
Delft University of Technology
Delft Center for Systems and Control

Technical report 15-016

Improved distributed model predictive
control for rescheduling of railway traffic

by manipulation of the cost functions∗

B. Kersbergen, T. van den Boom, and B. De Schutter

If you want to cite this report, please use the following reference instead:
B. Kersbergen, T. van den Boom, and B. De Schutter, “Improved distributed model
predictive control for rescheduling of railway traffic by manipulation of the cost
functions,” Proceedings of the 6th International Conference on Railway Operations
Modelling and Analysis (RailTokyo2015), Narashino, Japan, 13 pp., Mar. 2015. Paper
025.

Delft Center for Systems and Control
Delft University of Technology
Mekelweg 2, 2628 CD Delft
The Netherlands
phone: +31-15-278.24.73 (secretary)
URL: https://www.dcsc.tudelft.nl

∗ This report can also be downloaded via https://pub.bartdeschutter.org/abs/15_016.html

https://www.dcsc.tudelft.nl
https://pub.bartdeschutter.org/abs/15_016.html


Improved distributed model predictive control for
rescheduling of railway traffic by manipulation of the cost

functions

Bart Kersbergen a,1, Ton van den Boom a, Bart De Schutter a

a Delft Center for Systems and Control, Delft University of Technology
Mekelweg 2, 2628 CD Delft, The Netherlands

1 Email: b.kersbergen@tudelft.nl, Phone: +31 (0) 15 27 85331

Abstract
In this paper we introduce two distributed model predictive control (DMPC) approaches
that significantly improve the quality of the solutions found compared to the DMPC ap-
proaches that were introduced by Kersbergen et al. [2014b] for the rescheduling of railway
traffic, while the computation time only increased by a small fraction. In DMPC the global
rescheduling problem is split up into several local problems that are solved by local model
predictive controllers that communicate with each other to achieve a solution for the global
rescheduling problem. We improve the solution found by the DMPC approaches by adjust-
ing the weights in the local problems such that the delay propagation through the network
is reduced. We compare the performance in terms of computation time and delay reduction
of the different DMPC approaches with the global model predictive control approach for
different lengths of the prediction horizon.

Keywords
Model predictive control, Distributed model predictive control, Rescheduling, Dispatching
support system

1 Introduction

In the Netherlands, Switzerland, China, Japan, and several other countries the capacity used
is nearing the maximum recommended capacity use or may even be more than the rec-
ommended one. Because of this small delays often propagate through large parts of the
network and cause many other trains to be delayed. To minimize the propagation and total
delay dispatchers reschedule and reroute trains, break connections, or in case of large delays
even cancel trains. Many researchers have been developing decision support systems for the
dispatchers [Dessouky et al., 2006, Corman et al., 2010, 2014, Törnquist Krasemann, 2012,
Caimi et al., 2012, Meng and Zhou, 2014] that help them determine the best dispatching
actions.

In this paper we build on the work of Kersbergen et al. [2014a,b]. Kersbergen et al.
[2014a] model the railway traffic as a discrete-event system and the dispatching problem is
solved using a centralized model predictive controller. Kersbergen et al. [2014b] introduce
two distributed model predictive control (DMPC) approaches and the performance in delay
reduction and computation time are compared to the centralized model predictive control
(MPC) approach. We continue this work by introducing two new DMPC approaches, based
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on one of the DMPC approaches of Kersbergen et al. [2014b]. By choosing appropriate
weights for the cost functions of the distributed model predictive controllers the delay re-
duction achieved with the new DMPC approaches will be better than the delay reduction
achieved with the DMPC approaches of Kersbergen et al. [2014b]. In this paper we de-
scribe how these weights can be determined based on properties of the model of the railway
traffic and network.

