces should therefore naturally be incorporated in the
computation of a desired leader equilibrium

(
ud
L,u

d
F

)
and in the derivation of the associated sublevel set Λd

at the initial stage.
The following simple example illustrates this approach.

Example 5.1. Consider a reverse Stackelberg game with the desired equilibrium
(
ud
L,u

d
F

)
= (5, 5) and a

nonsmooth, convex sublevel set Λd as depicted in Fig. 8.
For ΩL = ΩF = R, γL characterized by (15) with RF = 1 has associated matrices RL according to (18)

that can be described by the intervalRL = (−1, 1). This can be derived from the two generating vectors of the

normal cone V
(
Λd

(
ud
L,u

d
F

))
as depicted in Fig. 5a, i.e., v1 = v′

2 =
[
1 1

]T
and v′

1 = v2 =
[
−1 −1

]T
.

Multiplication with Q =
[
1 0

]
yields RL = (−1, 1) and given B = RLR

−1
F according to (16), the set of

optimal affine solutions can be characterized by

Γ∗
L = {uL := γL (uF) = 5 +B · (uF − 5) : B ∈ (−1, 1),uF ∈ ΩF} .

Note that in this particular case, an optimal affine mapping ΩF → ΩL through
(
ud
L,u

d
F

)
coincides with a

line ΠΛd

(
ud
L,u

d
F

)
. In Fig. 8, this interval of possible slopes of γL ∈ Γ∗

L is indicated by α.
Now, consider the decision space imposed by the constraints ΩL = [0, 10], ΩF = [0, 8]. Not all mappings

γL ∈ Γ∗
L return values for all uF ∈ ΩF. Using the extrema (0, 10), (8, 0), and (8, 10), one can derive
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the intersection points of affine functions through
(
ud
L,u

d
F

)
with the decision space boundaries bd(ΩL),

bd(ΩF). Instead of using the generating vectors of V
(
Λd

(
ud
L,u

d
F

))
as in the unconstrained case, we are now

interested in a smaller cone that is generated by the vectors [−3/5 1]T, [3/5 1]T, resulting in a new range
RL = [−3/5, 3/5]. The full set of possible optimal affine leader functions can thus be characterized as follows:

Γ∗,con
L = {uL := γL (uF) = 5 +B · (uF − 5) : B ∈ [−3/5, 3/5],uF ∈ ΩF} .

The new interval of possible slopes of γ′
L ∈ Γ∗,con

L is indicated in Fig. 8 by α′.

Derivation of the set Γ∗,con
L

The possible optimal matrices B of (16) computed in Sect. 4 for the cases with JF(·) differentiable and
nondifferentiable, respectively, can be re-evaluated under the presence of constraints, where we assume the
constrained decision spaces to be convex and closed and bounded, i.e., compact. In particular, one needs to
verify whether γL (ΩF) ⊆ ΩL.

(a) In case only ΩF is restricted while ΩL = RnL , we have Γ∗,con
L = Γ∗

L, which can be concluded from the
fact that Γ∗

L is derived only locally based on Λd, while ΩL = RnL ; hence, γL (ΩF) ⊂ ΩL still holds for
all γL ∈ Γ∗

L.

(b) Further, the case with only ΩL restricted while ΩF = RnF is only feasible if γL,i (ΩF) = {ci} ∈ ΩL,i

for some ci ∈ R for every index i such that ΩL,i ⊊ R, where ΩL,i is the projection of ΩL on the
i-th coordinate and γL,i(·) denotes the i-th component of the vector-valued function γL(·). Indeed,
the realization of the leader function for each such i-th component of the leader’s decision space
should be constant for any follower decision variable, as for any affine function γL,i (uF) ̸= ci ∈ R,
limuF→±∞ γL,i (uF) will not be finite and therefore not an element of ΩL,i ⊊ R.

