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Facilitating Maintenance Decisions on the Dutch Railways
Using Big Data: The ABA Case Study

Alfredo Núñez, Jurjen Hendriks, Zili Li, Bart De Schutter, Rolf Dollevoet*

Abstract: This paper discusses the applicability of Big Data techniques to facilitate maintenance decisions
regarding railway tracks. Currently, in different countries, a huge amount of railway track condition-monitoring
data is being collected from different sources. However, the data are not yet fully used because of the lack of
suitable techniques to extract the relevant events and crucial historical information. Thus, valuable information
is hidden behind a huge amount of terabytes from different sensors. In this paper, the conditions of the 5V’s of
Big Data (Volume, Velocity, Variety, Veracity and Value) in railway monitoring systems are discussed. Then,
general methods that can be applied to facilitate the decision of efficient railway track maintenance are proposed
for railway track condition monitoring. As a benchmark, axle box acceleration (ABA) measurements in the
Dutch tracks are used, and generic reduction formulations to address new relevant information and handle
failures are proposed.

Keywords: Big Data in Railway Engineering; Axle Box Acceleration Measurements; Railway Health Moni-
toring; Rolling Contact Fatigue.

1 Introduction

In recent years, rapid innovations in computer science have led to an increasing amount of available
data. These data originate from many new sources that can be used in different sectors, including rail-
way infrastructure. Contrary to the traditional data-collecting methods, where selected measurements
are performed over specific assets, it is currently possible to collect a continuous load of information
from many different sources for the entire railway infrastructure. Because of this increased amount of
data, monitoring and maintaining railway tracks can be improved using almost real-time information
about the track quality. To do so, there are several problems to overcome. There should be an efficient
system to collect and store the data and more importantly, an efficient method to analyze the Big Data
for decision making.

This requirement of new methods also holds for the Dutch railway network, which has the highest
occupancy in the European Union. Track failures can lead to accumulative delays, that disturb railway
traffic on many routes. Because of the high occupancy, scheduling maintenance work is a difficult task
[1-7]. Track closures are planned in advance, but critical maintenance is sometimes required during
operating hours, which causes huge delays for travelers. Thus, there is a high demand for efficient and
reliable track maintenance methodologies based on frequent measurements of the track quality and
quick analysis of the relevant historical information of the asset to determine the best maintenance
action. To achieve this continuous data processing and high-quality decision making, the methods
must handle a large amount of information about monitoring and maintenance of the track. Fixed-
location-based monitoring solutions might provide a solution for some of the most fragile components
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but cannot be used for the entire track because of the high costs. In this paper, a case study of a train-
mounted monitoring solution is analyzed, involving ABA measurements, GPS, video/pictures of the
track, and some open challenges for Big Data methodologies in railways are discussed.

2 Big data in railway condition monitoring

2.1 Available systems

Over the past decades, several systems have been introduced for railway condition monitoring, such
as the ABA (axle box acceleration) system [8-13], measurements based on ultrasonic and eddy current
for the detection of rail cracks [14] and video-based visual-inspection systems [15]. These systems
are based on different techniques and methods of measuring.

The use of ABA in the Dutch railways to assess track condition was first tested in the 1980s [16].
Because of the lack of technology, the system could not cover the full network and detect notably
high-frequency vibrations at that time. With the current use of the ABA system, track defects can
be detected by analyzing their effect, which is transmitted to the axle when they are in contact with
the wheels of the measuring train. In the literature, different ABA systems have been implemented
[8-13], and their efficiency has been proven in detecting corrugation, welds, and other problems in
the track. Railway infrastructure managers in different countries such as Poland, Italy, Japan, and
South-Korea have used the technology in different settings. In the Netherlands, a system patented by
Delft University of Technology [9] has been used for automatic detection of surface rail defects such
as squats [10]. For current testing, the system is mounted on a hired measuring train, for which a slot
on the track must be reserved. On the Dutch railways, with a usage of over 20.000 train km per track
km per year, this requirement can be problematic. However, with the operating speeds of over 100
km/h at which the ABA system works, the system can potentially be installed on normal passenger
trains to avoid reserving the track for measuring purposes. Further advantages of the ABA system are
its low costs and easy maintenance.

Ultrasonic measurements use ultrasonic beams, which are sent into the rail [17]. By observing the
reflection of the signals, the rail integrity can be analyzed. However, a big disadvantage of an ultra-
sonic system is that the reflections of shallow defects make it difficult to find severe cracks that are
deeper in the track [18]. By combining ultrasonic measurement with an eddy-current system, which
uses coils to induce eddy currents in the rail surface and measures the changes in these currents, the
main disadvantage can partly be resolved, and a good overview of the track quality can be provided
[14]. However, this system is limited to finding defects, that already developed cracks in the rail.
Surface indentations, which can often lead to crack development, cannot be found using this mea-
surement system. Moreover, when this system is used, the operating speeds are relatively low, which
makes it expensive to obtain the measurements during normal operating hours.

