
Delft University of Technology
Delft Center for Systems and Control

Technical report 15-013

Delivery-oriented hierarchical predictive
control of an irrigation canal:

Event-driven versus time-driven
approaches∗

A. Sadowska, B. De Schutter, and P.-J. van Overloop

If you want to cite this report, please use the following reference instead:
A. Sadowska, B. De Schutter, and P.-J. van Overloop, “Delivery-oriented hierarchical
predictive control of an irrigation canal: Event-driven versus time-driven approaches,”
IEEE Transactions on Control Systems Technology, vol. 23, no. 5, pp. 1701–1716,
2015. doi:10.1109/TCST.2014.2381600

Delft Center for Systems and Control
Delft University of Technology
Mekelweg 2, 2628 CD Delft
The Netherlands
phone: +31-15-278.24.73 (secretary)
URL: https://www.dcsc.tudelft.nl

∗ This report can also be downloaded via https://pub.bartdeschutter.org/abs/15_013.html

https://doi.org/10.1109/TCST.2014.2381600
https://www.dcsc.tudelft.nl
https://pub.bartdeschutter.org/abs/15_013.html


1

Delivery-oriented hierarchical predictive control of
an irrigation canal: event-driven versus time-driven

approaches
Anna Sadowska, Bart De Schutter and Peter-Jules van Overloop

Abstract

In this paper we present the concept of a hierarchical predictive controller used for irrigation canals. The
motivation behind the work is the need in the field of irrigation to deliver water to farmers fast, but with minimal
resources involved as the communication links in the field are not dependable in practice. In response to such a
control problem we propose a hierarchical controller: the lower control layer is formed by decentralized PI controllers
and the higher control layer is constituted by a centralized predictive controller the purpose of which is to control
the inflow to the canal and, importantly, to coordinate the local controllers by modifying their setpoints. Having in
mind the restrictions on the available communication infrastructure and the control equipment already present, the
scheme is designed to be event-driven, i.e. activated when there are either delivery requests or non-delivery-related
events of any sort, requiring special care on top of the control provided by the PI controllers. We also study a
time-driven formulation with an additional post-processing step to avoid excessive negligible setpoint modifications.
We compare the event-driven formulation and the time-driven formulation theoretically as well as by means of a
simulation study for the West-M irrigation canal in Phoenix, Arizona, illustrating the findings of the paper. It is
shown that the event-driven controller is able to provide a good balance between the control performance and the
required update frequency of the control settings.

I. INTRODUCTION

Irrigation relies on providing water to agriculture to facilitate growth in crops in areas where natural precipitation
does not suffice to produce adequate harvest yield. With that in mind, irrigation canals are often used to deliver
water to farmers from a source like a river, a lake or a dam. In fact, irrigation systems originated as early as
6000 BC in ancient Egypt and Mesopotamia [1]. Nowadays, more than 90% of the total consumptive water use
is generated by irrigation [2]. Therefore, it is of the highest importance to be able to operate the irrigation canals
efficiently and dependably.

A. Inspirations and our solution

Irrigation canals consist of a number of cascade-connected pools, between which there are control structures
like pumps or gates, controlling the flow between the neighboring pools. Over the years, multiple methods have
been proposed to control irrigation canals, see [3–5] for an overview. Some of the proposed methods [6–11] rely
on simple feedback mechanisms involving mainly PI controllers installed at each gate to maintain water levels in
the individual pools at some specified setpoints (cf. [12], where application of a PI controller to a river stretch is
discussed). Also, [13] introduced a simple to implement feedback controller, derived using the concept of Riemann
invariants. Moreover, in [14] the design of linear feedback controllers enhanced with an anti-windup mechanism to
account for the control variable constraints was considered. In contrast, a feedforward control method was proposed
in [15], where the notion of differential flatness [16] was explored. In particular, a control law to manipulate the
upstream water inflow to the pool was proposed in [15] ensuring that the discharge at the downstream end of the
pool converges to the desired value. A different approach to feedforward control of an irrigation canal was pursued
in [17]. The authors of that paper studied a method to adjust the gates in a canal so as to compensate for the
volume change of water in a pool due to the known or predicted offtake.

A. Sadowska and B. De Schutter are with Delft Center for Systems and Control, Delft University of Technology, The Netherlands; P.-
J. van Overloop is with the Water Resources Management, Delft University of Technology, The Netherlands (e-mail: {A.D.Sadowska,
B.DeSchutter, P.J.A.T.M.vanOverloop}@tudelft.nl).



2

Other control methods that have been proposed include centralized and decentralized schemes using optimal
control methods such as LQ control or Model Predictive Control [18–28]. Such optimal predictive control methods
rely on finding optimal control actions minimizing a specified control objective, taking into account predictions
of how the system will behave in the future given forecasts of external disturbances. Out of the aforementioned
papers, [20, 26, 27] proposed a distributed scheme (cf. [29]) in which control settings of individual gates are found
independently for each gate, taking into account the state of the pools immediately upstream and immediately
downstream. While such a distributed control approach may facilitate more efficient computations, it may also be
associated with inferior performance as the controllers are lacking global knowledge and use only local information
available to them. Moreover, in distributed schemes there may be a need for a large volume of communication
between neighboring gates during the process of negotiating local control actions. This, given the harsh environment
that the irrigation canals are usually in, may prove unrealistic in practical applications. The use of local as opposed
to global controllers was also the focus of attention of [30, 31], where distant downstream controllers were utilized
[32], which results in the necessity for local communication links at each gate.

In [23] a predictive control scheme was introduced for deployment under different interchangeable operating
modes of a canal. A supervisory strategy was studied to deal with the multiple operating modes of the system. In
particular, the supervisory controller was designed to detect the operating mode in action and to activate a suitable
predictive controller accordingly. Furthermore, in [33] a control scheme was discussed that aims at finding a suitable
balance between the objectives of making water available to the users as much and as timely as possible and, on
the other hand, rejecting unknown disturbances.

In [19] the performance of decentralized PI controllers is compared with that of a centralized LQ controller.
It is found that the centralized LQ controller outperforms the decentralized PI controllers albeit at the cost of
more issues that might unfold, e.g. a more difficult tuning process. In general, centralized controllers are able to
achieve a better performance than decentralized or even distributed controllers as they are able to find the control
actions that are adequate for the system as a whole, as opposed to multiple control actions each adequate for a
small partition of the system but not necessary adding up together to be adequate for the whole system. However,
decentralized PI controllers are still a popular and by far the most practically used controllers in the automated
control of irrigation canals. The practitioners in the field mainly value them for the fact that they are simple,
model-independent, and can provide robust functioning if tuned properly. In addition, decentralized PI controllers
do not require any communication between each other.

In this paper, we consider the practical restriction widely present in the field of irrigation that the communication
links are not always dependable, with frequently occurring equipment breakdowns due to the harsh outdoor
environment that the communication links are located in. This unreliability is simply because of insufficient funds
being spent on the maintenance and modernization of the communication equipment as this would need to be paid
for by the farmers. Moreover, in view of the currently installed control equipment (i.e. decentralized PI controllers)
and the appreciation they get by the practitioners, the approach we propose does not aim at replacing them by more
advanced controllers but rather to incorporate them without making any changes to the local PI controllers (such
as new control software, more advanced processors, extra memory, etc.). The scheme that we propose is designed
not to rely on a frequent communication and in particular it works in an event-driven manner, where individual
events are associated with delivery requests and also with other special circumstances occurring in the canal and
requiring extra care e.g. heavy rainfall. Our scheme will thus step in only when there is a need for it and if so,
it will modify the setpoints of the local PI controllers. In times of a normal operation, we propose to use local
decentralized PI controllers along the canal for upstream control.

Altogether the scheme that we propose to control an irrigation canal is a hierarchical event-driven controller, see
Figure 1. The lower control layer is formed by the PI controllers; hence, the scheme is based on the equipment
and solution that is already working satisfactorily for the users. However, to speed up the delivery process, i.e. to
make water available to the farmers faster than it is currently possible, we propose to use a higher-layer predictive
centralized controller that coordinates the local controllers. In particular, this centralized controller - the Coordinator
- modifies the setpoints of the PI controllers when it is needed, as well as controls the head gate. Note that it is
unwelcome to allow frequent setpoint changes as this might generate an undesirable behavior, which reiterates the
need for the higher-layer controller to be event-driven. Moreover, in this way, even when the communication links
are temporarily down, the PI controllers can still autonomously control.

By the design of the hierarchical controller and in particular by the actions of the Coordinator, water can be



3

Head Gate

(source)

Pool 1

Gate 1

PI 1 Pool 2

Gate 2

PI 2

h1

h2

Outflo

Pool N

Gate N

PI N

hN

COORDINATOR (CENTRALIZED PREDICTIVE CONTROLLER)

(infrequent communication)

USER N

USER 2

USER 1

Figure 1. The structure of the hierarchical controller proposed in the paper.

made available to the farmers faster than when only local PI controllers operate. Indeed, if only PI controllers are
utilized, the requested offtake is accomplished by first releasing the required amount of water from the head gate.
Then, as that water travels downstream, the water level in Pool 1 starts to increase and hence the PI controller in
Pool 1 reacts to the increasing deviation in the water level with respect to the given setpoint and water is released
to Pool 2. This situation is reiterated in every pool until the water reaches the offtake point of the farmer requesting
the delivery. Such a method is fit to deliver water to farmers, however, there may be a significant amount of time
required before an offtake can be executed after it was announced.

Importantly, a restriction that we take into consideration when analyzing the water delivery process is that if a
stretch of the canal is considered, with say N pools, the outflow from the N th pool should be kept as close as
possible to the given base flow due to a possible existence of further downstream users. Because of this assumption,
a farmer is not allowed to simply start the offtake without waiting for the water to be delivered from the head gate
as that would disturb the outflow from the canal. Thus, the time delay between the announcement moment and
offtake starting moment is inevitable. However, as will be discussed in Sections III and IV, and further illustrated
in Section V, the hierarchical controller proposed in this paper can significantly improve this situation.