2 Railway Model and Control

In order to determine a new conflict-free schedule and to reduce the delays we need to be
able to predict the effects of the dispatching actions on the delay propagation and on the
arrival and departure times of the trains and we need to be able to determine dispatching
actions that reduce the delays. To predict the effects of the dispatching actions we need to
model the railway traffic and network. To determine the dispatching actions that reduce the
delays as much as possible we need a controller that can efficiently assess a large number
of different combinations of dispatching actions and in a smart way reduce the number of
combinations such that it determines the desired dispatching actions and a new conflict free
schedule in a very short time. First we will describe the model used to predict the state of
the railway traffic in the future. After that we will describe the centralized MPC approach of
Kersbergen et al. [2014a] and the DMPC approaches we have developed before [Kersbergen
et al., 2014b].

2.1 Railway Model

The model used in this paper is a discrete-event system. The events of the system are the
arrival and departures of the trains at stations and at junctions and intersections outside the
interlocking area of the stations. We assume that the routing through the stations and their
interlocking areas is managed locally and therefore conflict-free. This allows us to simplify
the model and describe the stations and their interlocking area as single points. Tracks
between stations and/or junctions are modeled as a single segment; block sections are not
modeled. Because block sections are not modeled the signaling system cannot be modeled
explicitly, instead we ensure a safe distance between trains by enforcing a time difference
on the arrival and departure times between trains on the same track. This time difference is
modeled by headway constraints and separation constraints. Headway constraints do not
only ensure a safe distance between trains on the same track, they also define the order in
which the trains traverse the track. A train traversing a track is modeled by a running time
constraints. A train dwelling at a station is modeled by a continuity constraints. Transfers
at stations that are guaranteed by the train operators are modeled by connection constraints.

The general form of these four constraints is:

xi ≥ xj + τij , (1)

where xi, xj ∈ R are the event times and τij ∈ R is the minimum process time (dwell,
running, headway, separation, or connection time).

To ensure trains do not depart before their scheduled departure time timetable con-
straints are used. Timetable constraints have the following general form:

xi ≥ ri, (2)
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where ri ∈ R is the scheduled departure time. The trains depart and arrive as soon as all
constraints are satisfied.

To be able to break connections and change the order of the trains on tracks we need to
be able to “enable” and “disable” constraints. This can be done by adding binary variables
to the constraints. Constraints with binary variables are described by one of the following
two general forms:

xi ≥ xj + τij + uijβ (3)
xi ≥ xj + τij + (1− uij)β, , (4)

where uij ∈ {0, 1} is the binary control variable and β ≪ 0 is a very large negative value.
The very large negative value in combination with the binary variable allows us to “enable”
and “disable” constraints. These equations should be seen as (1) with an added term uijβ
or (1 − uij)β. If uij = 0, then (4) always holds due to the added term. If uij = 1, then 3)
always holds due to the added term. The resulting model is a macroscopic model. We will
not describe the model in more detail in this paper since it has been described in full detail
before [Kersbergen et al., 2014a].

2.2 Model Predictive Control

With the model we can predict the future state of the railway traffic as well as the effects of
adjusting the binary variables. The model predictive controller is used to determine the bi-
nary variables that reduce the delays as much as possible within a given prediction horizon
of length T . The prediction horizon is limited in length since determining the binary vari-
ables is a computationally complex task, and choosing a smaller prediction horizon reduces
the computational complexity. Furthermore, the situation on the railway network is con-
stantly changing and predicting the future state of the railway traffic perfectly is impossible.
As a result the model predictive controller has to recompute the binary variables at discrete
time instants t(k) for k ∈ N ∪ {0}. At each time instant t(k) the controller receives new
information on the current state of the network and the railway traffic, and new estimates for
the future process times. It uses this information to determine the binary variables that re-
duce the delays as much as possible for the prediction horizon from [t(k+1), t(k+1)+T ).
For the events that occur between [t(k + n + 1), t(k + n + 2)) the binary variables asso-
ciated to these events are implemented. Here n ∈ N ∪ {0} depends on the time needed
to implement the binary variables and the time between two time instants. This process is
repeated at every time instant t(k).

To determine the binary variables at each time instant t(k) the model predictive con-
troller has to solve a Mixed Integer Linear Programming (MILP) problem. The MILP cost
function is chosen such that it is a measure of the total delay in the network. By solving
this MILP problem we find the desired binary variables for that time instant t(k). In Rudan
et al. [2013] it is explained how this MILP problem can be determined.