(c) In case both decision spaces are restricted by linear constraints, ΩL, ΩF represent polytopes. By
applying the affine mapping γL(·), convexity is preserved, implying that its image γL (ΩF) is a polytope
as well [38]. As a result, it can be easily checked whether the image of γL for its domain ΩF is subject
to the linear constraints imposed by ΩL: it is sufficient to verify γL (u

v
F) ∈ ΩL only for the vertices uv

F

of ΩF.
This result can also be used to obtain the reduced characterization of the set of optimal affine leader
functions in the constrained case. If we denote the linear constraints on ΩL by

AL · uL ≤ bL,AL ∈ Rnc×nL ,bL ∈ Rnc , nc ∈ N,

one should add the following set of linear inequality constraints to the characterizations in (17) or
(18), respectively, depending on differentiability of JF(·) at

(
ud
L,u

d
F

)
, where {uv

F}
nv

v=1, denotes the set
of vertices associated with ΩF:{

AL ·
(
ud
L +RL

(
uv
F − ud

F

))
≤ bL

}
v=1,...,nv

. (25)

In the nondifferentiable case, this results in the characterization (17) in which the non-negative pa-
rameters αs

i,j , µ
s
i,j are now constrained by (25), as well as by

∑
i α

s
i,j = 1, j = 1, . . . , nF and with

i = 1, . . . , N f
s,j for s ∈ {+,−}. Similarly, in the differentiable case, this will result in the characteriza-

tion (18), in which T now belongs to the polyhedron Rdim(N)×nF s.t. (25).

(d) Finally, in the case of nonlinear constraints, a similar approach to c) can be adopted based on a
piecewise-affine approximation of the constraints. However, this may in general generate a large num-
ber of vertices. Further, in order to guarantee feasibility of the leader function, (conservative) inner
approximations should be made with respect to the leader’s decision space and outer approximations
should be made with respect to the follower’s decision space. Alternatively, a fully numerical evaluation
of the set

Γ∗
L := {γL : ΩF → ΩL : γL according to (7) satisfying (5), (15) }

for the unconstrained case may be made, e.g., based on a gridding of the decision spaces.
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6 Conclusions

The single-leader-single-follower reverse Stackelberg game is considered, in which the leader player faces the
problem of selecting a leader function-mapping her decision space into the follower’s decision space-that will
lead to a specific desired equilibrium. Currently, many examples and applications in which this type of
game is considered adopt strictly convex follower’s objective functionals and unconstrained decision spaces,
in which case an affine leader function is automatically optimal. In order to allow the reverse Stackelberg
game to be more readily applicable as an optimization structure in multi-level control problems like in traffic
tolling, there is a need to develop a more general solution approach.

In this article, we have therefore first developed necessary and sufficient existence conditions and a
characterization of the set of optimal affine leader functions that can be computed in a systematic manner.
After such an initial set of optimal affine functions that are locally feasible is derived for unconstrained
decision spaces, this set can be further reduced to include only those elements that map the full follower’s
decision space into the leader’s decision space in case these spaces are constrained. Secondary optimization
criteria can be incorporated similarly.

In [39], subsequent results are provided to deal with cases in which no optimal affine solutions exist.
There, several methods are provided for the computation of optimal nonlinear leader functions, e.g., with
piecewise-affine and smooth (piecewise) polynomial structures. Since these methods are computationally
intensive or optimality cannot be guaranteed, continued research on existence conditions for optimal leader
functions is needed.

In particular, to further develop a systematic solution approach for the general reverse Stackelberg
game,more results on dynamic extensions are needed. Both cases in which the follower does not adopt the
optimal decision values and in which the leader lacks information on the follower that is crucial to derive an
optimal strategy should be considered. Further steps include analysis of the robustness of a leader function
in case of uncertain conditions.
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Appendix

This appendix presents some lemmata that form basic elements for the proofs of the propositions in Sect. 3.
Lemma 6.1 follows straightforwardly from the supporting hyperplane theorem (e.g., Theorem 11.6 in [25])
and the definition of a strictly supporting hyperplane.