In order to connect to the way the PI controllers operate, we propose that the setpoint changes are block-shaped
(see Sections III and IV for more details), and introduce two methods to modify setpoints that are already changed
in the previous runs of the higher control layer: the block-modifying approach and the block-adding approach. In
short, in the block-modifying approach, once a block-shaped setpoint change is assigned, it can only be modified
in the future by either extending a block or shortening it. In contrast, in the block-adding formulation, once a
block-shaped change is ordered, it cannot change per se: future changes of the setpoints are done by adding new
blocks on top of the previously changed setpoint profiles.

To aid an in-depth analysis of the event-driven controller, we also study a time-driven formulation of the
Coordinator in which the Coordinator in activated at some regular intervals. Indeed, various sources in the control
systems literature claim that the event-driven control can facilitate decreased resource utilization while it is argued
that the time-driven control can serve to improve the system performance [34–36]. In this paper, we also verify this
claim in the scope of the irrigation canal control by comparing the performance obtained through the time-driven
and event-driven implementation of the Coordinator.

B. Previous developments

Hierarchical MPC has shown to offer a balance between local and global control perspectives [37, 38]. Amongst
numerous applications for which hierarchical MPC has been proposed, [39] considered multiple-commodity trans-
portation networks, [40] studied the air traffic control problem, and [41] introduced a flexible hierarchical structure
for a multi-agent operation.

The idea of a supervisory control approach in which setpoints are changed by a higher-layer control layer was
previously studied in e.g. [42]. The control structure in [42] consists of three layers, where the controllers in the two
higher layers assign setpoints to the local PID controllers in the lower layer to ensure disturbance rejection in an
integrated wastewater treatment system. Moreover, [43] treated supervisory control of a power network. The authors



4

of that paper introduced a scheme in which the higher control layer modifies the setpoints of the local controllers
to avoid voltage collapse. This was done in a time-driven manner in every control step. For a water system, a
supervisory control scheme was studied in [44], where various risk factors (e.g. political, operational, or financial)
were considered. In view of these risk factors, the supervisory layer of the controller provides the lower layer with
desired setpoints. Then, the lower layer attempts to find suitable control actions using a distributed scheme with
intensive communication needed at each control step between the individual local sites to facilitate negotiations.
Similarly, [45] proposed a hierarchical control approach for a drinking water network with a higher-layer controller
assigning setpoints, and distributed predictive controllers in the lower layer. In general, distributed schemes suffer
from a large amount of communication that is required at each control step between each pair of neighboring pools
to reach consensus on the local control actions. This, given the unreliable communication in the system that we
consider in this paper, may prove impracticable.

C. Our contributions

This papers present two new contributions with respect to the state of the art. First, given the communication
restrictions widely present in the field of irrigation as well as the currently installed control equipment, to control
an irrigation canal we introduce the concept of the Coordinator, i.e. a hierarchical controller, able to activate
concurrently for multiple events, yet not requiring a continuous communication1. The controller design provides an
improved performance with respect to the utilization of decentralized PI controllers only: in particular, with regard to
water delivery requests, the required amount of water can be made available faster when the Coordinator is applied
than when only the PI controllers operate. Second, we propose two approaches to deal with multiple activations: the
block-adding one and the block-modifying one. In addition, we compare the proposed event-driven approach with a
time-driven approach and show that the event-driven approach (specifically using the block-adding formulation) in
general presents the best trade-off between reducing communication frequency and improving control performance.

The outline of this paper is as follows. In Section II we present the model of an irrigation canal and some
background information on the control design tools used in the paper. Afterwards, in Section III we present the
concept of the Coordinator in a simplified case, in which only one activation occurs for a single event. Then,
in Section IV we propose our main result, i.e. we present the design of the hierarchical controller for multiple
concurrent events, using the time-driven formulation (in Section IV-B) and the event-driven formulation (in Section
IV-C). In Section V we illustrate the methods introduced in the paper by means of a simulation study using a
numerical model of the West-M irrigation canal in Phoenix, Arizona. Final remarks are given in Section VI.

II. PRELIMINARIES

In this section we present mathematical preliminaries employed in the paper. We start by describing the model
of the canal in Section II-A. Then, in Section II-B we introduce the concept of the time instant optimization.

A. Model of an irrigation canal

This section describes the model of the canal as used in the paper, both as prediction model for MPC as well
as plant model for the simulations. As discussed in [10, 46–49], a linear model of a canal is suitable to adequately
capture its dynamics. We assume here that the canal consists of N pools. For pool i the model reads

hi(k + 1) = hi(k) +
Tm

ci
(ui−1(k − kdi)− ui(k) + di(k)),

ui(k) = ui(k − 1) +KPi(ei(k)− ei(k − 1)) +KIiei(k), (PI controller)
u0(k) = QS(k),
ei(k) = hi(k)− hrefi (k),

(1)

where k ∈ N is the discrete time step counter, hi the water level at the downstream end of Pool i, di an external
net inflow, ei the error between the water level in Pool i and the given setpoint, hrefi . Moreover, Tm denotes the
sampling period (equal for all pools), ci is the surface area, and kdi is a time delay (in sampling steps) representing
the time required for an inflow from the upstream gate i−1 to influence the water level hi in Pool i. In addition, QS

1We note that the restrictions on the communications are not universal for water systems. For instance, for urban water networks (cf. [45]),
reliable communication links are often present.



5

is the inflow to the canal (to Pool 1) from the head gate and ui is the control input denoting the outflow from Pool
i. Note that values of the control actions ui are given by the PI controllers with the proportional and integral gains
denoted with KPi and KIi, respectively. Moreover, the dynamics (1) also depend on the control inputs determined
by the Coordinator. These are, briefly speaking, the values of the setpoints hrefi and the inflow QS as discussed in
detail in Sections III and IV.

B. Time Instant Optimization MPC

Time instant optimization is a special case of the classical MPC (see [50, 51] for more information on MPC in
general), and it was first introduced for traffic control [52]. For a water system, it can be a useful tool to deal with
discontinuous on/off hydraulic structures [53, 54]. When using classical MPC for discontinuous control structures,
a decision needs to be made at each sampling step about the optimal control sequence from now on until the end of
the prediction horizon Np, i.e. a chain of Np elements of on or off states needs to be found. This is a combinatorial
problem resulting in a mixed-integer linear or nonlinear programming problem with Np binary control variables for
each control structure present in the system. Such a problem may prove to be intractable [55]: except for problems
of a very limited dimension, the solution may be impossible to be found in real time. The way such a problem can
be solved using time instant optimization MPC is to first decide how many switches of the control structure there
should be during the prediction horizon Np and consequently to write down the optimization problem so that the
time instants of the on/off switches are now the direct control variables. Therefore, by recasting the problem into
a linear or nonlinear programming problems with real variables only, the problem may be more efficiently solved
in terms of the computational effort.

III. HIERARCHICAL PREDICTIVE CONTROLLER DESIGN: SINGLE ACTIVATION CASE

In this section we introduce the hierarchical predictive controller for the purpose of controlling an irrigation
canal. To simplify the introduction of the concept of the Coordinator, the discussion in this section concerns the
case when the Coordinator is only activated once and a single set of actions is ordered. In the sequel, see Section
IV, the specifics regarding multiple activations of the Coordinator are studied.

The hierarchical controller proposed in this paper consists of two control layers (cf. [43–45], where hierarchical
controllers in different settings are studied). In the lower control layer, local PI controllers take control of the canal
and maintain the water levels at some predefined setpoints. The higher control layer is formed by a centralized
predictive controller - the Coordinator - the purpose of which is to coordinate the local PI controllers. In doing
so, the centralized higher-layer controller explicitly considers the coupling between neighboring pools to suitably
coordinate the local controllers. The coupling mechanism exhibits itself through the relation between the outflow
from an upstream pool and the water level in a downstream pool, see (1). We present the timing of the Coordinator
for a single activation in Figure 2. Every time the Coordinator is activated, the time variable t, the step counter k,
and the step counter associated with the Coordinator, kc, are reset to 0. We assume Ac = Tc/Tm ∈ N, where Tc is
the duration of the Coordinator’s control cycle and Tm is the model sampling time.

Coordinator

is activated

t = 0

k = 0

time

t = 0

k = 0

reset clock

t = Tm

k = 1

···

···

kc = 0 kc = 0kc = 1

k = Ac

···

···

···

···

···

control step for the PIs

control step for the Coordinator

t = Tc

kc = 2

k = 2Ac

t = 2Tc

Figure 2. Timing of the Coordinator for the single activation case. A new activation can only occur after the system returns to the steady
state after a preceding activation.

We propose that the Coordinator coordinates the PI controllers by modifying their setpoints when needed. The
individual admissible setpoint changes are block-shaped, see Figure 3. However, due to possible overlapping of



6

setpoint changes owing to multiple activations of the Coordinator, more complex setpoint profiles may emerge (see
Section IV).

h
ref

i

time

predefined setpoint profile

modified setpoint profile

predefined setpoint profile

modified setpoint profile

Figure 3. Admissible block-shaped setpoint profiles for a time-varying predefined setpoint level.