Let us define x as a vector consisting of the event times of the events that occur between
[t(k), t(k + p)), u consists of the binary variables associated to these events, cx and cu are
the weights on x and u respectively, row vector c =

[
cx cu

]
and z =

[
x⊤ u⊤]⊤. The
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cost function of the MILP problem can then be written as c z and the MILP problem as:

min
z

c z

s.t. Az ≤ b

where z ∈ Rnx × {0, 1}nu , with nx the number of continuous variables and nu the number
of binary variables, and where Az ≤ b contains the constraints that describe the railway
network and traffic model.

2.3 Distributed Model Predictive Control

With DMPC the system to be controlled is split up into several interacting smaller sys-
tems. Each of these smaller systems is controlled locally by a model predictive controller.
These local model predictive controllers coordinate with the other local model predictive
controllers to reach a good control for the global system.

As a starting point for the DMPC approach in this paper we use the second method
of Kersbergen et al. [2014b]. This method was based on a reordering of the constraint
matrix such that the MILP problem that needs to be solved at every step of the global model
predictive controller has the following structure:

min
z

[
c̃1 c̃2 . . . c̃n

] [
z̃⊤1 z̃⊤2 . . . z̃⊤n

]⊤
(5)

s.t.


A1,1 A1,2 . . . A1,n

A2,1
. . . A2,n

...
. . .

...
An,1 An,2 . . . An,n



z̃1
z̃2
...
z̃n

 ≤


b̃1
b̃2
...
b̃n

 (6)

where c̃i, z̃i, b̃i for i ∈ {1, . . . , n} are vectors of appropriate size, Ai,j for i ∈ {1, . . . , n}, j ∈
{1, . . . , n} are matrices of appropriate size, and

z̃i =
[
x̃⊤
i ũ⊤

i

]⊤
Ai,i =

[
Ai,i,x Ai,i,u

]
Ai,j =

[
Ai,j,x 0

]
for i ∈ {1, . . . , n} and j ∈ {1, . . . , n}/{i}, and where x̃i and ũi are vectors of appropriate
size. The matrices Ai,i are split up into a part Ai,i,x that is multiplied by x̃i, and a part
Ai,i,u that is multiplied by ũi in (6). The matrices Ai,j are also split up into two parts. One
part Ai,j,x is multiplied by x̃j in (6). The part that is multiplied by ũj in (6) is guaranteed
to be a zero matrix.

The second method of Kersbergen et al. [2014b] is repeated here for convenience:
Each step of a local model predictive controller can be written as a MILP problem:

min
z̃i

c̃i z̃i (7)

s.t. Ai,iz̃i ≤ bi −
∑

j∈{1,...,n}/{i}

Ai,j z̃j (8)
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where z̃j , for j ∈ {1, . . . , n}/{i} is determined by the other local model predictive con-
trollers.

The steps to determine a near-optimal feasible global solution are:

1) Define an initial estimate for z denoted by ẑ

2) For subproblem i, denoted by (7) and (8), assume z̃j for j ∈ {1, . . . , n}/{i} is known
and equal to ˆ̃zj and solve subproblem i for i = 1. Denote the solution as ˆ̃zii .

3) Update the estimate ˆ̃zi = ˆ̃zii .

4) Repeat steps 2 and 3 for i = 2, . . . , n.

5) Repeat steps 2, 3, and 4 until ||ˆ̃zi − ˆ̃zii || < ∆ for i = 1, . . . , n, where ∆ is a very
small value.

Convergence at step 5 was not proven and after extensive testing it was clear that the method
does not always converge; so we update step 5 of the DMPC approach to stop after a finite
numbers of, say m, iterations:

5) Repeat steps 2, 3, and 4 until ||ˆ̃zi− ˆ̃zii || < ∆ for i = 1, . . . , n, where ∆ is a very small
value. If there is no convergence within m iterations then lock the binary variables
ũi for i = 1, . . . , n to their last determined values and determine the corresponding
continuous variables x̃i.