Video imaging systems use cameras that are mounted below a train to take images of the track.
This system has been proven to operate at speeds of up to 105 km/h [15], which is only slightly
lower than the operational speed of the Dutch railroads. A problem with this system is the visibility
of rail defects. Surface defects may be easily spotted, but deeper cracks, which are almost invisible
at the track surface, are hardly noticeable with this system. Lastly, no available effective automatic
algorithms can perform the complete visual inspection and assessment for the entire network. In the
case of large cracks and insulated joints, they can be automatically found [15], but human analysis
remains necessary for smaller defects, which is time-consuming and not effective.

Currently, all available railway-monitoring systems are implemented on a “run on demand” sys-
tem, which implies that an integrated methodology to handle all information sources for the entire
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system is not yet available. The measurements are implemented on separate trains and only sporadi-
cally provide data for locations. However, for good maintenance decisions, more detailed monitoring
of the defect degradation is necessary, which requires a higher measurement frequency. Another prob-
lem with the current implementations is that all different systems are used separately from each other,
and the huge amount of data from all sources are difficult for the technicians to process in an integrated
method in order to draw conclusions.

2.2 5 V’s for railway condition monitoring

Considering the available data for railway condition monitoring, particularly when an increased mea-
surement frequency is suggested to optimize maintenance decisions, these datasets qualify as Big
Data. Thus, the popular 5V’s [19] for railway infrastructure are analyzed.

• Volume: Railway infrastructure is a distributed parameter system, which implies that the as-
sessments should consider spatial and temporal dimensions. Monitoring the entire Dutch rail-
way (more than 6500 km of tracks) with the ABA system only one time with different mea-
surements provides a data volume of several terabytes. For example, when the system is im-
plemented on commercial passenger trains to collect data all day, the data volume can exceed
100 terabyte a day because of the sampling speed of the required sensors (at least 25600 Hz for
sampling and 16 sensors). A reduction/simplification of the specifications can compromise hit
rates of defects and the quality of the high frequencies analysis.

• Velocity: With the requirement for early detection of problems and the desire to obtain good in-
sight in the growth of defects, daily or weekly data acquisition is necessary. The main challenge
with the current system is the processing time, which partly depends on human analysis of the
data. Thus, the system update is currently a slow manual procedure. Moreover, when we collect
data with an even higher frequency, this processing velocity is simply not feasible. Thus, com-
putational intelligence is required to effectively process the available data, draw conclusions,
and decide on the best maintenance action.

• Variety: In the railway infrastructure, different data-collecting systems are used, which leads
into a wide variety of available data. In this paper, these data range from raw acceleration data
of the wheels to images of the rail.

• Veracity: Different data sources have their own challenges when they are used to analyze
railway track conditions. The results extracted from the ABA data can be different for the same
defect in two runs, which depend on the wheel position on the track with respect to the defect.
Although this problem is not present in the ultrasonic and eddy-current data, defects may go
unnoticed because of reflections and other side effects of these techniques. For video imaging,
only visible problems can be noticed. Deep cracks that do not penetrate the surface may be
unobserved. Thus, the quality of each data source and the reliability of the conclusions drawn
may differ.

• Value: Social aspects such as reduction of delays and the optimal track usage are the most ev-
ident benefits when the performance and availability of public transport services are improved.
Collecting railway infrastructure data on a daily basis will provide valuable data to facilitate
maintenance decisions and a valuable data source for further research on the causes and growth
of rail defects.
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In the next sections, the advantages and disadvantages of using big data for railway maintenance based
on ABA measurements are discussed.

2.3 Curse of big data

When one addresses Big Data problems, the difficulties lie in data capturing, storage, searching,
sharing, analysis, and visualization. These difficulties also appear when one collects data from the
different systems. The ABA system can theoretically be implemented on each train carriage in the
Netherlands, which will result in over 100 terabyte of raw data per day. Although each carriage can
collect and store the data of a single day’s measurement, transferring this amount of data to a central
location for processing will not be easy. When 100 terabytes of raw data are collected per day, storing
the raw data for more than a few days will require large storage capacities. Considering the required
processing for these data to draw conclusions, addressing all these data is clearly not yet feasible in
this method. Online transferring can be an option, but trade-offs must be made to allow the collection,
storage, processing, and analysis of the collected data.

2.4 Blessings of big data

The financial benefits of using a train-mounted condition monitoring system based on big data on the
Dutch railways are high. A case study in 2005-2008 showed that a cost reduction of 88% could be
achieved on only grinding costs by actively monitoring the railway condition, which would be equal
to an 80% reduction of the life cycle costs.