To define a single block-shaped setpoint change, three attributes are required. In that respect, the Coordinator
needs to find a triple (toni , toffi ,∆href,dynamic

i ) for each i ∈ {1, . . . , N} with toni , toffi ,∆href,dynamic
i ∈ R. Here, toni

denotes the time instant of the setpoint change when the setpoint is altered from its predefined profile, toffi the time
instant when the setpoint returns to its predefined profile, and ∆href,dynamic

i the difference that should be applied
to the predefined profile. For the whole canal, we construct T on = (ton1 , . . . , tonN )T , T off = (toff1 , . . . , toffN )T , and
∆Href, dynamic = (∆href, dynamic

1 , . . . ,∆href, dynamic
N )T . With the triples (toni , toffi ,∆href,dynamic

i ), the setpoint profile
for canal pool i can in general be evaluated according to

hrefi (k) =

{
href, normal
i (k) if k ≤ koni or k ≥ koffi ,

href, normal
i (k) + ∆href, dynamic

i otherwise,
(2)

in which href, normal
i ∈ R is the normal, possibly time-varying setpoint level. Moreover, koni and koffi are discrete-time

equivalents of the continuous switching time instants toni and toffi given a certain model sampling time Tm:

koni =

[
toni
Tm

]
and koffi =

[
toffi
Tm

]
, (3)

where we use [x] to denote rounding a continuous variable x ∈ R to the nearest integer assuming a round-
half-up rule. The parametrization of the setpoint profiles hrefi with respect to (toni , toffi ,∆href,dynamic

i ) is selected
to accommodate the communication and equipment limitations present in the system. In particular, this choice
introduces block-shaped setpoint changes, which for memory-less PI controllers can be communicated with two
transmissions in comparison to continuous setpoint changes that would require more frequent communication.
Moreover, frequent setpoint changes could produce undesirable behavior and the parametrization limits the number
of setpoint changes to two per activation. In addition, with the parametrization (toni , toffi ,∆href,dynamic

i ) only three
variables per pool suffice to define the setpoint profile whereas Np elements would be required for continuous
setpoint modifications, resulting in higher computational burden and possibly intractability. This could be particularly
an issue if a more accurate nonlinear model of a canal were used, whereas the proposed parametrization could be
easily extended to the case of a nonlinear prediction model.

In addition to the setpoint modifications, the Coordinator also determines the extra inflow from the head gate
that is required on top of the base flow to accommodate for the offtake requested. Every time the Coordinator is
activated, it provides the modification profile of the flow from the head gate for the whole prediction horizon Np:

Q̃S, demand = (QS, demand(0), . . . , QS, demand(Np − 1))T . (4)

The overall flow from the head gate QS for a given Coordinator’s input Q̃S, demand and the base level of the flow
QS, base is evaluated according to

QS(jAc + i) = QS, base +QS, demand(j), (5)

for j = 0, . . . , Np − 1 and i = 0, . . . , Ac − 1.



7

The overall control input can be in general written as a tuple

U =
(
Q̃S, demand, T on, T off , ∆Href, dynamic

)
, (6)

containing the information on the required setpoint modifications in all pools (T on, T off ,∆Href, dynamic) as well as
the required modification to the head gate flow Q̃S, demand. The Coordinator finds U to minimize the cost function

J =α

AcNp∑

j=1

(uN (j − 1)−QS, base)
2 (7a)

+

N∑

i=1

AcNp∑

j=1

[
γ1

(
max(hi (j)− hmax,des

i , 0)
)2

(7b)

+ γ2

(
min(hi (j) + hmin,des

i , 0)
)2

]
(7c)

+ β

N∑

i=1

AcNp∑

j=1

(
hi (j)− hrefi (j)

)2
(7d)

+ µ

N∑

i=1

(
toffi − toni

)2
+ ζ

N∑

i=1




AcNp∑

j=1

∣∣∣hrefi (j)− href,normal
i (j)

∣∣∣




2

, (7e)

in which α, β, γ1, γ2, µ and ζ are positive weighting coefficients. Moreover, uN (k) denotes the flow through gate
N at time step k (cf. (1)). The length of the prediction horizon Np should correspond to the time span needed for
the transient behavior to vanish in the sense of the norm of the transient signals going below a given threshold
[50, 51]. This can be determined from real data or by using an accurate simulator. Note that if the prediction horizon
Np is chosen too short, unstable behavior may result.

The first term in the cost function J (7a) vanishes when the outflow from the last gate is exactly equal to the
given base flow QS, base and grows as that outflow diverges from the base flow. The second (7b) and third (7c) terms
penalize control actions resulting in the water levels departing from the desired operational range [hmin,des

i , hmax,des
i ],

i = 1, . . . , N . Furthermore, the fourth term (7d) adds a penalty on the error between the actual water levels and
their respective setpoints. Finally, the last double term (7e) is used to induce the Coordinator to switch the setpoints
back to their normal level as soon as possible. Overall, the main objective captured in the cost function J is that
the events are accommodated for with possibly minimal disruptions to the rest of the canal.

In finding the control actions U , the Coordinator must comply with the following hard constraints

hmin
i ≤ hi(j) ≤ hmax

i , j = 1, . . . , NpAc, (8a)

hmin
i ≤ hrefi (j) ≤ hmax

i , j = 0, . . . , NpAc − 1, (8b)

toffi ≥ toni + Tm, (8c)

toni ≥ 0 (8d)

0 ≤ QS(j) ≤ Qcapacity, j = 0, . . . , NpAc − 1, (8e)

for all i ∈ {1, . . . , N}. Constraints (8a) and (8b) correspond to the physical constraints of the depth of the canal and
are included to avoid flooding and ensure adequate functioning. Note that we require hmin

i ≤ hmin,des
i < hmax,des

i ≤
hmax
i . Constraints (8c) and (8d) limit the possible choice of the switching time instants in that the first switch toni

can only occur after the moment the Coordinator has been activated and the second moment toffi needs to occur at
least one sampling step after the first one. In addition, the head gate flow needs to respect the maximum capacity
of the head gate constraint (8e).

The resulting optimization problem is either a nonlinear nonsmooth real-valued problem if toni and toffi are the
optimization variables or a nonlinear mixed-integer problem if koni and koffi are directly optimized. Various algorithms
can be used to deal with such problems e.g. simulated annealing [56], genetic algorithms [57], pattern-search [58],
or branch and bound [59].



8

COORDINATOR

TIME-DRIVEN

EVENT-DRIVEN

synchronous events

asynchronous events

block-modifying strategy

block-adding strategy

block-modifying strategy

block-adding strategy

block-modifying strategy

block-adding strategy

Figure 4. Various formulations of the Coordinator proposed.

Recall that the Coordinator design in this section deals with one event by means of a single activation. Therefore,
the variables introduced in this section do not depend on the control step or the activation counter. However, in the
next section we extend the notion of the Coordinator to enable its continuous operation over a long period of time
in which multiple activations occur. This requires a special treatment as is shown in the following section.

IV. HIERARCHICAL PREDICTIVE CONTROLLER DESIGN: MULTIPLE ACTIVATIONS CASE

A. General setup

In order to allow multiple activations of the higher-layer controller, we propose two possible design structures
of the Coordinator: the time-driven design and the event-driven design2, see Figure 4. In the first one, see Section
IV-B, the Coordinator is invoked at regular intervals, every Tc time units. This way, better performance can likely
be achieved than in the event-driven design as setpoints can be changed at every control step to react to the actual
situation in the canal. However, this requires a reliable communication infrastructure. In the event-driven structure,
see Section IV-C, the Coordinator changes setpoints no more frequently than actual events occur. Possible events
are delivery-related, i.e. delivery requests, and non-delivery-related, e.g. heavy precipitation.

We consider two possibilities how individual events are defined in the event-driven approach. These are called the
synchronous case and the asynchronous case depending on whether the events can only occur at some prespecified
or indeed arbitrary times.

For both the time-driven formulation and the event-driven formulation, we propose two sub-approaches that
determine how to deal with multiple activations of the Coordinator, i.e. how to obtain the flow from the head gate
as well as how to modify the setpoint profiles if they have already been modified before when the Coordinator was
previously activated. These are called the block-modifying approach and the block-adding approach.

B. Time-driven formulation

In the time-driven formulation setup, the Coordinator is activated at regular intervals, every Tc time units, see
Figure 5. Note that similarly to the settings in Section III in this scheme the time variable t and the sampling step
k are reset to zero at every multiple of kc. However, as opposed to the procedure proposed in Section III, the step
counter associated with the Coordinator, kc, is not reset to 0 after an activation of the Coordinator but it carries on
incrementing from the initial moment to facilitate multiple activations of the Coordinator. In the figure, kc,0 denotes
some initial value of kc for the time period captured in the graph.

Because of the regular activations, the Coordinator can e.g. counteract possible model-plant mismatches by
incorporating a systematic feedback loop. However, if the Coordinator is activated regardless of whether or not
there is a need for it, there may be a risk of excessive setpoint changes ordered by the Coordinator. In other words,
the Coordinator may require that many small changes are done that in fact benefit the system very little. To prevent
this, a parameter ǫ can be appropriately selected so that negligible setpoint changes less than ǫ with respect to the
current settings, are not communicated to the local sites.

Note that in the time-driven approach, the cost function is evaluated at every control step kc; hence we ex-
plicitly use the notation J = J(kc). The cost function J(kc) is minimized to find the optimal control action

2Just as in the case of a single activation, the resulting programming problem in both the time-driven and the event-driven approaches
is a nonlinear nonsmooth problem or a nonlinear mixed-integer problem that can be solved using a number of algorithms e.g. simulated
annealing [56], genetic algorithms [57], pattern-search [58], or branch and bound [59].



9

Coordinator

is activated

t = 0

k = 0

time

t = 0

k = 0

reset clock

t = Tm

k = 1

···

···

kc = kc,0 kc = kc,0 + . . .kc = kc,0 + 1

k = 0

···

···

···

···

···

control step for the PIs

control step for the Coordinator

t = 0

kc = kc,0 + 2

k = 0

t = 0

Figure 5. Timing of the Coordinator in the time-driven multiple activation case: the Coordinator is activated at every control step.