Because each local model predictive controller only considers its own part of the railway
network and does not consider the propagation of the delays to the other parts of the network
the quality of the found solutions left room for improvement. In the next section we will
introduce the two new DMPC approaches that. Both of these approaches are based on the
second method of Kersbergen et al. [2014b], but their delay reduction is much better.

3 Adjusting Cost Functions

In the second method of Kersbergen et al. [2014b] the local model predictive controllers do
not consider the delay propagation to the other parts of the network and as a result the train
orders at the border of their area of control tend to be suboptimal for the total network, since
a large part of the effects of the order changes are only noticed in the next area. To reduce
the delay propagation from one area controlled by a local model predictive controller to
another area we will improve the second method by adjusting the weights of the events of
the trains leaving to another area. The weights that need to be adjusted can be easily found.
For the local model predictive controller i the indices of the weights of the MILP problem
in c̃i that have to be adjusted can be determined by finding the variables of MILP problem
i that affect MILP problem j for j ∈ {1, . . . , n}/{i}. If we look at how MILP problem i
is defined in (7) and (8) it is clear that the indices of the variables of MILP problem j on
which MILP problem i depends coincide with the indices of the non-zero columns in Ai,j .
The indices of c̃i that need to be adjusted therefore coincide with the indices of the non-zero
columns of Aj,i for i = 1, . . . , n and j ∈ {1, . . . , n}/{i}. Denote these weights by c̃outi

and denote the corresponding variables as z̃outi .
By increasing the weights c̃outi the local controllers are forced to focus on reducing the

delays of the corresponding events, and by doing so possibly reduce the delay propagation
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to the other areas, at the cost of the total delay in the local area. There are many possible
choices for the values of the weights c̃outi . In this paper we will look at two different choices:

• Increase the values of weights c̃outi with the same factor

• Increase the values of weights c̃outi based on the number of continuous variables the
corresponding trains have in the other MILP problems

The first option is really simple: just choose a factor with which to increase all weights c̃outi .
Our choice is to double the weights. The reason for this is that every continuous variable
corresponding to these weights is connected to at least one continuous variable in one of
the other MILP problems, and the dependency between the delays of these two continuous
variables is very high.

For the second option we need to determine for every train leaving the area which events
are used to model this train in the other areas. This corresponds to the continuous variables
that are connected through continuity and running time constraints to the variables z̃outi . The
weights c̃outi are set to the sum of the weights of the standard cost function of the continuous
variables that the events are connected to through continuity and running time constraints.
In the next section we will show what the effects of these changes to the cost function are on
the quality of the solution found with the DMPC approaches and what influence they have
on the computation time.

4 Case Study

The case study will consists of two parts. For the first part we will compare the solution
quality of the two approaches introduced by Kersbergen et al. [2014b] with the two im-
proved approaches introduced in this paper for 1000 scenarios. For the two approaches in
our previous work [Kersbergen et al., 2014b] we will use the sum of delays cost function:

c z = [11×nx 0.0001 · 11×nu ]

[
x
u

]
, where 11×m is a 1 by m vector containing only ones,

nx is the number of continuous variables, and nu is the number of binary variables. For the
first part we will only look at a single time instant of the controllers, in which the controllers
have to determine the optimal new schedule for the next hour based on the current situation
of the railway network and traffic.

The DMPC approaches of our previous work [Kersbergen et al., 2014b] will be denoted
as DMPC 1 and DMPC 2. The two improved DMPC approaches of this paper will be
denoted as DMPC 3 and DMPC 4.

For the second part we will compare the best method found in part one with the global
model predictive controller for different lengths of the prediction horizon and repeat the
process every minute, by moving the prediction horizon one minute further and computing
a new solution. The controller stops once there are no more delays present and all trains run
according to the nominal schedule. This is done for 100 scenarios.