3 Case study for railway health monitoring

Although the usage of big data shows a large potential in railway condition monitoring, it has not
been generally deployed. New methodologies are required to make use of the full potential of these
data. Hence, it is important to consider the potential of different implementations and a viable data-
processing method.

3.1 What can be monitored

With the currently used monitoring systems, different parts of the track can be monitored: from the
quality of fixed parts such as insulated joints and welds to the development of surface defects (squats)
and corrugation. The systems allow monitoring, and techniques have been developed for detection
and decision making [10]. With the ABA system, over 85% of small squats and 100% larger squats
are found (based on averaging data from 2 measurements). Current developments in the algorithms
are expected to further increase these hit rates. Trials with the detection of corrugation from the ABA
system used at Delft University of Technology have also shown good first results: they can detect
severe corrugation on track and also less severe corrugation in some cases, which is consistent with
the results from other studies.

3.2 How to set up the system in large scale

To achieve a feasible system, it is important to distinguish which data can be collected at which rates.
Currently, only the ABA system is completely ready for implementation on passenger trains and for
daily measurements on track as the basis of the complete health-monitoring system.
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Figure 1: Data collection based on importance. Safety critical components are monitored with a high
frequency, whereas slower processes are monitored with a slower frequency.

The possible amounts of data that can be generated using the ABA system when it is implemented
on all available carriages are currently too large for processing as previously discussed and consid-
ering reasonable costs. Even when we invest in a huge amount of computing power, collecting and
processing all data would require significant efforts. Therefore, to use the system in the near future,
compromises must be made between the number of trains that contain the system and the measurement
frequency over the defects.

Because of the characteristics of the measuring system and because the data processing gives the
best results at speeds of approximately 100 km/h, the system can first be installed only on intercity
trains. These trains have fewer stops and therefore provide more usable data for longer stretches of
rail. The reason is the dependency on velocity of the signature tunes of defects from the ABA mea-
surement. Some theoretical relations between ABA measurements and train speed have been obtained
numerically [20], it is part of the further research to make the real system work under different speeds.

Furthermore, a minimum frequency can be established at which tracks should be measured. For
surface defects on the rail, the defect degradation occurs on a timescale of months instead of days or
hours. Thus, measuring a track once a day is sufficient for the current usage. For the main Dutch
intercity lines the largest part of the tracks can be covered with approximately 10 trains per day. In
addition, implementing the system on a single carriage per train should be sufficient for the data and
reduce the data load to less than 1 terabyte a day.

In addition to the implementation of ABA measurements on a daily basis, any available data from
ultrasonic and eddy-current measurements and video imaging should be collected. Later, data fusion
and analysis from different sources can be done, keeping in mind that a good labeling for defects and
also a good representation of the temporal dimension (date of the measurements) are considered for
those different data sources.

3.3 General reduction method for Big Data processing in railways

Because degradation is a slow process for the largest part of the track, not all ABA data require direct
processing every day. To further reduce the required processing power, intelligent processing can be
used. Depending on the average number of trains that use a certain track, the processing interval for
complete analysis can be adjusted. On average, monthly processing of each track can be sufficient.
However, when certain locations prove to be problematic, more frequent analysis of these sections is
required to obtain a better view of the degradation. This adjustment can be triggered using the train-
positioning system (which is a combination of GPS and tacho data). With this strategy, the amount
of data to be processed can be reduced by over 90%, but all important information remains collected.
An example of the rate of data processing and analysis using this strategy can be found in Figure 1.

Insulated joints are safety critical components because they are the basis of the signaling system.
If an insulated joint develops severe plastic deformation or the insulated material is damaged, they

5



Figure 2: Diagram of the method to reduce/increase the monitoring frequency.

should be monitored daily to obtain real-time information about their performance and be able to take
corrective measurements as soon as possible. For a high density of moderate squats, depending on
the tonnage of the track, they may more rapidly evolve into severe squats. Thus, weekly monitoring
of their condition can be a good solution. For the remainder of the track, only a monthly analysis is
required.

The same method can be used to retrieve past data to analyze the track condition before a defect
of a track component such as a switch. This reduction methodology is notably generic; the difficulty
is to define the mechanisms that trigger the necessity of a higher or lower frequency of the analysis.
Those mechanisms generally depend on the problems and the track.

Using this reduction method, the data are divided into many smaller sets. Then, by selecting
different sections instead of processing the entire data sets, the system can easily be implemented
either with parallel processing or on separate computers, which makes the data load feasible within
the current processing limits.