U = U(kc) = (Q̃S, demand(kc),∆Href,dynamic(kc), T
on(kc), T

off(kc))
T as in (6). In particular, at every con-

trol step kc new setpoint modifications (toni (kc), t
off
i (kc),∆href,dynamic

i (kc)) are allowed. Given U(kc), the flow
from the head gate QS(k) at step k is calculated using the principles of the rolling horizon control as follows.
Knowing the base flow in the canal QS, base and the optimal profile as ordered by the Coordinator at step kc
i.e. Q̃S, demand(kc) = (QS, demand,kc

(0), . . . , QS, demand,kc
(Np − 1))T the flow from the head gate is

QS(j) = QS, base +QS, demand,kc
(0), j = 0, . . . , Ac − 1, (9)

where we used the fact that in the time-driven implementation of the Coordinator, the model step counter k is reset
to zero whenever the control step kc is incremented.

Before we describe the way to handle possibly overlapping setpoint modifications, let us recall from the classical
MPC that from the optimal control sequence for the given predictions horizon only the first value is applied to the
system, i.e. the one representing what should optimally be done in the current moment. This rolling horizon strategy
is also used in optimizing the setpoint changing time instants. In particular, if according to the most recent control
action U(kc), there should be a setpoint modified from its predefined profile after kc + 1, it is not implemented in
control step kc because such a control action can be recalculated at the next run of the Coordinator at step kc + 1
utilizing more up-to-date data. However, if the modification is supposed to happen between kcTc and (kc + 1)Tc,
i.e. in the current control step kc, this change is communicated as the next run of the Coordinator at step kc + 1
will occur after the scheduled setpoint change.

h
ref

i

timet
on

i
(kc)

t
on

i
(kc + 1)

t
off

i
(kc)

t
off

i
(kc + 1)t

off

i
(kc + 1)

Figure 6. Possible setpoint profiles using block-modifying formulation.

We propose two possibilities to deal with re-activations of the Coordinator while setpoint changes from a
preceding activation are ongoing: the block-modifying approach and the block-adding approach. In the block-
modifying approach, see Figure 6, once a setpoint modification has started in one of the pools and is supposed to
last until at least the next run of the Coordinator at step kc + 1, this modification can only be altered in the future
by changing when the setpoint should return to the normal operating level. Therefore, the setpoints profile will
consist of multiple changes, each one starting after the previous change has finished. This means that if at some
run of the Coordinator, a setpoint modification is ongoing i.e. the current time is passed the time instant of the
first modification toni for the current setpoint modification but before the second time instant toffi when the setpoint
should return to its predefined profile, only the value of toffi can be still modified by the Coordinator.

In contrast, in the block-adding approach, new blocks are added to the setpoint profile on top of the existing,
possibly already modified setpoint profile, see Figure 7. By doing so, a more complicated setpoint profile may
emerge than in the block-modifying scheme, which can facilitate better performance of the system as setpoints may



10

h
ref

i

timet
on
i
(kc)

t
off

i
(kc)

t
on
i
(kc + 1)

t
off

i
(kc + 1)

t
on
i
(kc + 2) t

off

i
(kc + 2)

Figure 7. Possible setpoint profiles using block-adding formulation.

be more freely changed. Yet, more communication between the Coordinator and the local sites may be required to
provide the local sites with the necessary information how the setpoints should change. Furthermore, performance
of the PI controllers could be diminished if the setpoints are modified too frequently.

For the sake of clarity, we discuss the specific implementation issues related with the block-modifying and the
block-adding approaches in Appendix A.

C. Event-driven formulation

In the event-driven approach, the Coordinator is only activated when there is an event. We define activations of
the Coordinator in a twofold manner. Assume that the activations can occur no more often than the control interval
Tc to avoid too frequent Coordinator’s activations so it can at most be activated as often as in the time-driven
case. Two ways of defining activations are shown in Figures 8 and 9. In the synchronous case, the Coordinator’s
activation can only occur at multiples of the control interval Tc. If there are events between two control steps,
they are sent jointly to the Coordinator at the next control step. In Figure 8, dotted bars indicate individual events
and vertical arrows indicate when the Coordinator is activated. The numeric values next to the arrows demonstrate
for how many individual events the Coordinator is activated each time. It is seen that events do not activate the
Coordinator immediately but at the nearest following multiple of the control step kc.

time

0 Tc 2Tc 3Tc 4Tc

(2) (4) (1)

Figure 8. Definition of events causing activation of the Coordinator - synchronous case. Events are denoted with dotted bars. Arrows are
used to indicate when the activation occurs with a label representing how many events are dealt with during each activation.

In contrast, in the asynchronous case the Coordinator can be activated at any moment, complying only with the
model sampling time Tm, but not necessarily with the control interval Tc. This case is illustrated in Figure 9, where
a time window δ is given and denoted with a horizontal bar, which is used to accumulate events before they are sent
to the Coordinator. At the end of the time window, the Coordinator is activated for all events that occurred within
the given time window. Then, another activation of the Coordinator can happen Tc time units after the previous one
at the earliest, due to the prerequisite of the minimal reactivation time of the Coordinator. A special case is when
δ = 0 in which case no events are grouped together and every single event immediately activates the Coordinator.
Any events occurring after the activating event need to wait for another activation after the minimal reactivation
time passes by. Again, if there are multiple events before the reactivation time elapses, they are grouped together
and jointly activate the Coordinator.

In both the synchronous and the asynchronous cases we define a new variable s ∈ N, which is an activation
counter. It is initialized with a value 0 and is increased every time the Coordinator is activated, see Figure 10.
Note that for the purpose of readability of the graph, only the synchronous case is depicted in Figure 10. Given
the dependence of the Coordinator’s control actions on the given activation s, the cost function J in (7) is written



11

time

δ δ

(1)Tc

(2)
Tc

(2) (2)Tc

Figure 9. Definition of events causing activation of the Coordinator - asynchronous case. Events are denoted with dotted bars. Vertical
arrows are used to indicate when an activation occurs with a label representing how many events are dealt with during each activation.
Horizontal arrows show the delays with activation of the Coordinator for individual events because of the minimum reactivation time Tc.
Horizontal bars indicate the length of the time window δ used to accumulate events occurring soon after each other.

as J = Js and is minimized to find an optimal control action of the Coordinator for activation s i.e. U = Us =(
Q̃S, demand,s, T on

s , T off
s , ∆Href, dynamic

s

)
, which are now written using the activation counter s in the subscript

to explicitly show the dependence of the control actions Us on the particular activation of the Coordinator.

Coordinator

is activated

t = 0

k = 0

time

t = 0

k = 0

reset clock

t = Tm

k = 1

···

··· k = 0

···

···

···

···

···

control step for the PIs

control step for the Coordinator

t = 0

kc = kc,0 + 2kc = kc,0 + 1kc = kc,0 kc = kc,0 + . . .

k = Ac

t = Tc

Figure 10. Timing of the Coordinator in the event-driven multiple activation case: there are three activations shown, fewer than there are
control steps kc.

While it is rather straightforward to determine how to calculate the flow from the head gate QS(k) given the profile
Q̃S, demand(kc) using the rolling-horizon strategy in the time-driven approach, in the event-driven formulation this
task may prove to be more complicated as new profiles Q̃S, demand,s = (QS, demand,s(0), . . . , QS, demand,s(Np−1))T

are necessarily determined at regular intervals. Given the Coordinator’s ruling Q̃S, demand,s, the flow from the head
gate at step k after the activation is obtained for i = 0, . . . , Ac − 1 and j = 0, . . . , Np − 1 as

QS(jAc + i) = QS, base +QS, demand,s(j), (10)

if k = jAc + i < NpAc − 1 and otherwise, if there is no activation of the Coordinator after the activation s as

QS(k) = QS, base (11)

for k ≥ NpAc. This means that upon the sth activation of the Coordinator, the profile Q̃S, demand,s
−

, where s−
denotes all activations before the current activation s, is rendered void and no longer used and the newly found
profile QS, demand,s is executed instead.

Just as for to the time-driven formulation, we propose two approaches for the event-driven formulation: the
block-modifying approach and the block-adding approach. In short, in the block-modifying approach, once a new
block is formed for the activation s, if at the time of the (s + 1)th activation the time is after the time instant
toni,s but before toffi,s , only the lengths of the existing blocks can change, i.e. the Coordinator can only modify toffi,s+1

but the starting moment of the particular block toni,s+1 and its height ∆href,dynamic
i,s+1 need to remain as ordered for

activation s, see Figure 6. This is of course with the exception that the modifications from the previous activations
have finished, i.e. the (s+ 1)th activation time is after toffi,s , in which case the Coordinator can again determine all

parameters toni,s+1, toffi,s+1 and ∆href,dynamic
i,s+1 freely for the given pool i. Conversely, in the block-adding formulation,

once a setpoint profile is computed for the sth activation, during the activation s+1, the setpoint profiles obtained
for the sth activation are used in a way as normal operating levels and they can be modified by adding new blocks
to these profiles as depicted in Figure 7. We present the details of the implementation of the block-modifying and
the block-adding formulations in Appendix B.



12

radio transmission

offtake point

water level sensors

gates

electromotors + PLC

Figure 11. A photo of West-M irrigation canal in the South of Phoenix used in the case study.

D. Comparative analysis

In this section we compare the time-driven formulation of the Coordinator with the event-driven formulation. In
the case of a single activation of the Coordinator or of multiple but very unfrequent activations, the event-driven
formulation does not possess an intrinsic feedback strategy. In fact, it can be viewed as a feedforward scheme that
for given current measurements uses the built-in model of the canal to determine the optimal control actions. If the
next activation is far apart from the current one, there is no way the Coordinator can modify its actions once set.
On the other hand, in extreme cases the Coordinator can of course be re-activated. As the time-driven controller by
definition is invoked at regular intervals, it can react to the slightest problems. Therefore, the time-driven formulation
provides means to naturally overcome issues like model-plant mismatches. However, this may imply that setpoint
changes and thus communication between the control center and the local sites are needed too frequently.