For both parts of the case study the model of the railway network is based on the Dutch
railway network with the timetable of 20111. The train lines, the line type, and their fre-

1The complete timetable is too large to include in this paper and is no longer available online. Since
there have been very few major changes in the timetable in the last years the reader can get a gen-
eral idea of the timetable from the 2015 timetable. The timetable of 2015 can be found (in Dutch)
at http://www.ns.nl/reizigers/reisinformatie/informatie/informatie-tijdens-uw-reis/download-dienstregeling-2014-
2015.html.
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quencies are shown in the Appendix in Table 1. Each line is in both directions and the
frequency is per direction.

The part of the network that is strongly connected is considered. This means that the
following tracks have been left out: from Leiden via Gouda to Woerden (and back), the
tracks from Baarn to Den Dolder (and back), as well as the tracks from Almelo to Zwolle
(and back), and the tracks that are not electrified. In the case study only reordering of
trains and changing arrival and departure times are considered for dispatching actions. Each
hour 326 trains traverse the network and the order of the trains traversing the tracks can
be changed at 66 points in the network. For the DMPC approaches the network is split up
into four smaller networks based on the method proposed in our previous work [Kersbergen
et al., 2014b].

For each scenario we generate delays in the first hour of the railway traffic and the
controller will be activated after the first hour. No new delays are introduced after the first
hour when the controllers are active. We delay 10% of the trains with a randomly generated
delay according to a Weibull distribution with scale parameter 5 and shape parameter 0.8.

All scenarios were solved on a personal computer (PC) with an AMD Phenom II X4
960T (3.0GHz) CPU with 16GB of DDR3-1600 memory. The PC is running Windows
7 64bit. The scenarios were solved using Gurobi 5.6.0 [Gurobi] called through the mex-
interface of Matlab R2013b 64bit.

4.1 Case Study: Part 1

The relative increase in delays because of the use of the DMPC approaches is shown in
Figure 1. The absolute increase in delays is shown in Figure 1. The computation time for
the global model predictive controller and the four DMPC approaches to find their solution
is shown in Figure 3.
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Figure 3: Computation time of the global MPC, DMPC 1, DMPC 2, DMPC 3, and DMPC
4

From Figures 1 and 2 it is clear that the adjustment of the weights has a beneficial effect
on the solution quality. Especially DMPC 4 finds very good solutions; the average increase
in delays is only 0.14% (2.9 minutes), which is much lower than the average of 0.63% (12.7
minutes) for DMPC 1, and the 1.27% (25.1 minutes) average increase of DMPC 2. From
Figure 3 it is clear that the change in cost function does not have a significant effect on the
computation time. DMPC 3 and 4 are slightly slower than DMPC 2, but still much faster
than DMPC 1 and the global MPC approach.

4.2 Case Study: Part 2

In this part of the case study we will look at the total delay from the start of scenario until
all trains run according to their nominal schedule again. The effectiveness of DMPC 2.2

8



is compared to the global MPC approach for prediction horizons of length 30, 45, 60, 75,
and 90 minutes. Since no new delays are introduced the amount of delays will decay when
shifting the prediction horizon further. As a result at later time instants the MILP problems
to be solved by the controllers will be easier to solve, therefore we will only look at the
computation time of the first 10 time instants of each scenario. This results in 1000 time
instants for which we compare the computation time for each of the control approaches and
prediction horizons. The computation times are shown in Figure 4. Because the computa-
tion time needed to solve some time instants for the global MPC approach with a prediction
horizon of 75 minutes already takes nearly 20000 seconds, making it infeasible for an on-
line implementation, we have not tested the global approach for a prediction horizon of 90
minutes.
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Figure 4: Computation time for DMPC 2.2 and the global MPC approach for prediction
horizons of length 30, 45, 60, 75, and 90 minutes.

To compare the performance in terms of delay reduction of the different approaches for
the different prediction horizons we have summed up the total delay of the 100 scenarios
and compared them to each other and the delays in case no control actions were taken. The
results are shown in Figure 5.
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Figure 5: Sum of delays of all scenarios for DMPC 2.2 and the global MPC approach for
prediction horizons of length 30, 45, 60, 75, and 90 minutes.