Lemma 6.1. Assume the set Λd to be convex. Let ΩL = RnL , ΩF = RnF and let αL ∈ AL be any affine
function through

(
ud
L,u

d
F

)
such that αL ∩ Λd =

{(
ud
L,u

d
F

)}
. Then αL lies on a supporting hyperplane to Λd

at
(
ud
L,u

d
F

)
.

Lemma 6.2. Let Λd be defined through (6). A supporting hyperplane ΠΛd

(
ud
L,u

d
F

)
exists at

(
ud
L,u

d
F

)
if and

only if
(
ud
L,u

d
F

)
/∈ int (conv(Λd)). Further, for an exposed point

(
ud
L,u

d
F

)
of conv(Λd), ΠΛd

(
ud
L,u

d
F

)
∩ Λd ={(

ud
L,u

d
F

)}
.

Proof. By definition of a convex hull, a supporting hyperplane ΠΛd

(
ud
L,u

d
F

)
exists if and only if there exists

a supporting hyperplane Πconv(Λd)

(
ud
L,u

d
F

)
to conv (Λd) at

(
ud
L,u

d
F

)
. Further, a supporting hyperplane

to conv(Λd) exists at
(
ud
L,u

d
F

)
if and only if

(
ud
L,u

d
F

)
is a boundary point of conv(Λd) and thus also of

Λd [25, Theorem 11.6]. Clearly, an exposed point of conv(Λd) is such a boundary point. For the intersection
of ΠΛd

(
ud
L,u

d
F

)
with Λd solely to occur in the point

(
ud
L,u

d
F

)
, it is required that

(
ud
L,u

d
F

)
is an exposed point

of conv(Λd). (Note that it is therefore sufficient for conv(Λd) to be locally strictly convex at
(
ud
L,u

d
F

)
.)

Lemma 6.3. Assume there exists a strictly supporting hyperplane

Πconv(Λd)

(
ud
L,u

d
F

)
: Πconv(Λd)

(
ud
L,u

d
F

)
∩ Λd =

{(
ud
L,u

d
F

)}
,

with Λd according to (6). Then an affine function α
Πconv(Λd)(u

d
L,u

d
F)

L ∈ AL coincides with Πconv(Λd)

(
ud
L,u

d
F

)
if and only if uL is scalar (nL = 1).

Proof. The dimension of a hyperplane ΠΛd
, (nL+nF)− 1, equals the number of independent variables of an

affine leader function αL ∈ AL, with ΩF ⊆ RnF only in case uL is scalar. If there exists a strictly supporting

hyperplane Πconv(Λd)

(
ud
L,u

d
F

)
, it follows that this plane coincides with α

Πconv(Λd)(u
d
L,u

d
F)

L .
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[9] Cansever, D., Başar, T.: A minimum sensitivity approach to incentive design problems. Large Scale Syst. 5,
233–244 (1983)

[10] Groot, N., De Schutter, B., Hellendoorn, H.: Toward system-optimal routing in traffic networks: a reverse
Stackelberg game approach. In: IEEE Transactions on Intelligent Transportation Systems (2014) Accepted for
publication

[11] Chang, T.S., Ho, Y.C.: Incentive problems: a class of stochastic Stackelberg closed-loop dynamic games. Systems
and Control Letters 1(1), 16–21 (1981)

[12] Ehtamo, H., Hämäläinen, R.: Incentive strategies and equilibria for dynamic games with delayed information.
J. Optim. Theory Appl. 63(3), 355–369 (1989)

18



[13] Mart́ın-Herrán, G., Zaccour, G.: Credible linear-incentive equilibrium strategies in linear-quadratic differential
games. In: Pourtallier, O., Gaitsgory, V., Bernhard, P. (eds.) Advances in Dynamic Games and their Applica-
tions. Annals of the International Society of Dynamic Games, vol. 10, pp. 1–31. Birkhäuser, Boston (2009)
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