For both the time-driven and the event-driven formulations, two additional sub-formulations are considered. These
are the block-modifying approach and the block-adding approach. It should be noted that while better performance
can be expected from the block-adding approach due to its more general nature, it is also burdened with a potentially
higher computational effort needed to determine all setpoint modifications. Moreover, if too frequent changes of
the setpoints of the PI controllers are executed, the performance of the PI controllers may worsen. In the block-
modifying approach, there is by definition only one block at a time, which is indeed a benefit in terms of the
computations and the frequency of setpoint changes required.

In the next section we further study the similarities and differences of the time-driven and the event-driven
approaches by means of a simulation-based case study.

V. CASE STUDY

Test Canal 1, see Figure 11, is one of the benchmark canals proposed by the ASCE Task Committee on Canal
Automation Algorithms [20, 60]. The benchmark model corresponds to the West-M irrigation canal in the South
of Phoenix, Arizona. The canal consists of 7 pools and has a total length of nearly 10 km. The delays kdi in the
pools i = 1, . . . , 7 are respectively: 1, 3, 1, 1, 9, 3, and 5 sampling steps. The surface areas ci of the pools are: 397,
653, 503, 1530, 1614, 2000, and 1241 m2. As in [20] we use a model sampling time Tm of 4 minutes. Control
parameters are selected by first considering the system dynamics and next manual fine tuning. Accordingly, the
control interval of the Coordinator is chosen to be Tc = 20 minutes. To choose the prediction horizon Np for the
case study, we examined the transient behavior. Consequently, the prediction horizon for the time-driven approach
is chosen to be Np,t = 16 control steps, which is equivalent to 80 model sampling steps. For the event-driven
formulation, a longer prediction horizon of Np,e = 24 control steps, corresponding to 120 model sampling steps,
is applied. The difference between the length of the prediction horizon in the time-driven formulation and the



13

event-driven formulation stems from the fact that while in the time-driven approach the Coordinator is invoked at
every control step, in the event driven formulation it is only activated when there is an event. Therefore, in general
it may happen that the Coordinator is only activated once in a long period of time, and thus it needs to be able
to look into the future far enough to be able to fairly judge how its actions affect the whole system, given the
dynamics of the system and the related delays.

The weighting parameters of the cost function J are selected as: α = 20, β = 4, γ1 = γ2 = 1, µ = 5, and
ζ = 3, while the control gains of the PI controllers for all pools are tuned to be KIi = 0.2 and KPi = 1.8. In
addition, the head gate capacity is Qcapacity = 2.8 m3/s, the base flow is QS,base = 1.5 m3/s, and hmin

i = −1.2 m,
hmax
i = −0.1 m, and href,normal

i = −0.6 m, i = 1, . . . , 7. The parameter ǫ used for post-processing in the time-
driven formulation is selected as ǫ = 0. In addition, the notice period is 5 sample steps: this means that each event
is announced 5 sample steps before it actually starts. Furthermore, all simulations are done using the MATLAB
fmincon solver with the SQP algorithm [61] implemented using 20 random starting points. The time instants toni
and toffi to be optimized are continuous variables and they are afterwards rounded to the nearest integers (cf. (3))
resulting in a nonsmooth objective function. Therefore, we use fmincon with a smoothing factor3. In particular, the
minimum step size for approximating derivatives through finite differences is set to 2Tm.

1

2

3

4

5

6

7

k 10 20 30 40 50 60 70 80 90 100

k 10 20 30 40 50 60 70 80 90 100

15/7/0.1

80/6/0.2

30/19/0.15

45/30/0.1

50/15/0.1

Figure 12. Delivery profile used in the case study. The numeric values a/b/c denote: the step when the delivery should start (a), how long
it should last (b), and what is its volume per second (c).

The events in the simulations are associated with delivery requests only. The delivery profile is depicted in Figure
12, where the individual profiles are shown with additional numeric values indicating when each delivery starts,
how long it lasts, and what is its volume. It is seen that in pools 4 and 7 there are no deliveries happening, and in
each of the remaining pools there is one event during the time of the simulation.

To be able to compare the effectiveness of the various formulations of the controller introduced in this paper, we
perform a set of four simulations using the time-driven block-modifying approach, the time-driven block-adding
approach, the event-driven block-modifying approach, and the event-driven block-adding approach. For the purpose
of comparing the performance of the four approaches, we consider an a posteriori performance index4

Jpost, operation = α

Nf∑

k=1

(uN (k)−QS,base)
2 + β

N∑

i=1

Nf∑

k=1

e2i (k), (12)

3We have tested a number of solvers (Matlab fmincon, Matlab pattern search, Matlab genetic algorithm, Tomlab fmincon) and the selected
solver has given the best results in terms of the trade-off between the computation time, constraint satisfaction, and the optimality of the
solution.

4In this paper we refrain from assessing the CPU times obtained by the different control approaches. This is motivated by the conceptual
format of the paper, in which we mainly focus our attention on the introduction of the various formulations of the Coordinator and the
evaluation of their performance based on the performance indicators Jpost, operation and Jpost, switch to verify which formulation of the
Coordinator most closely meet the control performance.



14

0 20 40 60 80 100
1.3

1.4

1.5

1.6

1.7

1.8

1.9

2

time step k

fl
o
w

 t
h
ro

u
g
h
 t

h
e 

h
ea

d
 g

at
e 

Q
S
 [

m
3
/s

]

(a)

0 20 40 60 80 100

1.5

1.55

1.6

1.65

1.7

time step k

fl
o
w

 t
h
ro

u
g
h
 t

h
e 

h
ea

d
 g

at
e 

Q
S
 [

m
3
/s

]

(b)

0 20 40 60 80 100
1.4

1.45

1.5

1.55

1.6

1.65

time step k

fl
o
w

 t
h
ro

u
g
h
 t

h
e 

h
ea

d
 g

at
e 

Q
S
 [

m
3
/s

]

(c)

0 20 40 60 80 100
1.35

1.4

1.45

1.5

1.55

1.6

1.65

1.7

1.75

time step k

fl
o
w

 t
h
ro

u
g
h
 t

h
e 

h
ea

d
 g

at
e 

Q
S
 [

m
3
/s

]

(d)

Figure 13. Inflows to the canals from the head gate for: (a) the time-driven block-modifying formulation, (b) the time-driven block-adding
formulation, (c) the event-driven block-modifying formulation, (d) the event-driven block-adding formulation.

where Nf = 100 steps, which is the total duration of the simulations. We also define an a posteriori performance
index Jpost, switch associated with the number of setpoint changes communicated to the local controllers during the
simulation:

Jpost, switch =

N∑

i=1

Nf∑

k=1

1href
i

(k) 6=href
i

(k−1), (13)

where the indicator function 1A is defined as

1A =

{
1 if A is true,
0 if A is false.

(14)

The results obtained in the four simulations are given in Figures 13–15. In Figure 13 we present how the inflow
to the canal from the head gate is changed by the Coordinator. Furthermore, the setpoint modifications as well as
the actual water levels in Pool 1 (selected as a representative example) are plotted in Figure 14 for the time-driven
block-modifying, the time-driven block-adding, the event-driven block-modifying and the event-driven block-adding
formulations, respectively. It is not surprising that in the time-driven formulation we obtain much more varying
setpoint profiles than in the event-driven formulation, although that could be further modulated by changing the
weighting parameters ǫ. Also, as was expected, the block-modifying formulation yields fewer changes than the
block-adding formulation in both the time-driven and the event-driven formulation.

Another indication of the performance of the different formulations of the hierarchical controller is the outflow
from the canal (in our case this is the outflow from the seventh pool), which should ideally be kept as close as possible
to the given base flow. It is observed in Figure 15 that the time-driven approach is able to achieve a tighter control in
that regard. In fact, when calculating the indices Jpost, operation for the four distinctive formulations, see Table I, we
again arrive at that same conclusion: the performance yielded by the time-driven formulation is better than that of the
event-driven formulations. For the block-adding approach we obtain the value of the a posteriori performance index
of Jpost, operation = 1.35 in the time-driven approach, compared with Jpost, operation = 3.50 for the event-driven



15

0 20 40 60 80 100

−1.1

−1

−0.9

−0.8

−0.7

−0.6

−0.5

−0.4

−0.3

−0.2

−0.1

time step k

w
at

er
 h

ei
g
h
t 

h
 [

m
]

(a)

0 20 40 60 80 100

−1.1

−1

−0.9

−0.8

−0.7

−0.6

−0.5

−0.4

−0.3

−0.2

−0.1

time step k

w
at

er
 h

ei
g
h
t 

h
 [

m
]

(b)

0 20 40 60 80 100

−1.1

−1

−0.9

−0.8

−0.7

−0.6

−0.5

−0.4

−0.3

−0.2

−0.1

time step k

w
at

er
 h

ei
g
h
t 

h
 [

m
]

(c)

0 20 40 60 80 100

−1.1

−1

−0.9

−0.8

−0.7

−0.6

−0.5

−0.4

−0.3

−0.2

−0.1

time step k

w
at

er
 h

ei
g
h
t 

h
 [

m
]

(d)

Figure 14. Water levels (dashed line) and setpoint (solid line) for Pool 1 obtained in the simulation of (a) the time-driven block-modifying
scheme, (b) the time-driven block-adding scheme, (c) the event-driven block-modifying scheme, and (d) the event-driven block-adding
scheme.

Table I
COMPARISON OF THE VALUES OF Jpost, operation AND Jpost, switch OBTAINED BY THE DIFFERENT CONTROL APPROACHES.