When considering the computation time in Figure 4 DMPC 4 can compute the solu-
tions for all scenarios and time instants within 150 seconds for all lengths of the prediction
horizon. For a length of 75 minutes or less the DMPC approach is even able to keep the
computation time below 60 seconds. The global MPC approach is only able to keep the
maximum computation time below 150 seconds for a prediction horizon length of 30 min-
utes. For the prediction horizon of 60 minutes the maximum computation time already
comes close to 7000 seconds, which makes it very difficult to use in on-line optimization.

From Figure 5 it is clear that for the same control horizon the global approach consis-
tently performs better than DMPC 4. Furthermore, it is clear that increasing the prediction
horizon from 30 to 60 minutes has a huge effect on the amount of delays, but increasing
it further than 60 minutes has a much smaller effect on the delays. For DMPC 4 it even
appears that there is no benefit from increasing the prediction horizon past 75 minutes. The
sum of total delays even goes up a little from 392482 minutes to 392657 minutes. With a
longer prediction horizon it is more likely that dispatching actions in other areas change the
delay propagation of the trains and therefore the estimated delay propagation that each local
controller bases its dispatching actions on becomes less accurate and that may have negative
effects on the quality of the global solution.

If we consider both computation time and solution quality, the best choice is DMPC 4
with a prediction horizon of 75 minutes. With a prediction horizon of 75 minutes DMPC
4 performs similarly to the global approach with a prediction horizon of 60 minutes, but
the average and perhaps more importantly the maximum computation time is much lower.
Making it a more suitable candidate for implementation in an on-line rescheduling tool.

5 Conclusions

In this paper we have introduced an improved distributed model predictive control (DMPC)
approach. We have compared the solution quality in terms of delay reduction and compu-
tation time of our improved approach with two DMPC methods previously introduced in
the literature and the global mode predictive control approach. We have tested the effects
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of different lengths of the prediction horizon on the solution quality and computation time.
From the case study it can be concluded that the proposed improved DMPC approach can
perform better than the global model predictive control approach when considering both
computation time and solution quality.

For our future work we will test how splitting the network up into a different number of
smaller parts and different methods for splitting up the network affects the performance of
the DMPC approaches.
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Appendix

Table 1: Train lines and their frequencies for the 2011 timetable of the
Dutch Network. InterCity (IC) trains are interregional trains and Sprint-
ers (SP) are local trains.

Train line Train type Frequency
Alkmaar - Maastricht CS IC every 30 minutes
Arnhem - Ede-Wageningen SP every 60 minutes
Arnhem - Zutphen SP every 30 minutes
Amsterdam CS - Almere Oostvaarders SP every 30 minutes
Amsterdam CS - Amersfoort SP every 30 minutes
Amsterdam CS - Breda SP every 30 minutes
Amsterdam CS - Den Haag CS IC every 30 minutes
Amsterdam CS - Dordrecht IC every 60 minutes
Amsterdam CS - Haarlem SP every 30 minutes
Amsterdam CS - Hoofddorp SP every 30 minutes
Amsterdam CS - Lelystad Centrum IC every 30 minutes
Amsterdam CS - Rotterdam CS IC every 60 minutes
Amsterdam CS - Roosendaal IC every 60 minutes
Amsterdam CS - Uitgeest (Haarlem) SP every 30 minutes
Amsterdam CS - Uitgeest (Zaandam) SP every 30 minutes
Amsterdam CS - Vlissingen IC every 60 minutes
Apeldoorn - Enschede SP every 30 minutes
Breukelen - Rhenen SP every 30 minutes
Den Haag CS - Breda SP every 30 minutes
Den Haag CS - Enschede IC every 60 minutes
Den Haag CS - Groningen IC every 60 minutes
Den Haag CS - Gouda Goverwelle SP every 30 minutes
Den Haag CS - Haarlem SP every 30 minutes

Continued on next page
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Table 1 – continued from previous page
Train line Train type Frequency