The entire process to address these data can run without human intervention as shown in Figure
2. Only when the outcome shows that further action is required, human intervention is required to
validate the results and to analyze which actions are advised to solve the problems in the track.
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Figure 3: Diagram of the failure-handling procedure for Big Data in railways.

3.4 General failure handling procedure for Big Data in railways

For an unpredicted failure of a certain part of a track or unexpected fast growth of a defect, the
information of these instances can be used to improve the model detection algorithms and growth
predictions. The process that is followed in case of a failure is shown in Figure 3. Human intervention
is required only when the data of the failure must be incorporated in the detection algorithm.

4 Examples with real data

Now an example of a dataset is considered to provide an overview of the method and an idea of
the amount of data that must be processed. Because the system is not yet implemented to acquire
data on a daily basis, a dataset is selected from one of the test runs of the ABA system. Images of
the interesting locations are available but were acquired at a track visit instead of a measuring train.
Ultrasonic and eddy-current data are not available for this location, and so they were not incorporated
in this example. The chosen section is a 2 km track section of the track between Assen and Groningen
in the Netherlands.

The energy values measured using the ABA system at this section are shown in Figure 4. As
observed from Figure 4, there is a relatively constant noise band for all signals, and some clear energy
peaks appear, which can be either single peaks or a group of closely spaced peaks. From this data,
three details are taken as examples for the data processing.
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Figure 4: Processed data from 4 wheels using the ABA system in the vertical direction.

Figure 5: High density of events in a segment of track.

4.1 Grouped peaks around km -56.650

For this section around kilometer -56.650, a high density of trigger events was found in the data
processing (Figure 5). Based on the density of these peaks (the number of nearby peaks), a trigger for
a higher-frequency monitoring analysis on this track section can be activated.

4.2 Isolated peak at km -57.627

The peak observed at kilometer position -57.627 is a clear example of an isolated peak (see Figure 6),
which can be either a structure component or a local squat. Combining the ABA data with video data
for this location (which was collected from a track visit in this case), this location is automatically
classified as a squat. Now, we enter these data into the decision tree because the squat is larger than
the currently used advised limit for maintenance, and no maintenance has been performed at this
location in the last months; subsequently, this location will be outputted with the note: “Further action
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(a) Picture of the defect

(b) Energy detected

Figure 6: A severe local defect.

required”. Then, human analysis can determine whether a replacement of this location on the track is
required or grinding is sufficient.

4.3 Isolated peak at km -56.895

The peak at km -56.895 is relatively low; however because it triggers the ABA signal, it is entered
into the data processing (Figure 7). With the available image for this location, it can be classified
as a small visible defect. From previous records, nothing was found on this location, the growth is
relatively slow, and the size is within the limits for maintenance. Although there has been growth, this
rate of growth is not expected to make this location problematic within the next month. Therefore, no
further actions are required at this location. The location will be stored in the database for comparison
during the next data processing run.

4.4 Global results

For this entire section, the achieved processing results are as follows:
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(a) Picture of the defect

(b) Energy detected

Figure 7: A small local defect.
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• Insulated joints: A total of 3 insulated joints are located, for which the data are processed
daily. Using the frequency-domain techniques and signal processing, it is possible to assess
the degradation condition of those insulated joints to suggest preventive maintenance when
necessary.

• Severe defects: From the detections, 8 defects that require further attention/maintenance were
located.

• Potential severe defects: Three defects that can grow to a problematic size within the next few
months were found. Subsequently, these defects will be processed weekly.

• High-density sections: One section is found with a high density of defects, which will be pro-
cessed weekly.

• Non-problematic defects: Approximately 30 locations that show non-problematic surface de-
fects on the track were found. For these locations, a monthly inspection is sufficient. Their data
will be stored to make comparisons in the following month.

Because this track is not yet under constant inspection, the number of severe defects on this section
is relatively high. The previous inspection on this track was approximately 1 year ago. Some of these
defects are so severe that they require a replacement of a track section. When the new system of
constant inspection is used, these defects would have been detected much earlier to enable more
efficient maintenance.

5 Conclusions

There is a great potential for using Big Data to facilitate maintenance decisions on Dutch railways.
First, the ABA system can be implemented on a selected number of passenger trains and combined
with night data from separate runs of video imaging and other systems. This method results in the
collection of approximately 1 terabyte of raw data per day for the ABA data. By using selective data
processing, based on previous results and experience in the growth rate of defects, all parts of the track
can be monitored with appropriate intervals while maintaining the processing load within feasible
limits. By also incorporating the failure and maintenance information in the system, the system can
be adaptive and self-learning. In addition to the significant reduction of maintenance costs, this system
can prove to be highly valuable for research by providing unprecedented amounts of track degradation
data. Further studies that include the analysis of computational intelligence methodologies [21] are
considered.
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