Jpost, operation Jpost, switch

time-driven block-modifying approach 3.22 134
time-driven block-adding approach 1.35 157

event-driven block-modifying approach 5.28 25
event-driven block-adding approach 3.50 60

block. For the block-modifying approach the values of the a posteriori performance indices are Jpost, operation = 3.22
for the time-driven controller and Jpost, operation = 5.28 for the event-driven controller. Comparing the values of
Jpost, operation for the block-modifying formulation and the block-adding formulation, it is observed that a lower
value of Jpost, operation is attained for the block-adding formulation than for the block-modifying formulation:
for the time-driven approach and the event-driven approach, respectively, we have Jpost, operation = 1.35 and
Jpost, operation = 3.22, versus Jpost, operation = 3.50 and Jpost, operation = 5.28. This is no surprise, as the block-
adding formulation provides more freedom in the way setpoint profiles can be changed than the block-modifying
formulation, which results in a better performance.

However, as it was previously seen in Figure 14, by examining the indices Jpost, switch for the four approaches
simulated we see that the setpoints are much more frequently changed in the time-driven formulations than in the
event-driven formulation. The extreme cases are 157 changes for the time-driven block-adding formulation and
only 25 changes for the event-driven block-modifying changes. We can therefore confirm the general claim of the
event-driven systems versus the time-driven systems: better performance may be achieved with the time-driven
controllers, i.e. the time-driven block-modifying controller outperforms the event-driven block-modifying controller
and the time-driven block-adding controller outperforms the event-driven block-adding controller. At the same time,



16

0 20 40 60 80 100
0.5

1

1.5

2

2.5

time step k

o
u
tf

lo
w

 f
ro

m
 t

h
e 

ca
n
al

 u
N
 [

m
3
/s

]

(a)

0 20 40 60 80 100
0.5

1

1.5

2

2.5

time step k

o
u
tf

lo
w

 f
ro

m
 t

h
e 

ca
n
al

 u
N
 [

m
3
/s

]

(b)

0 20 40 60 80 100
0.5

1

1.5

2

2.5

time step k

o
u
tf

lo
w

 f
ro

m
 t

h
e 

ca
n
al

 u
N
 [

m
3
/s

]

(c)

0 20 40 60 80 100
0.5

1

1.5

2

2.5

time step k

o
u
tf

lo
w

 f
ro

m
 t

h
e 

ca
n
al

 u
N
 [

m
3
/s

]

(d)

Figure 15. Outflows from the canal: (a) the time-driven block-modifying formulation, (b) the time-driven block-adding formulation, (c) the
event-driven block-modifying formulation, (d) the event-driven block-adding formulation.

the block-adding controllers - outperforming the block-modifying controllers - require also more frequent setpoint
updates than the block-modifying controllers. In particular, the number of updates for the time-driven controllers and
the event-driven controllers, respectively, is: in the block-modifying approach 134 and 25, and in the block-adding
approach 157 and 60.

In conclusion, the simulation results show that the event-driven approach is able to perform well: especially
the event-driven block-adding controller performed adequately, resulting in indices Jpost, operation and Jpost, switch

having reasonably low values. With that in mind, it appears plausible to state that given the current technological
restrictions present in the field of irrigation, the event-driven controller activated only in face of pre-defined events
(e.g. water delivery requests or extreme weather phenomena), is indeed fit for purpose and can be satisfactorily
used.5

VI. CONCLUSIONS

We proposed a hierarchical controller to control an irrigation canal. The controller consists of two control layers.
The lower layer is based on the equipment already present in the field and widely used in practice: local PI
controllers, used for upstream control. The higher layer - the Coordinator - is a centralized predictive controller, the
purpose of which is to control the inflow to the canal as well as to coordinate the PI controllers. The coordination
is done by means of modifying the setpoints of the local controllers, which makes the scheme operational in the
face of temporarily communication failures as the PI controllers are fit to control the canal autonomously.

We have considered a time-driven formulation and an event-driven formulation. The time-driven formulation is
designed to activate the Coordinator at every control step, while the event-driven formulation the Coordinator is
only activated in response to events of various kinds (e.g. a delivery request or a heavy rainfall). For both the

5It should be remarked that in our analysis we assume that Jpost, operation and Jpost, switch are equally important. However, if the weightings
of the importance of Jpost, operation and Jpost, switch are not equal, different conclusions could potentially be drawn.



17

time-driven and event-driven formulations we have proposed two ways how setpoints can be changed if there are
ongoing changes from previous activations of the Coordinator: the block-modifying and the block-adding strategies.

We have presented a simulation-based case study using a numerical model of a real canal to illustrate the
approaches and in particular to compare the performance obtained by the four controllers. It was shown that there
is a trade-off between the frequency of setpoint updates and the achieved performance. Nonetheless, given the current
broadly present practical restrictions in connection with installed control equipment and unreliable communication
in the field of irrigation, the event-driven controller appears to offer a good balance in that respect, and as such it
is suitable for deployment in the field.

Further work will include testing the hierarchical controller using a simulation study on different setups and
scenarios, and on a real irrigation canal to see how the controller performs in practice. Also the performance
obtained with different solvers and for various settings of the tuning parameters of the solvers will be examined in
more depth. Moreover, in the current implementation it is assumed that the access to the head gate is continuous.
However, the head gate may in fact be away from the control center and it may not be reasonable to assume that a
continuous changes to the inflow from the head gate can be made as done in the current formulation. Future work
will therefore also include relaxations of the formulation in which the head gate does not need to be continuously
accessed. Moreover, studying robust and stochastic controllers to account for uncertainties in the system dynamics
seems an appealing problem too.

VII. ACKNOWLEDGEMENTS

Research supported by the European Union Seventh Framework Programme [FP7/2007-2013] under grant agree-
ment no. 257462 HYCON2 Network of Excellence. The authors thank the anonymous Reviewers for their insightful
comments that helped to improve the manuscript.

APPENDIX: SPECIFICS ON THE IMPLEMENTATION ISSUES

We describe here the particularities regarding implementation of the hierarchical predictive controller introduced
in Section IV. In Section A of the appendix we give details on the implementation assuming the time-driven
formulation. Afterwards, in Section B we discuss the implementation specifics of the event-driven formulation.

A. Time-driven formulation

1) Block-modifying formulation: As explained in Section IV-B, a setpoint modification is only actually applied
(and thus also communicated to the local sites) if it is scheduled to occur within the next Tc time units after the
activation of the Coordinator. Assume that at step kc = k̂c,i the Coordinator finds an optimal change toni (kc) =

toni (k̂c,i) ≤ Tc for pool i. This change is indeed executed, since it is scheduled to occur in the current control step.
We thus consider a new variable t̂ that corresponds to the time variable t but in comparison to t, t̂ is not reset after
an activation of the Coordinator. Indeed, one can show that the optimal change toni (kc), which is given with respect
to the current activation time of the Coordinator, i.e. the time instant k̂c,iTc, satisfies t̂oni (kc) = k̂c,iTc + toni (k̂c,i),
where t̂oni (k̂c,i) is used to denote the value of the current optimal change toni (k̂c,i) with respect to the starting time
of the Coordinator t̂ = 0.

t = 0

t̂ = t̂0

t

t̂

ACTIVATION

t = Tm

t̂ = t̂0 + Tm

···

···

kc = kc,0

kc

kc = kc,0 + 1

t̂ = t̂0 + Tc

t = 0

Figure 16. Definition of the variable t̂. We use t̂0 = kc,0Tc as the starting time instant captured in the graph.



18

The variable t̂oni (kc) is needed to re-write constraint (8c) and constraint (8d). In particular, what is required is that
if a setpoint modification is not yet finished, i.e. toffi (kc − 1) < Tc does not hold, the current setpoint modification
should only be changed at next step by extending or contracting the block. This yields6

∆href,dynamic
i (kc) = ∆href,dynamic

i (kc − 1), (A.1a)

toffi (kc) ≥ max(0, Tm −∆toni (kc)), (A.1b)

toni (kc) = 0, (A.1c)

where ∆toni (kc) = kcTc − t̂oni (kc). In the above, the equality constraints (A.1a) and (A.1c) are used to impose
the continuation of the current setpoint modification: its magnitude and the starting time should be as originally
assigned. In contrast, the inequality constraint (A.1b) assures that the value of the time instant toffi (kc) is only
feasible if it is at least one sampling step Tm after the time instant starting the modification toni (kc) (cf. (8c)).

Now, two situations need to be considered. The first one is that7 toffi (kc − 1) < Tc or toni (kc − 1) > Tc which
means that either the switching time instant toffi ordered at the previous step kc − 1 was contained in the previous
control interval and hence a new block can start or that the setpoint modification was not implemented in the
previous control step kc − 1. This means that for the next setpoint modification, constraints as in (8) apply. The
situation is different if toffi (kc − 1) ≥ Tc and toni (kc − 1) ≤ Tc which means that setpoint modification is ongoing.
Therefore, the Coordinator can take into consideration the most up to date information available at step kc and
modify the value of toffi (kc), i.e. the length of the block with the value of the first time instant toni (kc) remaining as
chosen in the previous steps. Therefore, constraints (8a) and (8e) are valid but the remaining constraints are made
void for pool i satisfying the specific conditions discussed. Instead, constraints (A.1) need to be added.