Den Haag CS - Hoorn SP every 30 minutes
Den Haag CS - Lelystad Centrum IC every 30 minutes
Den Haag CS - Lelystad Centrum SP every 30 minutes
Den Haag CS - Utrecht CS IC every 30 minutes
Den Haag CS - Utrecht CS SP every 30 minutes
Den Haag CS - Venlo IC every 30 minutes
Den Haag CS - Roosendaal SP every 30 minutes
Den Helder - Nijmegen IC every 30 minutes
Enkhuizen - Amersfoort IC every 30 minutes
Eindhoven - Weert SP every 30 minutes
Eindhoven - Tilburg SP every 30 minutes
Groningen - Zwolle IC every 60 minutes
’s Hertogenbosch - Nijmegen SP every 30 minutes
’s Hertogenbosch - Deurne SP every 30 minutes
Hoorn - Hoofddorp SP every 30 minutes
Roermond - Maastricht Randwyck SP every 30 minutes
Roosendaal - Vlissingen IC every 60 minutes
Roosendaal - Zwolle SP every 30 minutes
Rotterdam CS - Amersfoort IC every 30 minutes
Rotterdam CS - Deventer IC every 60 minutes
Rotterdam CS - Leeuwarden IC every 60 minutes
Rotterdam CS - Uitgeest SP every 30 minutes
Schiphol - Groningen IC every 60 minutes
Schiphol - Eindhoven IC every 30 minutes
Schiphol - Enschede IC every 60 minutes
Schiphol - Leeuwarden IC every 60 minutes
Schiphol - Nijmegen IC every 30 minutes
Sittard - Heerlen IC every 30 minutes
Sittard - Heerlen SP every 30 minutes
Utrecht CS - Almere Centrum IC every 30 minutes
Utrecht CS - Breda SP every 30 minutes
Utrecht CS - Breukelen SP every 30 minutes
Utrecht CS - Hoofddorp SP every 30 minutes
Utrecht CS - Tiel SP every 30 minutes
Utrecht CS - Zwolle SP every 30 minutes
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proach for discrete-time rescheduling in complex central railway station areas. Comput-
ers and Operations Research, 39(11):2578–2593, 2012.

F. Corman, A. D’Ariano, D. Pacciarelli, and M. Pranzo. Centralized versus distributed

12



systems to reschedule trains in two dispatching areas. Public Transport, 2:219–247,
2010.

F. Corman, A. D’Ariano, D. Pacciarelli, and M. Pranzo. Dispatching and coordination in
multi-area railway traffic management. Computers & Operations Research, 44(1):146 –
160, 2014.

M. M. Dessouky, Q. Lu, J. Zhao, and R. C. Leachman. An exact solution procedure to
determine the optimal dispatching times for complex rail networks. IIE Transactions, 38
(2):141–152, 2006.

Gurobi. Gurobi optimizer reference manual, 2014. URL http://www.gurobi.com.

B. Kersbergen, J. Rudan, T. van den Boom, and B. De Schutter. Towards railway traffic
management using switching max-plus-linear systems. Discrete Event Dynamic Sys-
tems, pages 1–41, 2014a. ISSN 0924-6703. doi: 10.1007/s10626-014-0205-7. URL
http://dx.doi.org/10.1007/s10626-014-0205-7.

B. Kersbergen, T. J. J. van den Boom, and B. De Schutter. Distributed model predictive
control for rescheduling of railway traffic. In Proceedings of the 17th International IEEE
Conference on Intelligent Transportation Systems (ITSC2014), pages 2732–2737, Qing-
dao, China, October 2014b.

L. Meng and X. Zhou. Simultaneous train rerouting and rescheduling on an n-track network:
A model reformulation with network-based cumulative flow variables. Transportation
Research Part B: Methodological, 67(0):208–234, 2014.

J. Rudan, B. Kersbergen, T. van den Boom, and K. Hangos. Performance analysis of
MILP based model predictive control algorithms for dynamic railway scheduling. In
Proceedings of the European Control Conference 2013 (ECC), pages 4562–4567, Zurich,
Switzerland, July 2013.

J. Törnquist Krasemann. Design of an effective algorithm for fast response to the re-
scheduling of railway traffic during disturbances. Transportation Research Part C:
Emerging Technologies, 20(1):62–78, 2012.

13