2) Block-adding formulation: We define a new variable αsetpoint
i,kc

(k) to store the changing setpoint profile, and

initialize it for kc = 0 as αsetpoint
i,0 (k) = href, normal

i (k) for all k ∈ N. Then, at every control step kc the cost function
J(kc) is minimized to find the optimal control action U(kc) subject to constraints (8) and

hrefi (k) =

{
αsetpoint
i,kc−1 (k) if k ≤ koni (kc) or k ≥ koffi (kc),

αsetpoint
i,kc−1 (k) + ∆href, dynamic

i (kc) otherwise,
(A.2)

in place of the previously used (2). This is the method the setpoint profiles are predicted by the Coordinator in the
optimization routine but it differs when the actual setpoint profiles are to change. As mentioned earlier, the changes
are communicated to the local sites only if they are due to occur in the current control step. In the block-adding
formulation this means that new blocks are only added to the setpoint profiles if they should start in the current
control step, i.e. if toni (kc) ≤ Tc. Otherwise, no new blocks are added to the setpoint profile of pool i. Therefore,
after the optimization problem we update the setpoint profiles according to

αsetpoint
i,kc

(k) =

{
αsetpoint
i,kc−1 (k) if k ≤ koni (kc) or k ≥ koffi (kc) or k

on
i (kc) > Ac,

αsetpoint
i,kc−1 (k) + ∆href, dynamic

i (kc) otherwise.
(A.3)

Formula (A.3) is the actually executed setpoint profile for pool i, i.e. hrefi (k) = αsetpoint
i,kc

(k). Note that (A.3) differs
from the predicted profile (A.2) in that in (A.3) we assume that a new setpoint block is not implemented if it is
scheduled to start after the present control step. However, in both the predicted and actual profiles the times when
the blocks are to end are not restricted and once a setpoint profile block satisfies the condition toni (kc) ≤ Tc i.e. it
is actually executed, there are no limitations when toffi (kc) should take place.

B. Event-driven formulation

1) Block-modifying formulation: We define kactivation,s as the sampling step k when the Coordinator is activated
for the sth time with respect to the absolute starting moment of Coordinator. Because the step counter k is reset
after each activation of the Coordinator, it is not possible to set kactivation,s to be simply the value of the sampling

6If the introduction of the absolute time variable t̂ is not desirable, one could instead at the time of setting up the setpoint change for
pool i calculate τi(kc) = Tm − kcTc + toni (kc) and memorize it for future use. Then, at succeeding activations, the variable τi(kc) would
be decremented with Tc each time kc increments, i.e. τi(kc) = τi(kc − 1)− Tc. Consequently, Constraint (A.1b) could be re-written as
toffi (kc) ≥ max(0, τi(kc)).

7It is assumed that toni (0) = toffi (0) = 0, i = 1, . . . , N .



19

step k at the moment of the sth activation. Instead, we use kactivation,s = kc,sAc − ∆k,s, where kc,s is the value
of the control step kc at which the sth activation took place and ∆k,s is the number of the sampling steps k from
the moment of the activation until kc = kc,s. It can be easily seen that in the synchronous case ∆k,s = 0 as the
activations can only occur exactly at multiples of the control step of the Coordinator kc.

We consider two situations: one when a setpoint profile block from a previous activation has finished and the
other one when a setpoint profile block has started and is ongoing. In the first situation, the basic constraints as
listed in (8) need to be satisfied. To verify this occurrence, one might check if8 koffi,s−1+kactivation,s−1 ≤ kactivation,s
for each pool separately. The condition koffi,s−1+kactivation,s−1 ≤ kactivation,s is relevant because given the particular
activation counter s for new events, the condition checks whether a previously assigned change has already finished.

If the condition koffi,s−1 + kactivation,s−1 ≤ kactivation,s does not hold for some of the pools i ∈ {1, . . . , N}, for
those pools that koffi,s−1 + kactivation,s−1 > kactivation,s the Coordinator may no longer freely find new block-shaped
setpoint changes, but needs to continue with ongoing changes and, if needed, modify the ongoing changes by either
extending or contracting the lengths of the blocks. This means that the following constraints need to be satisfied:

∆href,dynamic
i,s = ∆href,dynamic

i,s−1 , (A.4a)

toffi,s ≥ max(0, Tm −∆toni,s), (A.4b)

toni,s = 0, (A.4c)

where, similarly to the time-driven formulation, we use ∆toni,s = (kactivation,s − kactivation,s−1)Tm − toni,s−1 to denote
the difference between the new activation time of the Coordinator and the time instant of the first change of the
ongoing block toni,s−1. This way, the constraint that the setpoint blocks need to have at least length of Tm is enforced,
see (A.4b). In addition, (A.4a) is used to guarantee that for an ongoing setpoint block, the modified value of the
setpoint, i.e. the height of the setpoint block, should remain as originally found for that particular block. Lastly,
the constraint in (A.4c) is to make sure that at the time of the activation of the Coordinator for the sth time, the
setpoint starts from the modified value.

2) Block-adding formulation: In the block-adding formulation of the Coordinator as depicted in Figure 7, we
define auxiliary variables αsetpoint

i,s (k) for i = 1, . . . , N to retain information about previous modifications of
the setpoint profile. Correspondingly to the time-driven block-adding formulation, see Section A2, we initialize
αsetpoint
i,0 (k) = href, normal

i (k) so that the variables αsetpoint
i,0 (k), i = 1, . . . , N , are identical to the normal levels of

the setpoints. The variables αsetpoint
i,s (k) for i = 1, . . . , N are used store information about previous modifications

of the setpoint to ultimately be able to add more blocks to the profiles when they are ordered by the Coordinator.
We start the procedure when activation s of the Coordinator occurs, which forces the Coordinator to provide the

control action Us subject to constraints (8) and

hrefi (k) =

{
αsetpoint
i,s−1 (k) if k ≤ koni,s or k ≥ koffi,s ,

αsetpoint
i,s−1 (k) + ∆href, dynamic

i,s otherwise.
(A.5)

After finding Us, we set αsetpoint
i,s (k) = hrefi (k) to save the newly obtained setpoint profile hrefi (k) for use in future

activations of the Coordinator. In other words, by assigning αsetpoint
i,s during succeeding activations, new blocks can

be added on top of the existing profiles, taking αsetpoint
i,s−1 (k) as the normal time-varying setpoint level.

REFERENCES

[1] D. L. Bjorneberg, R. E. Sojka, and J. A. Entry, “Irrigation: Historical perspective,” in Encyclopedia of Soil Science, Second Edition,
2002, pp. 945–949.

[2] S. Siebert and P. Döll, “Irrigation water use. a global perspective.” in Global Change: Enough Water for All?, J. L. Lozán, H. Graß l,
P. Hupfer, and L. Menzel, Eds., 2007, pp. 104–107.

[3] M. Cantoni, E. Weyer, Y. Li, S. K. Ooi, I. Mareels, and M. Ryan, “Control of large-scale irrigation networks,” Proceedings of the

IEEE, vol. 95, no. 1, pp. 75–91, 2007.
[4] G. Bastin, A. Bayen, C. D’Apice, X. Litrico, and B. Piccoli, “Open problems and research perspectives for irrigation channels,” Networks

and Heterogeneous Media, vol. 4, no. 2, pp. i–v, 2009.
[5] P. Malaterre, D. Rogers, and J. Schuurmans, “Classification of canal control algorithms,” Journal of Irrigation and Drainage Engineering,

vol. 124, no. 1, pp. 3–10, 1998.

8We set kon
i,0 = koff

i,0 = 0, i = 1, . . . , N .



20

[6] X. Litrico, V. Fromion, J.-P. Baume, and M. Rijo, “Modelling and PI controller design for an irrigation canal,” in Proceedings of the

2003 European Control Conference, Cambridge, UK, 2003.
[7] X. Litrico, P.-O. Malaterre, J.-P. Baume, P. Vion, and J. Ribot-Bruno, “Automatic tuning of PI controllers for an irrigation canal pool,”

Journal of Irrigation and Drainage Engineering-ASCE, vol. 133, pp. 27–37, 2007.
[8] P.-J. van Overloop, J. Schuurmans, R. Brouwer, and C. Burt, “Multiple-model optimization of proportional integral controllers on

canals,” Journal of Irrigation and Drainage Engineering-ASCE, vol. 131, no. 2, pp. 190–196, 2005.
[9] J. Schuurmans, “Control of water levels in open-channels,” Ph.D. dissertation, Delft University of Technology, The Netherlands, 1997.

[10] P.-O. Malaterre and J.-P. Baume, “Modeling and regulation of irrigation canals: existing applications and ongoing researches,” in
Proceedings of the 1998 IEEE International Conference on Systems, Man, and Cybernetics, vol. 4, San Diego, CA, 1998, pp. 3850–
3855.

[11] S. K. Ooi and E. Weyer, “Control design for an irrigation channel from physical data,” Control Engineering Practice, vol. 16, no. 9,
pp. 1132–1150, 2008.

[12] M. Papageorgiou and A. Messmer, “Flow control of a long river stretch,” Automatica, vol. 25, no. 2, pp. 177–183, 1989.
[13] J. de Halleux, C. Prieur, J.-M. Coron, B. d’Andréa Novel, and G. Bastin, “Boundary feedback control in networks of open channels,”

Automatica, vol. 39, no. 8, pp. 1365–1376, 2003.
[14] L. Zaccarian, Y. Li, E. Weyer, M. Cantoni, and A. Teel, “Anti-windup for marginally stable plants applied to open water channels,” in

Proceedings of the 2004 Asian Control Conference, vol. 3, July 2004, pp. 1692–1700.
[15] T. Rabbani, S. Munier, D. Dorchies, P.-O. Malaterre, A. Bayen, and X. Litrico, “Flatness-based control of open-channel flow in an

irrigation canal using SCADA,” IEEE Control Systems Magazine, vol. 29, no. 5, pp. 22–30, 2009.
[16] M. Fliess, J. Lévine, P. Martin, and P. Rouchon, “Flatness and defect of non-linear systems: introductory theory and examples,”

International Journal of Control, vol. 61, no. 6, pp. 1327–1361, 1995.
[17] E. Bautista and A. Clemmens, “Volume compensation method for routing irrigation canal demand changes,” Journal of Irrigation and

Drainage Engineering, vol. 131, no. 6, pp. 494–503, 2005.
[18] M. Xu, R. Negenborn, P. van Overloop, and N. van de Giesen, “De Saint-Venant equations-based model predictive control of open

channel flow,” Advances in Water Resources, vol. 37-45, pp. 37–45, 2012.
[19] E. Weyer, “Control of irrigation channels,” IEEE Transactions on Control Systems Technology, vol. 16, no. 4, pp. 664–675, 2008.
[20] R. R. Negenborn, P. J. van Overloop, T. Keviczky, and B. De Schutter, “Distributed model predictive control for irrigation canals,”

Networks and Heterogeneous Media, vol. 4, no. 2, pp. 359–380, 2009.
[21] V. Rutz, C. Ruiz, and L. Ramirez, “Predictive control in irrigation canal operation,” in Proceedings of the 1998 IEEE International

Conference on Systems, Man, and Cybernetics, vol. 4, San Diego, CA, 1998, pp. 3897–3901.
[22] P. Silva, M. A. Botto, J. Figueiredo, and M. Rijo, “Model predictive control of an experimental water canal,” in Proceedings of the

2007 European Control Conference, Kos, Greece, 2007, pp. 2977–2984.
[23] P. Charbonnaud, F. Carrillo, and E. Duviella, “A supervised robust predictive multi-controller for large operating conditions of an

open-channel system,” in Proceedings of the 18th IFAC World Congress, Milan, Italy, 2011, pp. 4620–4625.
[24] P.-J. van Overloop, A. Clemmens, R. Strand, and R. Wagemaker, “Real-time implementation of model predictive control on MSIDD’s

WM canal,” Journal of Irrigation and Drainage Engineering-ASCE, vol. 136, no. 11, pp. 747–756, 2010.
[25] J. M. Lemos, F. Machado, N. Nogueira, L. Rato, and M. Rijo, “Adaptive and non-adaptive model predictive control of an irrigation

channel,” Networks and Heterogenous Media, vol. 4, no. 2, pp. 303–324, 2009.
[26] J. Igreja, J. Lemos, F. Cadete, L. Rato, and M. Rijo, “Control of a water delivery canal with cooperative distributed mpc,” in Proceedings

of the 2012 American Control Conference, June 2012, pp. 3346–3351.
[27] A. Álvarez, M. Ridao, D. Ramirez, and L. Sánchez, “Constrained predictive control of an irrigation canal,” Journal of Irrigation and

Drainage Engineering, 2013, accepted.
[28] H. Fawal, D. Georges, and G. Bornard, “Optimal control of complex irrigation systems via decomposition-coordination and the use

of augmented lagrangian,” in Proceedings of the 1998 IEEE International Conference on Systems, Man, and Cybernetics, vol. 4, Oct
1998, pp. 3874–3879.

[29] D. D. Šiljak, Decentralized Control of Complex Systems. Academic Press, Boston, Massachusetts, 1991.
[30] Y. Li and B. De Schutter, “Control of a string of identical pools using non-identical feedback controllers,” IEEE Transactions on

Control Systems Technology, vol. 20, no. 6, pp. 1638–1646, 2012.
[31] Y. Li and M. Cantoni, “Distributed controller design for open water channels,” in Proceedings of the 17th IFAC World Congress, Seoul,

Korea, 2008, pp. 10 033–10 038.
[32] P.-O. Malaterre and J.-P. Baume, “Optimum choice of control action variables and linked algorithms. comparison of different

alternatives,” in Proceedings of the Workshop on Modernization of Irrigation Water Delivery Systems, Phoenix, AZ, 1999, pp. 387–406.
[33] X. Litrico and V. Fromion, “H∞ control of an irrigation canal pool with a mixed control politics,” IEEE Transactions on Control

Systems Technology, vol. 14, no. 1, pp. 99–111, Jan 2006.
[34] J. Scarlett and R. Brennan, “Re-evaluating event-triggered and time-triggered systems,” in Proceedings of the 2006 IEEE Conference

on Emerging Technologies and Factory Automation, Prague, Czech Republic, 2006, pp. 655–661.
[35] W. P. M. H. Heemels, J. H. Sandee, and P. P. J. van den Bosch, “Analysis of event-driven controllers for linear systems,” International

Journal of Control, vol. 81, no. 4, pp. 571–590, 2008.
[36] R. Obermaisser, Event-Triggered and Time-Triggered Control Paradigms. Santa Clara, CA, USA: Springer-Verlag, 2004.
[37] R. Scattolini, “Architectures for distributed and hierarchical model predictive control – a review,” Journal of Process Control, vol. 19,

no. 5, pp. 723–731, 2009.
[38] B. Picasso, D. D. Vito, R. Scattolini, and P. Colaneri, “An {MPC} approach to the design of two-layer hierarchical control systems,”

Automatica, vol. 46, no. 5, pp. 823–831, 2010.
[39] J. Nabais, R. Negenborn, R. Carmona-Benétez, L. Mendono̧a, and M. Botto, “Hierarchical MPC for multiple commodity transportation

networks,” in Distributed Model Predictive Control Made Easy, J. M. Maestre and R. R. Negenborn, Eds. Springer Netherlands, 2014,
vol. 69, pp. 535–552.



21

[40] G. Chaloulos, P. Hokayem, and J. Lygeros, “Distributed hierarchical MPC for conflict resolution in air traffic control,” in Proceedings

of the 2010 American Control Conference, June 2010, pp. 3945–3950.
[41] A. Núñez, C. Ocampo-Martinez, B. De Schutter, F. Valencia, J. López, and J. Espinosa, “A multiobjective-based switching topology

for hierarchical model predictive control applied to a hydro-power valley,” in Proceedings of the 3rd IFAC International Conference

on Intelligent Control and Automation Science (ICONS 2013), Chengdu, China, Sep. 2013, pp. 529–534.
[42] M. Brdys, M. Grochowski, T. Gminski, K. Konarczak, and M. Drewa, “Hierarchical predictive control of integrated wastewater treatment

systems,” Control Engineering Practice, vol. 16, no. 6, pp. 751–767, 2008.
[43] R. R. Negenborn, S. Leirens, B. De Schutter, and J. Hellendoorn, “Supervisory nonlinear MPC for emergency voltage control using

pattern search,” Control Engineering Practice, vol. 17, no. 7, pp. 841–848, July 2009.
[44] A. Zafra-Cabeza, J. M. Maestre, M. A. Ridao, E. F. Camacho, and L. Sanchez, “Hierarchical distributed model predictive control for

risk mitigation: An irrigation canal case study,” in Proceedings of the 2011 American Control Conference, San Francisco, CA, 2011,
pp. 3172–3177.

[45] C. Ocampo-Martinez, D. Barcelli, V. Puig, and A. Bemporad, “Hierarchical and decentralised model predictive control of drinking
water networks: Application to barcelona case study,” IET Control Theory Applications, vol. 6, no. 1, pp. 62–71, January 2012.

[46] V. T. Chow, Open-Channel Hydraulics, ser. McGraw-Hill Civil Engineering. London: McGraw-Hill, 1959.
[47] P.-J. van Overloop, “Model predictive control on open water systems,” Ph.D. dissertation, Delft University of Technology, The

Netherlands, 2006.
[48] J.-P. Baume, J. Sau, and P.-O. Malaterre, “Modelling of irrigation channel dynamics for controller design,” in Proceedings of the 1998

IEEE International Conference on Systems, Man, and Cybernetics, vol. 4, 1998, pp. 3856–3861.
[49] J. Schuurmans, A. Clemmens, S. Dijkstra, A. Hof, and R. Brouwer, “Modeling of irrigation and drainage canals for controller design,”

Journal of Irrigation and Drainage Engineering-ASCE, vol. 125, no. 6, pp. 338–344, 1999.
[50] J. M. Maciejowski, Predictive Control with Constraints. Essex, England: Prentice Hall, 2002.
[51] E. Camacho and C. Bordons, Model Predictive Control. Berlin Heidelberg: Springer, 1999.
[52] B. De Schutter and B. De Moor, “Optimal traffic light control for a single intersection,” European Journal of Control, vol. 4, no. 3,

pp. 260–276, 1998.
[53] H. van Ekeren, R. R. Negenborn, P. J. van Overloop, and B. De Schutter, “Hybrid model predictive control using time-instant optimization

for the Rhine-Meuse delta,” in Proceedings of the 2011 IEEE International Conference on Networking, Sensing and Control, Barcelona,
Spain, 2011, pp. 216–221.

[54] S. Cristea, C. de Prada, D. Sarabia, and G. Gutiérrez, “Aeration control of a wastewater treatment plant using hybrid NMPC,” Computers

& Chemical Engineering, vol. 35, no. 4, pp. 638–650, 2011.
[55] M. R. Garey and D. S. Johnson, Computers and Intractability: A Guide to the Theory of NP-Completeness, 1st ed. New York, NY,

USA: W. H. Freeman & Co., 1979.
[56] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi, “Optimization by simulated annealing,” Science, vol. 220, no. 4598, pp. 671–680, 1983.
[57] M. Mitchell, An Introduction to Genetic Algorithms. Cambridge, MA, USA: MIT Press, 1996.
[58] V. Torczon, “On the convergence of pattern search algorithms,” SIAM Journal on Optimization, vol. 7, no. 1, pp. 1–25, 1997.
[59] C. Floudas, Nonlinear and Mixed-Integer Optimization. Oxford, UK: Oxford University Press, 1995.
[60] A. Clemmens, T. Kacerek, B. Grawitz, and W. Schuurmans, “Test cases for canal control algorithms,” Journal of Irrigation and Drainage

Engineering, vol. 124, no. 1, pp. 23–30, 1998.
[61] J. Nocedal and S. J. Wright, Numerical Optimization, 2nd ed. New York: Springer, 2006.


